Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Chemosphere ; 353: 141644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442774

RESUMO

Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 µm group (C) and 750 (D) µm group, 75 nm + 7.5 µm+750 µm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.


Assuntos
Chlorella vulgaris , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Microplásticos/toxicidade , Plásticos , Chlorella vulgaris/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
2.
Sci Total Environ ; 926: 171937, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527534

RESUMO

The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.


Assuntos
Chlorella vulgaris , Dissulfetos , Metaloides , Antimônio/metabolismo , Molibdênio/toxicidade , Adsorção , Chlorella vulgaris/metabolismo , Glutationa
3.
Environ Sci Pollut Res Int ; 31(9): 14043-14058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273079

RESUMO

Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.


Assuntos
Chlorella vulgaris , Daucus carota , Metais Pesados , Poluentes do Solo , Spirulina , Cádmio/toxicidade , Águas Residuárias , Ácido Edético/farmacologia , Chlorella vulgaris/metabolismo , Chumbo/farmacologia , Pós , Metais Pesados/análise , Poluentes do Solo/toxicidade
4.
J Trace Elem Med Biol ; 83: 127369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176316

RESUMO

BACKGROUND: The use of nanomaterials in cancer diagnosis and treatment has received considerable interest. Preparation of nanoscale complex molecules could be considered to improve the efficacy and minimize toxicity of the product. This work aimed to biosynthesize BiFe2O4@Ag nanocomposite using the Chlorella vulgaris extract and its cytotoxic effect on colon cancer cell line. METHODS: The physicochemical properties of the bioengineered BiFe2O4 @Ag were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectroscopy (EDX), Vibrating-sample Magnetometer (VSM) and X-ray Diffraction Analysis (XRD). The cytotoxic potential of BiFe2O4 @Ag was evaluated by MTT assay against SW480 colon cancer cell line. The expression levels of apoptotic genes including BAX, BCL2 and CASP8 were determined by Real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the cell cycle analysis were evaluated by flow cytometry. RESULTS: Physicochemical assays indicated the nanoscale synthesis (10-70 nm) and functionalization of BiFe2O4 nanoparticles by Ag atoms. The VSM analysis revealed the magnetism of BiFe2O4 @Ag nanocomposite. According to the MTT assay, colon cancer cells (SW480) were considerably more sensitive to BiFe2O4 @Ag nanocomposite than normal cells. Apoptotic cell percentage increased from 1.93% to 73.66%, after exposure to the nanocomposite. Cell cycle analysis confirmed an increase in the number of the cells in subG1 and G0/G1 phases among nanocomposite treated cells. Moreover, treating the colon cancer cells with BiFe2O4 @Ag caused an increase in the expression of CASP8, BAX, and BCL2 genes by 3.1, 2.6, and 1.2 folds, respectively. Moreover, activity of Caspase-3 protein increased by 2.4 folds and apoptotic morphological changes appeared which confirms that exposure to the nanocomposite induces extrinsic pathway of apoptosis in colon cancer cells. CONCLUSION: The considerable anticancer potential of the synthesized BiFe2O4 @Ag nanocomposite seems to be related to the induction of oxidative stress which leads to inhibit cell cycle progression and cell proliferation. This study reveals that the BiFe2O4 @Ag is a potent compound to be used in biomedical fields.


Assuntos
Antineoplásicos , Chlorella vulgaris , Neoplasias do Colo , Nanopartículas Metálicas , Nanocompostos , Humanos , Chlorella vulgaris/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanocompostos/química , Nanopartículas Metálicas/química , Caspase 8/metabolismo , Caspase 8/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Bioresour Technol ; 394: 130300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185445

RESUMO

In this study, the effect of α-Fe2O3 nanoparticles spiking in urban wastewater (UWW) on growth rate, wastewater treatment ability and bioproducts generation of C. vulgaris and Spirulina was investigated and compared with pure cultivation system. The biomass concentration of C. vulgaris and Spirulina improved by 20 % and 39 % at 10 and 15 mg/L α-Fe2O3, respectively while the both microalgae growth pattern fitted better with Gompertz simulation after treatment with α-Fe2O3. The nutrients mass balance revealed that 1 g of treated C. vulgaris and Spirulina could uptake more COD, TN and TP in comparison to the untreated cells. The lipid generation increased remarkably (C. vulgaris: 45 % and Spirulina: 72 %) after α-Fe2O3 treatment. While, the addition of α-Fe2O3 showed no significant impact on the protein and carbohydrate productivity. Overall, this study evangelize the role of nanoparticles on promoting microalgae applications as a sustainable approach for UWW treatment and promising feedstock for biofuel production.


Assuntos
Chlorella vulgaris , Compostos Férricos , Microalgas , Purificação da Água , Microalgas/metabolismo , Nutrientes , Biomassa , Nanopartículas Magnéticas de Óxido de Ferro , Expressão Gênica , Chlorella vulgaris/metabolismo
6.
Biol Trace Elem Res ; 202(5): 2022-2035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37642811

RESUMO

The incidence and mortality of breast cancer are growing which indicates the inefficiency of the current chemotherapy drugs. Due to the anticancer potential of Zn and Ag and the magnetic feature of iron oxide, in this work, we synthesized ZnFe2O4-Ag nanocomposite using Chlorella vulgaris and investigated its anticancer effect on breast cancer cell line. Physicochemical characterization was performed by FT-IR, XRD, SEM, TEM, VSM, EDS mapping, UV, and zeta potential assays. Cell cytotoxicity and apoptosis frequency were studied by the MTT and flow cytometry assays. Also, cell cycle analysis, Hoechst staining, and measuring ROS (reactive oxygen species) level were performed. The synthesized particles were almost spherical with a size range of 14-52 nm. The FT-IR and XRD assays confirmed the proper synthesis of the particles and VSM analysis showed that particles had magnetic property and the maximum saturation magnetization was 0.8 Emu/g. Also, the EDS mapping of the nanocomposite showed the Zn, Fe, O, and Ag elements. The MTT assay showed that the 50% inhibitory concentration (IC50) of ZnFe2O4-Ag for breast cancer and normal cells were 28 and 154 µg/mL, respectively, and the nanocomposite had stronger anticancer activity than cisplatin (IC50 = 84 µg/mL). Flow cytometry analysis showed that the exposure to the nanocomposite induced cell apoptosis by 77.5% and significantly induced ROS generation. Also, treating breast cancer cells with the nanocomposite induced cell cycle arrest and apoptotic features, including chromatin condensation and fragmentation. In conclusion, ZnFe2O4-Ag nanocomposite synthesized by C. vulgaris could suppress the proliferation of breast cancer cells by the generation of oxidative stress, apoptosis induction, and cell cycle arrest.


Assuntos
Neoplasias da Mama , Chlorella vulgaris , Humanos , Feminino , Células MCF-7 , Chlorella vulgaris/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose
7.
Mar Pollut Bull ; 198: 115851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016208

RESUMO

In this study, the microalgal growth and crude oil (CRO) biodegradation by marine Chlorella vulgaris (C. vulgaris) were assessed under norfloxacin (NFX) stress. The presence of NFX negatively affected the bio-removal of CRO within 5 days, as the NFX concentration increased from 100 to 1600 µg/L, due to its toxicity as an antibiotic. However, its negative impact on the final degradation capabilities of C. vulgaris was less significant (P-value <0.05). After 9 days of cultivation, CRO bio-removal efficiencies still exceeded 90 %, while NFX bio-removal efficiencies maintained over 47 %. RNA-seq analysis revealed that the degradation of CRO and NFX was attributed to the combined action of functional genes involved in scavenging reactive oxygen species. The production of pigments and the bio-removal performance of C. vulgaris in CRO, NFX, and CRO & NFX coexistence media were consistent with the changes in the number of differentially expressed genes in these samples.


Assuntos
Chlorella vulgaris , Petróleo , Norfloxacino , Chlorella vulgaris/metabolismo , Petróleo/metabolismo , Antibacterianos , RNA/metabolismo
8.
Chemosphere ; 345: 140398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844705

RESUMO

Chlorella vulgaris (C. vulgaris) can provide the means to fix CO2 from complicated flue gas, treat wastewater and reach a sustainable production of petrochemical substitutes simultaneously. However, a prerequisite to achieving this goal is to promote C. vulgaris growth and improve the CO2-to-fatty acids conversion efficiency under different conditions of flue gas and wastewater. Thus, the addition of indole-3-acetic acid (IAA) in C. vulgaris cultivation was proposed. Results showed that C. vulgaris were more easily inhibited by 100 ppm NO and 200 ppm SO2 under low nitrogen (N) condition. NO and SO2 decreased the carbon (C) fixation; but increased N and sulfur (S) fixation. IAA adjusted the content of superoxide dismutase (SOD) and malondialdehyde (MDA), improved the expression of psbA, rbcL, and accD, attenuated the toxicity of NO and SO2 on C. vulgaris, and ultimately improved cell growth (2014.64-2458.16 mgdw·L-1) and restored CO2 fixation rate (170.98-220.92 mg CO2·L-1·d-1). Moreover, wastewater was found to have a high treatment efficiency because C. vulgaris grew well in all treatments, and the maximal removal rates of both N and phosphorus (P) reached 100%. Metabonomic analysis showed that IAA, "NO and SO2" were involved in the down-regulated and up-regulated expression of multiple metabolites, such as fatty acids, amino acids, and carbohydrates. IAA was beneficial for improving lipid accumulation with 24584.21-27634.23 µg g-1, especially monounsaturated fatty acids (MUFAs) dominated by 16-18 C fatty acids, in C. vulgaris cells. It was concluded that IAA enhanced the CO2 fixation, fatty acids production of C. vulgaris and its nutrients removal rate.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Chlorella vulgaris/metabolismo , Águas Residuárias , Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Ácidos Graxos/metabolismo , Metaboloma , Biomassa , Microalgas/metabolismo
9.
Viruses ; 15(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896787

RESUMO

The white spot syndrome virus (WSSV) is the causative agent of white spot disease, which kills shrimp within a few days of infection. Although WSSV has a mortality rate of almost 100% and poses a serious threat to the shrimp farming industry, strategies for its prevention and treatment are extremely limited. In this study, we examined the efficacy of VP28, a recombinant WSSV protein expressed in Chlorella vulgaris (C. vulgaris), as an oral shrimp vaccine. When compared with the control group, in which WSSV had a cumulative mortality of 100%, shrimp treated with 5% VP28-expressing C. vulgaris in their feed only had a 20% cumulative mortality rate 12 days after the WSSV challenge. When compared with the nonvaccinated group, the transcription of anti-lipopolysaccharide factor, C-type lectin, and prophenoloxidase genes, which are involved in shrimp defense against WSSV infection, was upregulated 29.6 fold, 15.4 fold, and 11.5 fold, respectively. These findings highlight C. vulgaris as a potential host for industrial shrimp vaccine production.


Assuntos
Chlorella vulgaris , Vacinas , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas do Envelope Viral/metabolismo , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética , Proteínas Recombinantes/genética , Crustáceos
10.
J Hazard Mater ; 458: 131960, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393825

RESUMO

The Chlorella vulgaris-Rhodococcus erythropolis consortia was constructed for the biodegradation of waste motor oil (WMO), combined with thermodynamic calculations and stoichiometric analyses. The microalgae-bacteria consortium was constructed as C. vulgaris: R. erythropolis = 1:1 (biomass, cell/mL), pH = 7, 3 g/L WMO. Under the same condition, the terminal electron acceptors (TEAs) play a crucial role in the WMO biodegradation, which follows Fe3+ >SO42- > none. The biodegradation of WMO fitted well with the first-order kinetic model under experimental temperatures with different TEAs (R2 >0.98). The WMO biodegradation efficiency reached 99.2 % and 97.1 % with Fe3+ and SO42-as TEAs at 37 °C, respectively. Thermodynamic methanogenesis opportunity windows with Fe3+ as TEA are 2.72 times fold as large as those with SO42-. Microorganism metabolism equations demonstrated the viability of anabolism and catabolism on WMO. This work lays the groundwork for the implementation of WMO wastewater bioremediation and supports research into the biochemical process of WMO biotransformation.


Assuntos
Chlorella vulgaris , Microalgas , Petróleo , Rhodococcus , Biodegradação Ambiental , Chlorella vulgaris/metabolismo , Elétrons , Petróleo/metabolismo , Rhodococcus/metabolismo , Termodinâmica , Biomassa , Microalgas/metabolismo
11.
Sci Total Environ ; 895: 165120, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379923

RESUMO

Chlorella culturing has the advantages in treatment of wastewater including swine wastewater from anaerobic digesters due to the product of biolipids and the uptake of carbon dioxide. However, there often exist high concentrations of antibiotics and heavy metals in swine wastewater which could be toxic to chlorella and harmful to the biological systems. This study examined the stress of cupric ion and oxytetracycline (OTC) at various concentrations on the nutrient removal and biomass growth in Chlorella vulgaris culturing in swine wastewater from anaerobic digesters, and its biochemical responses were also studied. Results showed that dynamic hormesis of either OTC concentration or cupric ion one on Chlorella vulgaris were confirmed separately, and the presence of OTC not only did not limit biomass growth and lipids content of Chlorella vulgaris but also could mitigate the toxicity of cupric ion on Chlorella vulgaris in combined stress of Cu2+ and OTC. Extracellular polymeric substances (EPS) of Chlorella vulgaris were used to explain the mechanisms of stress for the first time. The content of proteins and carbohydrates in EPS increased, and the fluorescence spectrum intensity of tightly-bound EPS (TB-EPS) of Chlorella vulgaris decreased with increasing concentration of stress because Cu2+ and OTC may be chelated with proteins of TB-EPS to form non-fluorescent characteristic chelates. The low concentration of Cu2+ (≤1.0 mg/L) could enhance the protein content and promote the activity of superoxide dismutase (SOD) while these parameters were decreased drastically under 2.0 mg/L of Cu2+. The activity of adenosine triphosphatase (ATPase) and glutathione (GSH) enhanced with the increase of OTC concentration under combined stress. This study helps to comprehend the impact mechanisms of stress on Chlorella vulgaris and provides a novel strategy to improve the stability of microalgae systems for wastewater treatment.


Assuntos
Chlorella vulgaris , Microalgas , Oxitetraciclina , Animais , Suínos , Águas Residuárias , Chlorella vulgaris/metabolismo , Oxitetraciclina/toxicidade , Oxitetraciclina/metabolismo , Carboidratos , Microalgas/metabolismo , Biomassa
12.
Sci Rep ; 13(1): 7891, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193743

RESUMO

An 8-week trial to examine the impacts of Arthrospira platensis and Chlorella vulgaris on the growth, nutrient aspects, intestinal efficacy, and antioxidants of 75 New Zealand white male rabbits (initial body weight = 665.93 ± 15.18 g). Herein the study was designed in one-way ANOVA to compare the effects of the two algae species with two levels of supplementations in the feeds of New Zealand white rabbits. The rabbits were divided into five groups (n = 15/group), where the first group was allocated as the control group (Ctrl) while the second and third groups received A. platensis at 300 or 500 mg/kg diet (Ap300 or Ap500). The fourth and fifth groups fed C. vulgaris at 300 or 500 mg/kg diet (Ch300 or Ch500). The basal diet rabbits exhibited the lowest values of weight, lipase, protease, and the highest feed conversion ratio, which improved noticeably with algae addition, particularly with Ap500, Ch300, and Ch500. All tested groups showed normal intestinal structure. Amylase potency, hematological indicators, and serum biochemistry revealed non-significant variation except for a higher serum total protein and lower total cholesterol in algal groups. The best GPx existed in groups fed algal diets, while favorable SOD and CAT efficiency occurred at the higher level of Arthrospira and both levels of Chlorella. In conclusion, incorporating Arthrospira or Chlorella in the diet of New Zealand white rabbits improved performance, nutrient utilization, intestinal efficacy, and antioxidants. Arthrospira (Ap500) and Chlorella (Ch300 or Ch500) have almost the same beneficial effect on rabbit performance.


Assuntos
Chlorella vulgaris , Spirulina , Animais , Masculino , Coelhos , Ração Animal/análise , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chlorella vulgaris/metabolismo , Dieta , Suplementos Nutricionais , Lagomorpha , Spirulina/metabolismo
13.
Environ Toxicol Pharmacol ; 98: 104077, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740086

RESUMO

In this study, responses of various biomarkers in the digestive gland and foot muscle of freshwater mussels (Unio tigridis) were investigated following exposure to Al2O3, CuO and TiO2 nanoparticles (NPs) for 14 days at different concentrations (0, 1, 3 and 9 mg NP/L). Mussels were fed on unicellular algae (Chlorella vulgaris) cultured in the laboratory. NP exposures caused significant increases (p < 0.05) in the levels of total glutathione (GSH), reduced-glutathione (rGSH), oxidized-glutathione (GSSG) and malondialdehyde (MDA) in the digestive gland. Oppositely, there were significant (p < 0.05) decreases in acetylcholinesterase activity in the foot muscles. Total energy reserves of the digestive gland and foot muscle significantly (p < 0.05) decreased, but only at the highest NP exposures. Nevertheless, NP exposures did not alter (p > 0.05) the algae filtering capacity of mussels. This study demonstrated that the biomarkers belonging to different metabolic systems responded to NP exposures, suggesting their usage in the monitoring studies for freshwater systems.


Assuntos
Bivalves , Chlorella vulgaris , Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Animais , Óxidos , Acetilcolinesterase/metabolismo , Chlorella vulgaris/metabolismo , Biomarcadores/metabolismo , Bivalves/metabolismo , Glutationa/metabolismo , Água Doce
14.
Photosynth Res ; 155(3): 247-270, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598714

RESUMO

Recently, the long-standing paradigm of variable chlorophyll (Chl) fluorescence (Fv) in vivo originating exclusively from PSII was challenged, based on measurements with green algae and cyanobacteria (Schreiber and Klughammer 2021, PRES 149, 213-231). Fv(I) was identified by comparing light-induced changes of Fv > 700 nm and Fv < 710 nm. The Fv(I) induced by strong light was about 1.5 × larger in Fv > 700 nm compared to Fv < 710 nm. In the present communication, concentrating on the model green alga Chlorella vulgaris, this work is extended by comparing the light-induced changes of long-wavelength fluorescence (> 765 nm) that is excited by either far-red light (720 nm, mostly absorbed in PSI) or visible light (540 nm, absorbed by PSI and PSII). Polyphasic rise curves of Fv induced by saturating 540 nm light are measured, which after normalization of the initial O-I1 rises, assumed to reflect Fv(II), display a 2 × higher I2-P transient with 720 nm excitation (720ex) compared with 540ex. Analysis of the Fo(I) contributions to Fo(720ex) and Fo(540ex) reveals that also Fo(I)720ex is 2 × higher than Fo(I)540ex, which supports the notion that the whole I2-P transient is due to Fv(I). The twofold increase of the excitation ratio of F(I)/F(II) from 680 to 720 nm is much smaller than the eight-tenfold increase of PSI/PSII known from action spectra. It is suggested that the measured F > 765 nm is not representative for the bulk chlorophyll of PSI, but rather reflects a small fraction of far-red absorbing chlorophyll forms ("red Chls") with particular properties. Based on the same approach (comparison of polyphasic rise curves measured with 720ex and 540ex), the existence of Fv(I) is confirmed in a variety of other photosynthetic organisms (cyanobacteria, moss, fern, higher plant leaves).


Assuntos
Chlorella vulgaris , Cianobactérias , Complexo de Proteína do Fotossistema I/metabolismo , Chlorella vulgaris/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila , Luz , Cianobactérias/metabolismo
15.
J Hazard Mater ; 443(Pt A): 130159, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36283218

RESUMO

Tritium is the main component of radioactive wastewater from nuclear power plants and can be migrated into organisms to form organically bound tritium (OBT), which may pose a potential risk to aquatic ecosystem. Hence, it is essential to monitor OBT conversion in the presence of tritium exposure. In this study, the effects of pretreatment methods such as digestion on the recovery of tritium were discussed. It was found that microwave digestion pretreatment could improve the recovery of tritium by up to 90 % and allow OBT measurement with a small sample size equivalent to about 60 mg (dry weight). In addition, the efficiency of OBT transformation was different among biological samples, and the radiation hormesis phenomenon was induced by tritium exposure (3.7 × 106 Bq/L) in microalgae Chlorella vulgaris(C. vulgaris). The tritium exposure may induce radiation hormesis through the reactive oxygen species (ROS) signaling pathway, thus improving the photosynthetic capacity and metabolism level of C. vulgaris. Furthermore, enhancement of photorespiration metabolism and the antioxidation system may be important means for C. vulgaris to balance damage by tritium radiation. This study provides insights for further investigating OBT behavior, and will contribute to understanding the equilibrium damage mechanism of algae exposed to tritium.


Assuntos
Chlorella vulgaris , Monitoramento de Radiação , Trítio , Espécies Reativas de Oxigênio , Monitoramento de Radiação/métodos , Ecossistema , Hormese , Chlorella vulgaris/metabolismo , Transdução de Sinais
16.
Biomolecules ; 12(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551234

RESUMO

In vitro ACE-1 inhibitory peptides were characterised previously from a number of microalgal species including Spirulina platensis (peptide IAPG), Chlorella vulgaris (peptides FDL, AFL, VVPPA), Isochrysis galbana (peptide YMGLDLK), Chlorella sorokiniana (peptides IW and LW) and indeed Nannochloropsis oculata (peptides GMNNLTP and LEQ). The isolation of protein from Nannochloropsis oculata using a combination of ammonium salt precipitation and xylanase treatment of resulting biomass combined with molecular weight cut off filtration to produce a permeate and characterisation of bioactive peptides is described. The Angiotensin-1-converting enzyme (ACE-1) IC50 value for the generated permeate fraction was 370 µg/mL. Ninety-five peptide sequences within the permeate fraction were determined using mass spectrometry and eight peptides were selected for chemical synthesis based on in silico analysis. Synthesized peptides were novel based on a search of the literature and relevant databases. In silico, simulated gastrointestinal digestion identified further peptides with bioactivities including ACE-1 inhibitory peptides and peptides with antithrombotic and calcium/calmodulin-dependent kinase II (CAMKII) inhibition. This work highlights the potential of Nannochloropsis oculata biomass as both a protein and bioactive peptide resource, which could be harnessed for use in the development of functional foods and feeds.


Assuntos
Chlorella vulgaris , Clorófitas , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Chlorella vulgaris/metabolismo , Peptídeos/química , Clorófitas/metabolismo , Espectrometria de Massas
17.
Toxins (Basel) ; 14(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548739

RESUMO

Aflatoxins (AFs) are the most detrimental mycotoxin, potentially hazardous to animals and humans. AFs in food threaten the health of consumers and cause liver cancer. Therefore, a safe, efficient, and friendly approach is attributed to the control of aflatoxicosis. Therefore, this study aimed to evaluate the impacts of Chlorella vulgaris (CLV) on hepatic aflatoxicosis, aflatoxin residues, and meat quality in quails. Quails were allocated into a control group; the CLV group received CLV (1 g/kg diet); the AF group received an AF-contaminated diet (50 ppb); and the AF+CLV group received both treatments. The results revealed that AF decreased the growth performance and caused a hepatic injury, exhibited as an increase in liver enzymes and disrupted lipid metabolism. In addition, AF induced oxidative stress, exhibited by a dramatic increase in the malondialdehyde (MDA) level and decreases in glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Significant up-regulation in the inflammatory cytokine (TNF-α, IL-1ß, and IL-6) mRNA expression was also documented. Moreover, aflatoxin residues were detected in the liver and meat with an elevation of fat% alongside a decrease in meat protein%. On the other hand, CLV supplementation ameliorated AF-induced oxidative stress and inflammatory condition in addition to improving the nutritional value of meat and significantly reducing AF residues. CLV mitigated AF-induced hepatic damage, decreased growth performance, and lowered meat quality via its antioxidant and nutritional constituents.


Assuntos
Aflatoxinas , Chlorella vulgaris , Animais , Humanos , Chlorella vulgaris/metabolismo , Aflatoxinas/toxicidade , Aflatoxinas/metabolismo , Codorniz/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Glutationa/metabolismo
18.
Molecules ; 27(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363977

RESUMO

In the present study, the potential of lead and cadmium removal by the extracellular polymeric substances (EPS) produced from Parachlorella kessleri and Chlorella vulgaris were investigated. Carbohydrates were the dominant components of EPS from both analyzed species. The contents of reducing sugars, uronic acids, and amino acids were higher in EPS synthesized by C. vulgaris than in EPS from P. kessleri. The analysis of the monosaccharide composition showed the presence of rhamnose, mannose and galactose in the EPS obtained from both species. The ICP-OES (inductively coupled plasma optical emission spectrometry) analyses demonstrated that C. vulgaris EPS showed higher sorption capacity in comparison to P. kessleri EPS. The sorption capacity of C. vulgaris EPS increased with the increase in the amount of metal ions. P. kessleri EPS had a maximum sorption capacity in the presence of 100 mg/L of metal ions. The FTIR analysis demonstrated that the carboxyl, hydroxyl, and carbonyl groups of EPS play a key role in the interactions with metal ions. The present study showed C. vulgaris EPS can be used as a biosorbent in bioremediation processes due to its biochemical composition, the presence of significant amounts of negatively charged uronic acids, and higher sorption capacity.


Assuntos
Chlorella vulgaris , Matriz Extracelular de Substâncias Poliméricas , Matriz Extracelular de Substâncias Poliméricas/química , Cádmio/química , Chlorella vulgaris/metabolismo , Metais/análise , Íons/análise , Ácidos Urônicos/metabolismo
19.
Gene ; 837: 146697, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35764235

RESUMO

Nicotine is one of several physiologically stable and active chemicals found in tobacco. The mechanism through which nicotine causes kidney damage is still obscure. As a result, the goal of this research was to investigate how oral nicotine intake can lead to kidney damage. Naturaly occurring superfood green algae are immense supplements help us using extra chemicals during cancer prevalence if the patient is exposed to nicotine. Hence, the mitigating role of Chlorella vulgaris extract (CVE) against nicotine-nephrotoxic impact in Ehrlich ascites carcinoma (EAC)-bearing mice was studied. For this purpose, four groups of Swiss female mice were assigned, nicotine group (NIC) (100 µg/ml/kg), CVE group (100 mg/kg), CVE + Nicotine, and a control group. Renal dysfunction was evaluated by estimating serum biomarkers ofrenal damage. The expression pattern of Nf-KB, MAPK, P53, and α7-nAchR, lipid peroxidation biomarker, and antioxidant enzyme activities were evaluated in kidney tissue. Also, micro-morphometric examination and apoptosis immunohistochemical reactivity of kidney tissue were applied. The obtained results indicated up-regulation of all estimated genes and oxidative stress. Moreover, a significant (P < 0.05) increment in the apoptotic marker Caspase-3 and declined BCL-2 proteins were recorded. In serum, a significant (P < 0.05) elevation of urea, creatinine, TNF-α, IL-1ß, and Kim-1 were evident. Histological investigation reinforced the aforementioned data, revealing structural changes involving the tubules, glomeruli, and interstitium of mice kidneys. CVE may be a strong contender for protecting renal tissue damage since it reduces renal tissue injury and oxidative stress. Cancer patients who regularly use nicotine through direct smoking or second-hand exposure can benefit from CVE usage as a dietary supplement.


Assuntos
Carcinoma , Chlorella vulgaris , Receptores Nicotínicos , Animais , Ascite/induzido quimicamente , Chlorella vulgaris/metabolismo , Feminino , Rim/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotina , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
20.
Environ Sci Technol ; 56(8): 4961-4969, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389633

RESUMO

As a major entry point of mercury (Hg) to aquatic food webs, algae play an important role in taking up and transforming Hg species in aquatic ecosystems. However, little is known how and to what extent Hg reduction, uptake, and species transformations are mediated by algal cells and their exudates, algal organic matter (AOM), under either sunlit or dark conditions. Here, using Chlorella vulgaris (CV) as one of the most prevalent freshwater model algal species, we show that solar irradiation could enhance the reduction of mercuric Hg(II) to elemental Hg(0) by both CV cells and AOM. AOM reduced more Hg(II) than algal cells themselves due to cell surface adsorption and uptake of Hg(II) inside the cells under solar irradiation. Synchrotron radiation X-ray absorption near-edge spectroscopy (SR-XANES) analyses indicate that sunlight facilitated the transformation of Hg to less bioavailable species, such as ß-HgS and Hg-phytochelatins, compared to Hg(Cysteine)2-like species formed in algal cells in the dark. These findings highlight important functional roles and potential mechanisms of algae in Hg reduction and immobilization under varying lighting conditions and how these processes may modulate Hg cycling and bioavailability in the aquatic environment.


Assuntos
Chlorella vulgaris , Mercúrio , Compostos de Metilmercúrio , Transporte Biológico , Chlorella vulgaris/metabolismo , Ecossistema , Água Doce , Mercúrio/química , Compostos de Metilmercúrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA