Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643813

RESUMO

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Assuntos
Antibacterianos , Chlorella , Fotossíntese , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Fotossíntese/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Claritromicina/farmacologia , Enrofloxacina/farmacologia , Enrofloxacina/toxicidade , Sulfametazina/toxicidade , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Luz , Clorofila/metabolismo
2.
Int J Biol Macromol ; 264(Pt 2): 130705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458300

RESUMO

The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.


Assuntos
Chlorella , Neoplasias , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Chlorella/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Transdução de Sinais , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Metabolismo Energético , Mitocôndrias/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
3.
Sci Total Environ ; 912: 168712, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016561

RESUMO

Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the "peroxisome" and "sulfur metabolism" pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.


Assuntos
Chlorella , Metais Pesados , Cádmio/análise , Antioxidantes/metabolismo , Chlorella/metabolismo , Chumbo/toxicidade , Metais Pesados/metabolismo , Plantas/metabolismo , Água
4.
Plant Physiol Biochem ; 206: 108126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147709

RESUMO

Heavy metal cadmium (Cd) hinders plants' growth and productivity by causing different morphological and physiological changes. Nanoparticles (NPs) are promising for raising plant yield and reducing Cd toxicity. Nonetheless, the fundamental mechanism of nanoparticle-interfered Cd toxicity in Brassica parachineses L. remains unknown. A novel ZnO nanoparticle (ZnO-NPs) was synthesized using a microalgae strain (Chlorella pyrenoidosa) through a green process and characterized by different standard parameters through TEM, EDX, and XRD. This study examines the effect of different concentrations of ZnO-NPs (50 and 100 mgL-1) in B. parachineses L. under Cd stress through ultra-high-performance liquid chromatography/high-resolution mass spectrometry-based untargeted metabolomics profiling. In the presence of Cd toxicity, foliar spraying with ZnO-NPs raised Cu, Fe, Zn, and Mg levels in the roots and/or leaves, improved seedling development, as demonstrated by increased plant height, root length, and shoot and root fresh weight. Furthermore, the ZnO-NPs significantly enhanced the photosynthetic pigments and changed the antioxidant activities of the Cd-treated plants. Based on a metabolomics analysis, 481 untargeted metabolites were accumulated in leaves under normal and Cd-stressed conditions. These metabolites were highly enriched in producing organic acids, amino acids, glycosides, flavonoids, nucleic acids, and vitamin biosynthesis. Surprisingly, ZnO-NPs restored approximately 60% of Cd stress metabolites to normal leaf levels. Our findings suggest that green synthesized ZnO-NPs can balance ions' absorption, modulate the antioxidant activities, and restore more metabolites associated with plant growth to their normal levels under Cd stress. It can be applied as a plant growth regulator to alleviate heavy metal toxicity and improve crop yield in heavy metal-contaminated regions.


Assuntos
Chlorella , Metais Pesados , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Cádmio/análise , Antioxidantes , Chlorella/metabolismo , Nanopartículas/química , Metais Pesados/toxicidade , Poluentes do Solo/metabolismo
5.
Mar Drugs ; 21(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37504949

RESUMO

Lutein is a high-value carotenoid with many human health benefits. Lycopene ß- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently ß-cyclize both ends of lycopene to produce ß-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into ß-monocyclic γ-carotene and ultimately produced α-carotene with a ß-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60.


Assuntos
Chlorella , Liases Intramoleculares , Microalgas , Humanos , Licopeno/metabolismo , Luteína/metabolismo , Chlorella/genética , Chlorella/metabolismo , Microalgas/genética , Microalgas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Carotenoides/metabolismo , beta Caroteno/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo
6.
Ecotoxicol Environ Saf ; 263: 115245, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451097

RESUMO

Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.


Assuntos
Chlorella , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo , Chlorella/metabolismo , Simulação de Acoplamento Molecular , Fotossíntese , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
7.
Bioresour Technol ; 385: 129374, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352988

RESUMO

Fatty acid photodecarboxylase in Chlorella variabilis NC64A (CvFAP) performed excellent ability to exclusively decarboxylate renewable fatty acids for C1-shortened hydrocarbons fuel production under visible light. However, the large-scale application by such an approach is limited by the free state of CvFAP catalyst, which is unstable for efficient biofuel production. In this study, CvFAP was immobilized in magnetic nickel ferrite (NiFe2O4) nanoparticles for facile recovery by a simple procedure. The shift of Ni 2p in electron binding energy was detected to clarify the interaction between Ni2+ and histidine of CvFAP. The coordination of NiFe2O4 and CvFAP contributed to an efficient affinity binding with an immobilization capacity of 98 mg/g carrier. Hydrocarbon fuel concentration of 3.7 mM was obtained by NiFe2O4@CvFAP-induced photoenzymatic decarboxylation. The high stability of CvFAP in terms of residual enzyme activity of 79.7% at pH 9.0 and that of 68% at organic solvent ratio of 60%, respectively, were observed.


Assuntos
Chlorella , Nanopartículas , Ácidos Graxos/metabolismo , Chlorella/metabolismo , Fenômenos Magnéticos
8.
Chemosphere ; 334: 138932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209846

RESUMO

Microalgae such as Chlorella pyrenoidosa, Scenedesmus obliquus and Chlorella sorokiniana were cultivated in domestic wastewater for biohydrogen production. The comparison between the microalgae was executed based on biomass productions, biochemical yields and nutrient removal efficiencies. S. obliquus showed the possibility of growing in domestic wastewater reaching maximum biomass production, lipid, protein, carbohydrate yield and nutrient removal efficiency. All the three microalgae reached high biomass production of 0.90, 0.76 and, 0.71 g/L, respectively for S. obliquus, C. sorokiniana and C. pyrenoidosa. A higher protein content (35.76%) was obtained in S. obliquus. A similar pattern of lipid yield (25.34-26.23%) and carbohydrate yield (30.32-33.21%) was recorded in all selected microalgae. Chlorophyll-a content was higher in synthetic media-grown algae compared algae grown in wastewater. The maximum nutrient removal efficiencies achieved were 85.54% of nitrate by C. sorokiniana, 95.43% of nitrite by C. pyrenoidosa, ∼100% of ammonia and 89.34% of phosphorus by C. sorokiniana. An acid pre-treatment was applied to disintegrate the biomass of microalgae, followed by dark fermentation in batch mode to produce hydrogen. During fermentation process, polysaccharides, protein and lipids were consumed. Maximum hydrogen production of 45.50 ± 0.32 mLH2/gVS, 38.43 ± 0.42 mLH2/gVS and 34.83 ± 1.82 mL/H2/gVS was achieved by C. pyrenoidosa, S. obliquus and C. sorokiniana respectively. Overall, the results revealed the potential of microalgal cultivation in wastewater coupled with maximum biomass production lead to biohydrogen generation for environmental sustainability.


Assuntos
Chlorella , Microalgas , Scenedesmus , Purificação da Água , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Scenedesmus/metabolismo , Biocombustíveis , Carboidratos , Proteínas/metabolismo , Lipídeos , Hidrogênio/metabolismo
9.
Photosynth Res ; 156(1): 129-145, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753032

RESUMO

To date, cyclic electron flow around PSI (PSI-CEF) has been considered the primary (if not the only) mechanism accepted to adjust the ratio of linear vs cyclic electron flow that is essential to adjust the ratio of ATP/NADPH production needed for CO2 carboxylation. Here we provide a kinetic model showing that cyclic electron flow within PSII (PSII-CEF) is essential to account for the accelerating rate of decay in flash-induced oscillations of O2 yield as the PQ pool progressively reduces to PQH2. Previously, PSII-CEF was modeled by backward transitions using empirical Markov models like Joliot-Kok (J-K) type. Here, we adapted an ordinary differential equation methodology denoted RODE1 to identify which microstates within PSII are responsible for branching between PSII-CEF and Linear Electron Flow (LEF). We applied it to simulate the oscillations of O2 yield from both Chlorella ohadii, an alga that shows strong PSII-CEF attributed to high backward transitions, and Synechococcus elongatus sp. 7002, a widely studied model cyanobacterium. RODE2 simulations reveal that backward transitions occur in microstates that possess a QB- semiquinone prior to the flash. Following a flash that forms microstates populating (QAQB)2-, PSII-CEF redirects these two electrons to the donor side of PSII only when in the oxidized S2 and S3 states. We show that this backward transition pathway is the origin of the observed period-2 oscillations of flash O2 yield and contributes to the accelerated decay of period-4 oscillations. This newly added pathway improved RODE1 fits for cells of both S. elongatus and C. ohadii. RODE2 simulations show that cellular adaptation to high light intensity growth is due to a decrease in QB availability (empty or blocked by Q2-B), or equivalently due to a decrease in the difference in reduction potential relative to QA/QA-. PSII-CEF provides an alternative mechanism for rebalancing the NADPH:ATP ratio that occurs rapidly by adjusting the redox level of the PQ:PQH2 pool and is a necessary process for energy metabolism in aquatic phototrophs.


Assuntos
Chlorella , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Fotossíntese , Elétrons , Chlorella/metabolismo , NADP/metabolismo , Oxirredução , Luz , Trifosfato de Adenosina/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
10.
ACS Nano ; 17(4): 4034-4049, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36739531

RESUMO

Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes. In addition, the membrane coating on Chl allowed lipid insertion to yield ß-cyclodextrin (ß-CD) modified MChl (CD-MChl). Subsequently, supramolecular conjugates of MChl-NP were constructed via host-guest interactions between CD-MChl and adamantane (ADA)-modified liposome (ADA-NP), and the anchored liposome went with CD-MChl hand-in-hand to the tumor tissues for co-delivery of Chl, hematoporphyrin, and chloroquine phosphate (loaded in ADA-NP). The synergistic therapy achieved via local oxygenation, SDT, and autophagy inhibition maximally improved the therapeutic efficacy of MChl-CQ-HP-NP against melanoma. Tumor rechallenging results revealed that the changes of tumor microenvironment including hypoxia alleviation, SDT induced immunogenic cell death, and autophagy inhibition collectively induced a strong antitumor immune response and memory.


Assuntos
Chlorella , Microalgas , Terapia por Ultrassom , Humanos , Lipossomos/farmacologia , Linhagem Celular Tumoral , Chlorella/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia/metabolismo , Imunoterapia , Autofagia , Macrófagos/metabolismo , Terapia por Ultrassom/métodos
11.
Sci Total Environ ; 872: 162238, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804985

RESUMO

In search of the candidate for animal feed and clean energy, a new vision of algal biorefinery was firstly proposed to coproduce amino acids and biohythane via hydrothermal treatment and two-stage anaerobic fermentation. This study focused on the comprehensive analysis of amino acids recovered from Chlorella sp. and the subsequent biohythane production from microalgal residues. The content and recovery rate of amino acids were in the range of 2.07-27.62 g/100 g and 3.65 %-48.66 % with increasing temperature due to more cell wall disruptions. Furthermore, it was rich in essential amino acids for livestock, including leucine, arginine, isoleucine, valine and phenylalanine. A comparable hydrogen production (9 mL/g volatile solids (VS)) was reached at 70 °C and 90 °C, while it reduced to 5.84 mL/gVS at 150 °C. The group at 70 °C got the maximum methane generation of 311.9 mL/gVS, which was 16.67 %, 24.94 %, 38.38 % and 46.49 % higher than that of other groups. Microalgal residues at lower temperature contained more organics, which was the reason for the better biohythane production. The coproduction of amino acids and biohythane at 130 °C was favorable, which led to 43.71 % amino acids recovery and 93.82 mL biohythane production from per gVS of Chlorella sp. The improved microalgal biorefinery could provide an alternative way to mitigate the crisis of food and energy, but animal experimentations and techno-economic assessments should be considered for further study.


Assuntos
Chlorella , Microalgas , Anaerobiose , Microalgas/metabolismo , Aminoácidos/metabolismo , Chlorella/metabolismo , Fermentação , Metano , Biocombustíveis , Hidrogênio/metabolismo , Biomassa
12.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674853

RESUMO

The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a recycled cigarette butt's substrate, respectively, and two isolates from an Ecuadorian highland lake related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI). Monocultures were exposed to acute UV-B (1.7 W m-2) over 18 h under controlled conditions. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments, non-enzymatic antioxidants, and chlorophyll a fluorescence, were evaluated at specific time points. Results showed that UV-B significantly compromised all the physiological parameters in F4, thereby resulting in the most UV-B-sensitive strain. Contrarily, UV-B exposure did not lead to changes in the PEC physiological traits, resulting in the best UV-B-resistant strain. This could be attributed to the acclimation to high light habitat, where maintaining a constitutive phenotype (at the photosynthetic level) is strategically advantageous. Differently, LG1 and ETI at 12 h of UV-B exposure showed different UV-B responses, which is probably related to acclimation, where in LG1, the pigments were recovered, and the antioxidants were still functioning, while in ETI, the accumulation of pigments and antioxidants was increased to avoid further photodamage. Consequently, the prolonged exposure in LG1 and ETI resulted in species-specific metabolic regulation (e.g., non-enzymatic antioxidants) in order to constrain full photoinhibition under acute UV-B.


Assuntos
Chlorella , Microalgas , Clorofila/metabolismo , Clorofila A , Microalgas/metabolismo , Chlorella/metabolismo , Equador , Fotossíntese , Antioxidantes/metabolismo , Raios Ultravioleta
13.
Bioresour Technol ; 370: 128538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581231

RESUMO

Alternative protein sources for the reduction/replacement of fish meal in aqua-feeds are in urgent demand. Microalgae are considered sustainable protein sources for aquaculture due to their high-quality proteins with a complete profile of essential amino acids. This study examined the heterotrophic production of proteins from Chlorella sorokiniana SU-9. Culture parameters for maximal biomass and protein production are as follows: glucose - 10 g/L glucose, sodium nitrate - 1.5 g/L, and iron - 46 µM iron in BG-11 medium. Under optimal conditions, biomass content, protein content and protein productivity of SU-9 reached 4.14 ± 0.20 g/L, 403 ± 33 mg/g and 382 ± 36 mg/L/d, respectively. The protein profile of Chlorella sorokiniana SU-9 is comparable to fishmeal and soybean meal. The essential amino acids arginine, lysine and cysteine, along with glutamine and glutamate, were high. The production cost of SU-9 can be significantly reduced under heterotrophic cultivation conditions, making it a potential protein substitute in aquafeed.


Assuntos
Chlorella , Microalgas , Animais , Chlorella/metabolismo , Glucose/metabolismo , Biomassa , Processos Heterotróficos , Microalgas/metabolismo , Aminoácidos Essenciais/metabolismo
14.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453904

RESUMO

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Assuntos
Chlorella , Microalgas , Manganês/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metais/metabolismo
15.
Environ Technol ; 44(27): 4099-4112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35588240

RESUMO

ABSTRACTThis study aims to investigate the optimized lipase-catalysed esterification reaction from novel feedstock microalgae (Chlorella protothecoides) oil-free fatty acids (FFAs) for biolubricant (Trimethylolpropane (TMP)-triesters) synthesis. FFAs were obtained from microalgae oil by enzymatic hydrolysis. Response surface methodology (RSM) with the central composite design was performed to investigate the effect of experimental factors (lipase amount, TMP/FFAs molar ratio, reaction temperature) on the FFAs conversion and also investigated to resolve the optimum design points. After the experimental studies, the highest FFAs conversion of 93% with 92% triester and 8% mono, di esters contents were found when the lipase amount was 5.5%. TMP/FFAs molar ratio was 0.33 and the reaction temperature value was 60°C. The model fitted with the experimental values with R2 = 0.97. It was also supported by gas chromatography and FTIR analyses that the product obtained was a lubricant.


Assuntos
Chlorella , Microalgas , Ésteres/química , Lipase/química , Lipase/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Esterificação , Catálise , Temperatura
16.
Food Chem ; 401: 134083, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099816

RESUMO

The impact of Spirulina, Chlorella and Phaeodactylum tricornutum (P. tricornutum) microalgal extracts obtained by pressurized liquid extraction (PLE) on antioxidant and anti-inflammatory activities, microbial growth and in vitro gut microbiota composition was evaluated. PLE, compared to conventional extraction, led to a significant (p < 0.05) increase in proteins, carbohydrates, polyphenols, and antioxidant capacities of the three microalgal extracts. Moreover, Spirulina and P. tricornutum extracts significantly (p < 0.05) reduced the in vitro activation of the inflammatory NF-κB pathway. The microalgal extracts had also an inhibitory effect on the pathogenic bacteria while potential beneficial Lactobacillus and Bifidobacterium strains increased growth. The effects of microalgal extracts on specific bacterial groups were analyzed by quantitative PCR technology, and bacterial gene copy numbers were affected by in vitro digestion process and colonic fermentation time. GC-MS results showed that microalgal biomolecules' digestion promoted the release of short-chain fatty acids (SCFAs) during in vitro colonic microbiota fermentation, particularly acetic, butanoic and propanoic, indicating that the biomolecules in microalgae extracts have potential health benefits for human gut.


Assuntos
Chlorella , Microbioma Gastrointestinal , Microalgas , Spirulina , Humanos , Chlorella/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Spirulina/metabolismo , NF-kappa B/metabolismo , Microalgas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Carboidratos
17.
Water Sci Technol ; 86(8): 1915-1926, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36315085

RESUMO

Bacteria-algae consortia in the light bring the benefit of O2 production and CO2 reduction for wastewater treatment, while the bottleneck for application is how it behaves in the dark. In this study, inoculum ratio and sludge retention time (SRT) affected nutrient removal rather than chemical oxygen demand (COD) removal. Dark conditions (with a sludge/Chlorella inoculum ratio of 1:2 at a SRT of 15 d) achieved comparable performance to those of light conditions, due to bacteria contribution and mechanical aeration. Compared with light conditions, the ratio of Chla/Chlb decreased and Caro/(Chla + Chlb) increased to response oxidative stress. In the dark, algae were associated with Nitrosomonas and Dechloromonas. Flavobacterium disassociated with Chlorella in the dark but associated with Chlorella in the light. Moreover, nitritation genes (amo and Hao) and denitrifying gene (narH) were up-regulated, while P metabolism genes (PPX and PPK) were down-regulated. It is proposed to enrich Nitrosomonas in the night and denitrify polyphosphate accumulating organisms (DPAO) in the daytime to establish short-cut nitrification and denitrifying phosphorus removal in practical applications.


Assuntos
Chlorella , Esgotos , Esgotos/microbiologia , Chlorella/metabolismo , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrificação , Fósforo/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Águas Residuárias , Desnitrificação
18.
Bioresour Technol ; 362: 127858, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037840

RESUMO

The scenario was to investigate feasibilities of employing Chlorella pyrenoidosa for Rhizopus oryzae fermentation wastewater nutrient removal coupling protein fodder production. Results stated that TN, TP, NH3-N, COD, BOD removal reached 99.79%, 94.70%, 98.80%, 97.60%, 99.60% to acquire discharge permit under fed-batch manipulation, whilst the peaked protein yield (19.94 g/L) was 6.04-fold more than batch manipulation. Rhizopus oryzae fermentation wastewater feeding C. pyrenoidosa was praised as high-quality protein not only with 26.78% essential amino acids and essential amino acids/nonessential amino acids value of 0.84 but also pathogenic bacteria and heavy metal loads complying with fodder standards. In vitro digestibility of dry matter, protein, lipid, and starch achieving 80.07%, 92.13%, 95.93%, 91.9% and bioavailability of polypeptides, triglycerides, free fatty acids, and oligosaccharides displaying 98.67%, 87.12%, 93.86%, 30.21%, which were roughly-equivalent to corn/soybean fodder. The findings formed exemplifications in utilizing other microalgal systems for wastewater nutrient removal coupling chemicals production.


Assuntos
Chlorella , Microalgas , Aminoácidos Essenciais , Ração Animal , Biomassa , Chlorella/metabolismo , Fermentação , Microalgas/metabolismo , Nutrientes , Rhizopus/metabolismo , Rhizopus oryzae , Águas Residuárias/química
19.
Ecotoxicol Environ Saf ; 242: 113916, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878498

RESUMO

The protective ozone layer is continually depleting owing to an increase in the levels of solar UV-B radiation, which has harmful effects on organisms. Algae in desert soil can resist UV-B radiation, but most research on the radiation resistance of desert algae has focused on cyanobacteria. In this study, we found that desert green algae, Chlorella sp., could maintain high photosynthetic activity under UV-B stress. To examine the tolerance mechanism of the desert green algae photosystem, we observed the physiological and transcriptome-level responses of Chlorella sp. to high doses of UV-B radiation. The results showed that the reactive oxygen species (ROS) content first increased and then decreased, while the malondialdehyde (MDA) content revealed no notable lipid peroxidation during the UV-B exposure period. These results suggested that Chlorella sp. may have strong system characteristics for scavenging ROS. The antioxidant enzyme system showed efficient alternate coordination, which exhibited a protective effect against enhanced UV-B radiation. DNA damage and the chlorophyll and soluble protein contents had no significant changes in the early irradiation stage; UV-B radiation did not induce extracellular polysaccharides (EPS) synthesis. Transcriptomic data revealed that a strong photosynthetic system, efficient DNA repair, and changes in the expression of genes encoding ribosomal protein (which aid in protein synthesis and improve resistance) are responsible for the high UV-B tolerance characteristics of Chlorella sp. In contrast, EPS synthesis was not the main pathway for UV-B resistance. Our results revealed the potential cell damage repair mechanisms within Chlorella sp. that were associated with high intensity UV-B stress, thereby providing insights into the underlying regulatory adaptations of desert green algae.


Assuntos
Chlorella , Chlorella/genética , Chlorella/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos da radiação , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
20.
Mar Pollut Bull ; 180: 113810, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665619

RESUMO

Polybrominated diphenyl ethers (PBDEs) are toxic to marine organisms including the major primary producer phytoplankton, while the toxic mechanisms haven't yet been fully clarified. Therefore, we comprehensively studied the toxic mechanisms of BDE-47 on the marine chlorophyte Chlorella sp., with a focus on the role of cellular oxidative stress. The results indicate that BDE-47 stress resulted in the inhibition of population growth as well as cell death and programmed cell death. The antioxidant system was activated in both low and high BDE-47 treatments, but only microalgal cells in the high BDE-47 treatment showed cellular oxidative stress. By adding ROS inhibitor, the relief of photosynthetic inhibition, Ca2+ overproduction and cell death was found. Therefore, we conclude that photosynthetic damage, cell death and cellular oxidative stress were the major mechanisms of BDE-47 toxicity to Chlorella sp., and that cellular oxidative stress played an important role in mediating the other mechanisms.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Chlorella/metabolismo , Éter/metabolismo , Éteres Difenil Halogenados/metabolismo , Éteres Difenil Halogenados/toxicidade , Microalgas/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA