Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 342: 112019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38346563

RESUMO

DNA demethylation is involved in the regulation of flowering in plants, yet the underlying molecular mechanisms remain largely unexplored. The RELEASE OF SILENCING 1 (ROS1) gene, encoding a DNA demethyltransferase, plays key roles in many developmental processes. In this study, the ROS1 gene was isolated from Chrysanthemum lavandulifolium, where it was strongly expressed in the leaves, buds and flowers. Overexpression of the ClROS1 gene caused an early flowering phenotype in Arabidopsis thaliana. RNA-seq analysis of the transgenic plants revealed that differentially expressed genes (DEGs) were significantly enriched in the circadian rhythm pathway and that the positive regulator of flowering, CONSTANS (CO), was up-regulated. Additionally, whole-genome bisulphite sequencing (WGBS), PCR following methylation-dependent digestion with the enzyme McrBC, and bisulfite sequencing PCR (BSP) confirmed that the methylation level of the AtCO promoter was reduced, specifically in CG context. Overall, our results demonstrated that ClROS1 accelerates flowering by reducing the methylation level of the AtCO promoter. These findings clarify the epigenetic mechanism by which ClROS1-mediated DNA demethylation regulates flowering.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Chrysanthemum/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Flores/metabolismo , Metilação , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo
2.
J Exp Bot ; 75(5): 1479-1492, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952115

RESUMO

Ethylene-responsive factors (ERF) play an important role in plant responses to waterlogging stress. However, the function and mechanism of action of ERFVIII in response to waterlogging stress remain poorly understood. In this study, we found that expression of the ERF VIIIa gene CmERF4 in chrysanthemum was induced by waterlogging stress. CmERF4 localized to the nucleus when expressed in tobacco leaves. Yeast two-hybrid and luciferase assays showed that CmERF4 is a transcriptional inhibitor. CmERF4 overexpression in chrysanthemum reduced plant waterlogging tolerance, whereas overexpression of the chimeric activator CmERF4-VP64 reversed its transcriptional activity, promoting higher waterlogging tolerance than that observed in wild-type plants, indicating that CmERF4 negatively regulates waterlogging tolerance. Transcriptome profiling showed that energy metabolism and reactive oxygen species (ROS) pathway-associated genes were differentially expressed between CmERF4-VP64 and wild-type plants. RT-qPCR analysis of selected energy metabolism and reactive oxygen species-related genes showed that the gene expression patterns were consistent with the expression levels obtained from RNA-seq analysis. Overall, we identified new functions of CmERF4 in negatively regulating chrysanthemum waterlogging tolerance by modulating energy metabolism and ROS pathway genes.


Assuntos
Chrysanthemum , Espécies Reativas de Oxigênio/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Estresse Fisiológico/genética
3.
BMC Biol ; 21(1): 211, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807042

RESUMO

BACKGROUND: Anthocyanin is a class of important secondary metabolites that determines colorful petals in chrysanthemum, a famous cut flower. 'Arctic Queen' is a white chrysanthemum cultivar that does not accumulate anthocyanin during the flowering stage. During the post-flowering stage, the petals of 'Arctic Queen' accumulate anthocyanin and turn red. However, the molecular mechanism underlying this flower color change remains unclear. RESULTS: In this study, by using transcriptome analysis, we identified CmNAC25 as a candidate gene promoting anthocyanin accumulation in the post-flowering stage of 'Arctic Queen'. CmNAC25 is directly bound to the promoter of CmMYB6, a core member of the MBW protein complex that promotes anthocyanin biosynthesis in chrysanthemum, to activate its expression. CmNAC25 also directly activates the promoter of CmDFR, which encodes the key enzyme in anthocyanin biosynthesis. CmNAC25 was highly expressed during the post-flowering stage, while the expression level of CmMYB#7, a known R3 MYB transcription factor interfering with the formation of the CmMYB6-CmbHLH2 complex, significantly decreased. Genetic transformation of both chrysanthemum and Nicotiana tabacum verified that CmNAC25 was a positive regulator of anthocyanin biosynthesis. Another two cultivars that turned red during the post-flowering stages also demonstrated a similar mechanism. CONCLUSIONS: Altogether, our data revealed that CmNAC25 positively regulates anthocyanin biosynthesis in chrysanthemum petals during the post-flowering stages by directly activating CmMYB6 and CmDFR. Our results thus revealed a crucial role of CmNAC25 in regulating flower color change during petal senescence and provided a target gene for molecular design breeding of flower color in chrysanthemum.


Assuntos
Antocianinas , Chrysanthemum , Antocianinas/análise , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 192(4): 3152-3169, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37202366

RESUMO

Lysine malonylation (Kmal) is a recently discovered posttranslational modification, and its role in the response to abiotic stress has not been reported in plants. In this study, we isolated a nonspecific lipid transfer protein, DgnsLTP1, from chrysanthemum (Dendranthema grandiflorum var. Jinba). Overexpression and CRISPR-Cas9-mediated gene editing of DgnsLTP1 demonstrated that the protein endows chrysanthemum with cold tolerance. Yeast 2-hybrid, bimolecular fluorescence complementation, luciferase complementation imaging, and coimmunoprecipitation experimental results showed that DgnsLTP1 interacts with a plasma membrane intrinsic protein (PIP) DgPIP. Overexpressing DgPIP boosted the expression of DgGPX (glutathione peroxidase), increased the activity of GPX, and decreased the accumulation of reactive oxygen species (ROS), thereby enhancing the low-temperature stress tolerance of chrysanthemum, while the CRISPR-Cas9-mediated mutant dgpip inhibited this process. Transgenic analyses in chrysanthemum showed that DgnsLTP1 improves the cold resistance of chrysanthemum in a DgPIP-dependent manner. Moreover, Kmal of DgnsLTP1 at the K81 site prevented the degradation of DgPIP in Nicotiana benthamiana and chrysanthemum, further promoted DgGPX expression, enhanced GPX activity, and scavenged excess ROS produced by cold stress, thereby further enhancing the cold resistance of chrysanthemum.


Assuntos
Chrysanthemum , Lisina , Proteínas de Plantas , Lisina/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio , Plantas Geneticamente Modificadas , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108245

RESUMO

Branching is an important agronomic and economic trait in cut chrysanthemums. The axillary meristem (AM) formation of the axillary buds of cut chrysanthemums has a decisive role in its branching characteristics. However, little is known about the regulation mechanism of axillary meristem formation in chrysanthemums at the molecular level. Members of the Homeobox gene family especially genes belonging to the class I KNOX branch play a key role in regulating the axillary bud growth and development processes of plants. In this study, three genes belonging to the class I KNOX branch, CmKNAT1, CmKNAT6, and CmSTM were cloned from chrysanthemums, and their functions in regulating axillary bud formation were examined. The subcellular localization test showed that these three KNOX genes were expressed in the nucleus, so all of them might function as transcription factors. The results of the expression profile analysis showed that these three KNOX genes were highly expressed in the AM formation stage of axillary buds. Overexpression of KNOX genes result in a wrinkled leaf phenotype in tobacco and Arabidopsis, which may be related to the excessive division of leaf cells, resulting in the proliferation of leaf tissue. Furthermore, overexpression of these three KNOX genes enhances the regeneration ability of tobacco leaves, indicating that these three KNOX genes may participate in the regulation of cell meristematic ability, thus promoting the formation of buds. In addition, the results of fluorescence quantitative testing showed that these three KNOX genes may promote the formation of chrysanthemum axillary buds by promoting the cytokinin pathway while inhibiting the auxin and gibberellin pathways. In conclusion, this study demonstrated that CmKNAT1, CmKNAT6, and CmSTM genes were involved in regulating axillary bud formation of Chrysanthemum × morifolium and preliminarily revealed the molecular mechanism of their regulation of AM formation. These findings may provide a theoretical basis and candidate gene resources for genetic engineering breeding of new varieties of cut chrysanthemums without lateral branches.


Assuntos
Arabidopsis , Chrysanthemum , Chrysanthemum/metabolismo , Melhoramento Vegetal , Meristema/genética , Meristema/metabolismo , Citocininas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Plant Biol ; 23(1): 140, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915063

RESUMO

BACKGROUND: Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS: In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS: This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.


Assuntos
Chrysanthemum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Lignina/metabolismo , Filogenia , DNA , Regulação da Expressão Gênica de Plantas
7.
Plant Cell Environ ; 46(2): 440-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367211

RESUMO

Plants employ several endogenous and exogenous signals to guarantee timely floral transitions with floral integrators. To avoid premature flowering, flowering plants must control the balance between vegetative and floral development. As a Group II member of BBX family, CmBBX8 promotes flowering by directly activating CmFTL1 in summer-flowering chrysanthemum. However, the mechanisms underlying this floral transition is yet to be elucidated. Here, we report that the chrysanthemum ERF3 homologue, CmERF3, physically interacts with CmBBX8 through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), pull-down, and luciferase complementation (LCI) assays. We found that CmERF3 was highly expressed at the vegetative stage and rarely expressed in the reproductive phase, indicating that CmERF3 may play a critical role in maintaining vegetative growth to prevent premature flowering. Rhythm analysis revealed that CmERF3 had a different response to rhythm compared to CmBBX8. Knockdown of CmERF3 facilitated floral initiation, whereas overexpression of CmERF3 delayed floral transition. We further found that CmERF3 repressed the transactivation activity of CmBBX8 on the downstream CmFTL1 gene. Collectively, our results indicate that the CmERF3-CmBBX8 transcriptional complex is a crucial module that balances the vegetative growth and reproductive development of chrysanthemum.


Assuntos
Chrysanthemum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo
8.
Sci China Life Sci ; 66(5): 1108-1118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462108

RESUMO

The sesquiterpene alpha-bisabolol is the predominant active ingredient in essential oils that are highly valued in the cosmetics industry due to its wound healing, anti-inflammatory, and skin-soothing properties. Alpha-bisabolol was thought to be restricted to Compositae plants. Here we reveal that alpha-bisabolol is also synthesized in rice, a non-Compositae plant, where it acts as a novel sesquiterpene phytoalexin. Overexpressing the gene responsible for the biosynthesis of alpha-bisabolol, OsTPS1, conferred bacterial blight resistance in rice. Phylogenomic analyses revealed that alpha-bisabolol-synthesizing enzymes in rice and Compositae evolved independently. Further experiments demonstrated that the natural variation in the disease resistance level was associated with differential transcription of OsTPS1 due to polymorphisms in its promoter. We demonstrated that OsTPS1 was regulated at the epigenetic level by JMJ705 through the methyl jasmonate pathway. These data reveal the cross-family accumulation and regulatory mechanisms of alpha-bisabolol production.


Assuntos
Chrysanthemum , Óleos Voláteis , Sesquiterpenos , Chrysanthemum/genética , Chrysanthemum/metabolismo , Resistência à Doença/genética , Epigênese Genética , Sesquiterpenos/metabolismo
9.
J Food Biochem ; 46(12): e14503, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36331088

RESUMO

Chrysanthemum morifolium is a well-known edible medicinal plant in Asia and some other regions. Content of selenium in Se-enriched C. morifolium (SeCM) is significantly higher than that in traditional C. morifolium (non-Se-enriched C. morifolium, TCM). In order to understand health effects of SeCM, its chemical composition, lifespan-prolonging activities, and impacts on antioxidant defense-related gene expressions of model organism D. melanogaster were systematically studied. A total of eight phenols, including luteolin-7-O-glucoside, linarin, luteolin, apigenin, diosmetin, acacetin, 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid, were identified in SeCM extract. Compared with TCM, SeCM exhibited superior antioxidant properties. Intake of SeCM dramatically reduced malondialdehyde level and increased activities of endogenous antioxidant enzymes in fruit flies. SeCM was able to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase and hydrogen peroxide catalase, and extend lifespans of fruit flies. Comparatively high antioxidant capacities and lifespan-prolonging activities of SeCM might be attributed to its abundant phenols and selenium, which probably ameliorated accumulation of free radicals and susceptibility to oxidative stress. These findings provide clues on further exploitation and utilization of Se-enriched C. morifolium. PRACTICAL APPLICATIONS: Chrysanthemum morifolium has been used for nutraceutical and curative purposes in China for thousands of years. Se-enriched C. morifolium typically contains more selenium than traditional C. morifolium, and is widely consumed in Asia and some other regions. Selenium is an essential micronutrient for humans, and selenium deficiency may result in several diseases such as myocardial infarction. SeCM is one of important selenium supplements. In this study, SeCM was found to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and hydrogen peroxide catalase, and extend lifespans of experimental animals. These results provide supporting information for developing SeCM-based functional foods with distinct health benefits.


Assuntos
Chrysanthemum , Selênio , Humanos , Animais , Antioxidantes/farmacologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Catalase/genética , Catalase/metabolismo , Selênio/farmacologia , Longevidade , Chrysanthemum/genética , Chrysanthemum/química , Chrysanthemum/metabolismo , Peróxido de Hidrogênio , Superóxidos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fenóis , Expressão Gênica
10.
Virol J ; 19(1): 182, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357910

RESUMO

BACKGROUND: Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant. METHODS: Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level. RESULTS: In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection. CONCLUSION: This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.


Assuntos
Carlavirus , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Carlavirus/genética , Transcriptoma , Etilenos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta , China , Regulação da Expressão Gênica de Plantas
11.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080264

RESUMO

Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.


Assuntos
Chrysanthemum , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Chrysanthemum/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
Sci Rep ; 12(1): 13551, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941277

RESUMO

GDP-mannose 3, 5-epimerase (GME, EC 5.1.3.18), a key enzyme in the ascorbic acid synthesis pathway, catalyzes the conversion of GDP-D-mannose to GDP-l-galactose in higher plants. Here, a homolog of GME was isolated from Chrysanthemum vestitum. The cDNA sequence of CvGME was 1131 bp and contained a complete open reading frame encoding a protein comprising 376 amino acids. Quantitative real-time PCR analysis revealed that CvGME was most highly expressed in the stems and roots. Phylogenetic analysis showed that CvGME was closely related to LsGME from Lactuca sativa. Subcellular localization studies revealed that CvGME was localized in the nucleus. Heterologous expression of CvGME in transgenic tobacco plants increased the ascorbic acid content in the leaves. In addition, overexpression of CvGME reduced the malondialdehyde content and increased superoxide dismutase and peroxidase activity in tobacco leaves compared to those in the wild-type plants under drought stress conditions, explaining the increased drought tolerance of transgenic tobacco lines. These results suggest that CvGME can effectively enhance the tolerance of plants to drought by increasing the ascorbic acid content, which may help improve the drought tolerance of chrysanthemums through molecular breeding.


Assuntos
Chrysanthemum , Nicotiana , Ácido Ascórbico/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Clonagem Molecular , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Nicotiana/metabolismo
13.
Plant Cell Environ ; 45(5): 1442-1456, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040157

RESUMO

The timely transition from vegetative to reproductive development is coordinated through the quantitative regulation of floral pathway genes in response to physiological and environmental cues. The function of ethylene-responsive element-binding protein (ERF) transcription factors in the regulation of flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) is not well understood. Here, chrysanthemum overexpressing CmERF110 flowered earlier than the wild-type plants, while those in which CmERF110 was suppressed flowered later. RNA-seq results revealed that several genes involved in the circadian rhythm were transcribed differently in CmERF110 transgenic plants from that of the wild-type plants. The rhythm peak of the circadian clock genes in transgenic plants was delayed. Yeast two-hybrid screening of CmERF110 interactors identified a chrysanthemum FLOWERING LOCUS KH DOMAIN (FLK) homologue CmFLK, which was further confirmed with both in vitro and in vivo assays. KEGG pathway enrichment also revealed that CmFLK is involved in the regulation of circadian rhythm-related genes. CmFLK transgenic plants showed a change in flowering time and delayed rhythm peak of the circadian rhythm genes. Taken together, the present data not only suggest that CmERF110 interacts with CmFLK to promote floral transition by tuning the circadian clock, but also provides evidence for the evolutionary conservation of the components in the autonomous pathway in chrysanthemum.


Assuntos
Proteínas de Arabidopsis , Chrysanthemum , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Ritmo Circadiano/genética , Etilenos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Mol Biol ; 108(1-2): 51-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714494

RESUMO

KEY MESSAGE: An R2R3-MYB transcription factor, CmMYB9a, activates floral coloration in chrysanthemum by positively regulating CmCHS, CmDFR and CmFNS, but inhibiting the expression of CmFLS. Chrysanthemum is one of the most popular ornamental plants worldwide. Flavonoids, such as anthocyanins, flavones, and flavonols, are important secondary metabolites for coloration and are involved in many biological processes in plants, like petunia, snapdragon, Gerbera hybrida, as well as chrysanthemum. However, the metabolic regulation of flavonoids contributing to chrysanthemum floral coloration remains largely unexplored. Here, an R2R3-MYB transcription factor, CmMYB9a, was found to be involved in flavonoid biosynthesis. Phylogenetic analysis and amino acid sequence analysis suggested that CmMYB9a belonged to subgroup 7. Transient overexpression of CmMYB9a in flowers of chrysanthemum cultivar 'Anastasia Pink' upregulated the anthocyanin-related and flavone-related genes and downregulated CmFLS, which led to the accumulation of anthocyanins and flavones. We further demonstrated that CmMYB9a independently activates the expression of CmCHS, CmDFR and CmFNS, but inhibits the expression of CmFLS. Overexpression of CmMYB9a in tobacco resulted in increased anthocyanins and decreased flavonols in the petals by upregulating NtDFR and downregulating NtFLS. These results suggest that CmMYB9a facilitates metabolic flux into anthocyanin and flavone biosynthesis. Taken together, this study functionally characterizes the role of CmMYB9a in regulating the branched pathways of flavonoids in chrysanthemum flowers.


Assuntos
Antocianinas/biossíntese , Chrysanthemum/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Chrysanthemum/genética , Cor , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Nicotiana , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Plant Physiol Biochem ; 168: 17-26, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619595

RESUMO

The conserved microRNA396 (miR396) is involved in growth, development, and abiotic stress responses in a variety of plants by regulating target genes. Here, we obtained transgenic Chrysanthemum indicum (C. indicum) overexpressing the cin-miR396a gene. The transgenic plants (TGs) had longer internodes and fewer epidermal hairs in contrast with the wild-type (WT) control. cin-miR396a overexpression in C. indicum reduced salt tolerance and drought tolerance. After salt and drought stress compared with WT plants, the transgenic C. indicum exhibited a relative decrease in leaf water content, and the leaf free proline content, also exhibited a relative increase, in the leaf conductivity and leaf Malondialdehyde content, while the total chlorophyll content did not differ significantly from WT, and the Na+/K+ ratio in the roots of transgenic C. indicum increased after salt stress. We also identified two target genes of cin-miR396a, CiGRF1 and CiGRF5, whose expression was induced by salt and drought treatments and suppressed in transgenic C. indicum. Taken together, our results reveal a unique role for the regulatory module of miR396a-GRFs in C. indicum development and response to abiotic stresses. cin-miR396a plays a negative regulatory role in C. indicum in response to salt and drought stresses.


Assuntos
Chrysanthemum , MicroRNAs , Chrysanthemum/genética , Chrysanthemum/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
16.
BMC Complement Med Ther ; 21(1): 240, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563177

RESUMO

BACKGROUND: As a prevalent type of cryptogenic fibrotic disease with high mortality, idiopathic pulmonary fibrosis (IPF) still lacks effective therapeutic drugs. The compounds extracted from buds and flowers of Chrysanthemum indicum Linné with supercritical-carbon dioxide fluid (CISCFE) has been confirmed to have antioxidant, anti-inflammatory, and lung-protective effects. This paper aimed to clarify whether CISCFE could treat IPF induced by bleomycin (BLM) and elucidate the related mechanisms. METHODS: Rats (Sprague-Dawley, male) were separated into the following groups: normal, model, pirfenidone (50 mg/kg), CISCFE-L, -M, and -H (240, 360, and 480 mg/kg/d, i.g., respectively, for 4 weeks). Rats were given BLM (5 mg/kg) via intratracheal installation to establish the IPF model. A549 and MRC-5 cells were stimulated by Wnt-1 to establish a cell model and then treated with CISCFE. Haematoxylin-eosin (H&E) and Masson staining were employed to observe lesions in the lung tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were performed to observe changes in genes and proteins connected with the Wnt/ß-catenin pathway. RESULTS: CISCFE inhibited the proliferation of MRC-5 cells (IC50: 2.723 ± 0.488 µg/mL) and A549 cells (IC50: 2.235 ± 0.229 µg/mL). In rats, A549 cells, and MRC-5 cells, BLM and Wnt-1 obviously induced the protein expression of α-smooth muscle actin (α-SMA), vimentin, type I collagen (collagen-I), and Nu-ß-catenin. The mRNA levels of matrix metalloproteinase-3 (MMP-3) and - 9 (MMP-9), two enzymes that degrade and reshape the extracellular matrix (ECM) were also increased while those of tissue inhibitor of metalloproteinase 1 (TIMP-1) were decreased. However, CISCFE reversed the effects of BLM and Wnt-1 on the expression pattern of these proteins and genes. CONCLUSION: These findings showed that CISCFE could inhibit IPF development by activating the Wnt/ß-catenin pathway and may serve as a treatment for IPF after further investigation.


Assuntos
Dióxido de Carbono/administração & dosagem , Chrysanthemum/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/efeitos adversos , Bleomicina/efeitos adversos , Masculino , Metaloproteinases da Matriz/metabolismo , Extratos Vegetais/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley
17.
Plant Biotechnol J ; 19(6): 1125-1140, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368971

RESUMO

Lysine crotonylation of proteins is a recently identified post-translational modification (PTM) in plants. However, the function of lysine-crotonylated proteins in response to abiotic stress in plants has not been reported. In this study, we identified a temperature-induced lipocalin-1-like gene (DgTIL1) from chrysanthemum and showed that it was notably induced in response to cold stress. Overexpression of DgTIL1 enhanced cold tolerance in transgenic chrysanthemum. Ubiquitin membrane yeast two-hybrid (MYTH) system and bimolecular fluorescence complementation (BIFC) assays showed that DgTIL1 interacts with a nonspecific lipid transfer protein (DgnsLTP), which can promote peroxidase (POD) gene expression and POD activity to reduce the accumulation of reactive oxygen species (ROS) and improve resistance to cold stress in DgnsLTP transgenic chrysanthemum. In addition, we found that DgTIL1 was lysine crotonylated at K72 in response to low temperature in chrysanthemum. Moreover, lysine crotonylation of DgTIL1 prevented DgnsLTP protein degradation in tobacco and chrysanthemum. Inhibition of DgnsLTP degradation by lysine crotonylation of DgTIL1 further enhanced POD expression and POD activity, reduced the accumulation of ROS under cold stress in DgTIL1 transgenic chrysanthemum, thus promoting the cold resistance of chrysanthemum.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Processamento de Proteína Pós-Traducional , Nicotiana/genética
18.
J Plant Physiol ; 245: 153107, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31881440

RESUMO

Plant-derived elicitor is a new type of plant vaccine developed in the contemporary era, and it has safe and broad application prospects in organic agriculture. Research on defense mechanisms triggered by elicitor has become a hot topic in recent years. The Chrysanthemum indicum polysaccharide (CIP) obtained by separation and purification from Chrysanthemum indicum was used as an elicitor in this work. This elicitor has been shown to be effective in Atractylodes macrocephala Koidz (A. macrocephala) against Sclerotium rolfsii sacc (S. rolfsii) infection and soil-borne diseases. However, the mechanism of induced disease resistance has not been elucidated. In this research, we study the CIP-induced A. macrocephala defense response from the level of signal molecules and the defensive enzyme gene expression. Several defense responses to CIP treatment have been found in A. macrocephala, including early hydrogen peroxide (H2O2) production, accumulation of salicylic acid (SA) and increased phytoalexin (PA) content. In addition, CIP significantly increased the activity of related defense enzymes in A. macrocephala. RT-qPCR analysis showed that defense-related genes such as polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were up-regulated after CIP treatment. To obtain the sequence of the defense enzyme gene, we are the first to provide a public and comprehensive A. macrocephala database by transcriptome sequencing. These results together demonstrate that CIP triggers defense responses in A. macrocephala. Our research not only provides further research on immune mechanism between plant and elicitor, but also sheds new light on strategy for biocontrol in the future.


Assuntos
Atractylodes/metabolismo , Chrysanthemum/metabolismo , Resistência à Doença/efeitos dos fármacos , Polissacarídeos/farmacologia , Transcriptoma/efeitos dos fármacos , Atractylodes/efeitos dos fármacos , Atractylodes/genética , Atractylodes/microbiologia , Basidiomycota , Catecol Oxidase/efeitos dos fármacos , Catecol Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peróxido de Hidrogênio/metabolismo , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/metabolismo , Polissacarídeos/isolamento & purificação , Ácido Salicílico/metabolismo , Sesquiterpenos/metabolismo , Fitoalexinas
19.
Planta ; 251(1): 8, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776674

RESUMO

MAIN CONCLUSION: Local and systemic induction of JA-associated chemical defenses and resistance to western flower thrips in Chrysanthemum are spatially variable and dependent on the site of the JA application. Plants have evolved numerous inducible defense traits to resist or tolerate herbivory, which can be activated locally at the site of the damage, or systemically through the whole plant. Here we investigated how activation of local and systemic chemical responses upon exogenous application of the phytohormone jasmonic acid (JA) varies along the plant canopy in Chrysanthemum, and how these responses correlate with resistance to thrips. Our results showed that JA application reduced thrips damage per plant when applied to all the plant leaves or when locally applied to apical leaves, but not when only basal leaves were locally treated. Local application of JA to apical leaves resulted in a strong reduction in thrips damage in new leaves developed after the JA application. Yet, activation of a JA-associated defensive protein marker, polyphenol oxidase, was only locally induced. Untargeted metabolomic analysis further showed that JA increased the concentrations of sugars, phenylpropanoids, flavonoids and some amino acids in locally induced basal and apical leaves. However, local application of JA to basal leaves marginally affected the metabolomic profiles of systemic non-treated apical leaves, and vice versa. Our results suggest that JA-mediated activation of systemic chemical defense responses is spatially variable and depends on the site of the application of the hormone in Chrysanthemum.


Assuntos
Chrysanthemum/metabolismo , Ciclopentanos/metabolismo , Flores/metabolismo , Oxilipinas/metabolismo
20.
Food Chem ; 286: 268-274, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827605

RESUMO

One interesting phenomenon of Chrysanthemum morifolium tea is its formation of green or dark green color after hours of brewing. We investigated the greening reaction and its bioactivities, including an analysis of the green compounds. Results showed that the green color was due to a decrease in the L* (lightness), b* (yellowness/blueness), chroma values and an increase in hue angle. The green substances were found to be substances with similar polarities and unstable in acidic conditions. There was no significant difference (p < 0.01) in antioxidant activity between non-green and green samples. The green substances did not lead to cytotoxicity in PC12 cells at low concentrations, but at high concentrations, they caused a significant (p < 0.01) decrease in cell viability. The saccharide percentage and FT-IR results showed that the greening reaction was affected by the glycosides or groups attached to the saccharides, which might suggest a new mechanism for color-forming reactions.


Assuntos
Chrysanthemum/química , Extratos Vegetais/química , Animais , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Chrysanthemum/metabolismo , Cor , Flores/química , Flores/metabolismo , Células PC12 , Extratos Vegetais/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA