Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Chem Res Toxicol ; 35(9): 1467-1481, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048877

RESUMO

Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 µM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 µM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.


Assuntos
COVID-19 , Ativação Metabólica , Benzamidas , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Piperidinas , Cianeto de Potássio , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas , Tiazóis
2.
Clin Toxicol (Phila) ; 60(1): 95-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34142637

RESUMO

BACKGROUND: Cyanide is a rapid acting, lethal, metabolic poison and remains a significant threat. Current FDA-approved antidotes are not amenable or efficient enough for a mass casualty incident. OBJECTIVE: The objective of this study is to evaluate short and long-term efficacy of intramuscular aqueous dimethyl trisulfide (DMTS) on survival and clinical outcomes in a swine model of cyanide exposure. METHODS: Anesthetized swine were instrumented and acclimated until breathing spontaneously. Potassium cyanide infusion was initiated and continued until 5 min after the onset of apnea. Subsequently, animals were treated with intramuscular DMTS (n = 11) or saline control (n = 10). Laboratory values and DMTS blood concentrations were assessed at various time points and physiological parameters were monitored continuously until the end of the experiment unless death occurred. A subset of animals treated with DMTS (n = 5) were survived for 7 days to evaluate muscle integrity by repeat biopsy and neurobehavioral outcomes. RESULTS: Physiological parameters and time to apnea were similar in both groups at baseline and at time of treatment. Survival in the DMTS-treated group was 90% and 30% in saline controls (p = 0.0034). DMTS-treated animals returned to breathing at 12.0 ± 10.4 min (mean ± SD) compared to 22.9 ± 7.0 min (mean ± SD) in the 3 surviving controls. Blood collected prior to euthanasia showed improved blood lactate concentrations in the DMTS treatment group; 5.47 ± 2.65 mmol/L vs. 9.39 ± 4.51 mmol/L (mean ± SD) in controls (p = 0.0310). Low concentrations of DMTS were detected in the blood, gradually increasing over time with no elimination phase observed. There was no mortality, histological evidence of muscle trauma, or observed adverse neurobehavioral outcomes, in DMTS-treated animals survived to 7 days. CONCLUSION: Intramuscular administration of aqueous DMTS improves survival following cyanide poisoning with no observed long-term effects on muscle integrity at the injection site or adverse neurobehavioral outcomes.


Assuntos
Antídotos , Sulfetos , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Cianetos , Humanos , Cianeto de Potássio , Suínos
3.
Ann N Y Acad Sci ; 1479(1): 108-121, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32374444

RESUMO

The aim of the present study was to determine whether methylene blue (MB) could directly oppose the neurological toxicity of a lethal cyanide (CN) intoxication. KCN, infused at the rate of 0.375 mg/kg/min intravenously, produced 100% lethality within 15 min in unanaesthetized rats (n = 12). MB at 10 (n = 5) or 20 mg/kg (n = 5), administered 3 min into CN infusion, allowed all animals to survive with no sequelae. No apnea and gasping were observed at 20 mg/kg MB (P < 0.001). The onset of coma was also significantly delayed and recovery from coma was shortened in a dose-dependent manner (median of 359 and 737 seconds, respectively, at 20 and 10 mg/kg). At 4 mg/kg MB (n = 5), all animals presented faster onset of coma and apnea and a longer period of recovery than at the highest doses (median 1344 seconds, P < 0.001). MB reversed NaCN-induced resting membrane potential depolarization and action potential depression in primary cultures of human fetal neurons intoxicated with CN. MB restored calcium homeostasis in the CN-intoxicated human SH-SY5Y neuroblastoma cell line. We conclude that MB mitigates the neuronal toxicity of CN in a dose-dependent manner, preventing the lethal depression of respiratory medullary neurons and fatal outcome.


Assuntos
Antídotos/farmacologia , Azul de Metileno/farmacologia , Neurônios , Síndromes Neurotóxicas , Cianeto de Potássio/toxicidade , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/prevenção & controle , Ratos , Ratos Sprague-Dawley
5.
J Pharm Biomed Anal ; 171: 132-147, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30999224

RESUMO

Belizatinib (BZB; TSR-011) is a next-generation anaplastic lymphoma kinase inhibitor that also inhibits tropomyosin-related kinases A/B/C. In this in-vitro study, we examined the formation of reactive metabolites from BZB using rat liver microsomes or human liver microsomes in the presence of a trapping agent (potassium cyanide) to generate iminium reactive intermediates. Identification of the in vitro BZB metabolites indicated that the major in-vitro metabolic reaction involved hydroxylation of the piperidine moiety. We identified eight in-vitro phase I metabolites and three iminium reactive intermediates, suggesting two possible BZB-bioactivation pathways. We propose that the tertiary nitrogen in the piperidine ring activates the attached benzyl carbon in addition to the two α carbons inside the ring. To our knowledge, this is the first report on the structural identification of reactive metabolites derived from BZB.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/metabolismo , Benzamidas/metabolismo , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Técnicas In Vitro , Estrutura Molecular , Cianeto de Potássio/química , Ratos
6.
J Toxicol Sci ; 44(3): 201-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842372

RESUMO

This study was aimed to predict drug-induced liver injury caused by reactive metabolites. Reactive metabolites covalently bind to proteins and could result in severe outcomes in patients. However, the relation between the extent of covalent binding and clinical hepatotoxicity is still unclear. From a perspective of body burden (human in vivo exposure to reactive metabolites), we developed a risk assessment method in which reactive metabolite burden (RM burden), an index that could reflect the body burden associated with reactive metabolite exposure, is calculated using the extent of covalent binding, clinical dose, and human in vivo clearance. The relationship between RM burden and hepatotoxicity in humans was then investigated. The results indicated that this RM burden assessment exhibited good predictability for sensitivity and specificity, and drugs with over 10 mg/day RM burden have high-risk for hepatotoxicity. Furthermore, a quantitative trapping assay using radiolabeled trapping agents ([35S]cysteine and [14C]KCN) was also developed, to detect reactive metabolite formation in the early drug discovery stage. RM burden calculated using this assay showed as good predictability as RM burden calculated using conventional time- and cost-consuming covalent binding assays. These results indicated that the combination of RM burden and our trapping assay would be a good risk assessment method for reactive metabolites from the drug discovery stage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medição de Risco/métodos , Carga Corporal (Radioterapia) , Cisteína/metabolismo , Descoberta de Drogas , Humanos , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Cianeto de Potássio/metabolismo
7.
J Pharm Biomed Anal ; 161: 73-82, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30145452

RESUMO

Protein thermal shift assay (TSA) has been extensively used in investigation of protein stabilization (for protein biopharmaceutics stabilization, protein crystallization studies or screening of recombinant proteins) and drug discovery (screening of ligands or inhibitors). This work aimed to analyze thermal shift assay results in comparison to protein polymerization (multimerization and aggregation) propensity and test the most stabilizing formulations for their stabilization effect on enveloped viruses. Influence of protein concentration, buffer pH and molarity was tested on three proteins (immunoglobulin G, ovalbumin, and albumin) and results showed that each of these factors has an impact on determined shift in protein melting point Tm, and the impact was similar for all three proteins. In case of ovalbumin, molecular dynamics simulations were performed with the goal to understanding molecular basis of protein's thermal stability dependence on pH. Effect of three denaturing agents in a wide concentration range on Tm showed nicely that chemical denaturation occurs only at the highest concentrations. Results showed similar effect on Tm for most formulations on different proteins. Most successful formulations were tested for enveloped virus stabilizing potential using cell culture infectivity assay (CCID50) and results showed lack of correlation with TSA results. Only weak correlation of Tm shift and protein polymerization measured by SEC-HPLC was obtained, meaning that polymerization cannot be predicted from Tm shifts.


Assuntos
Vírus do Sarampo/química , Vírus da Caxumba/química , Estabilidade Proteica , Proteínas do Envelope Viral/química , Albuminas/química , Células Cultivadas , Composição de Medicamentos , Estabilidade de Medicamentos , Guanidina/química , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Vírus do Sarampo/patogenicidade , Simulação de Dinâmica Molecular , Vírus da Caxumba/patogenicidade , Ovalbumina/química , Polimerização , Cianeto de Potássio/química , Desnaturação Proteica/efeitos dos fármacos , Temperatura de Transição , Ureia/química
8.
Brain Res Bull ; 140: 190-196, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29775659

RESUMO

The lateral parabrachial nucleus (LPBN) is a pontine area involved in cardiovascular chemoreflex. This study was performed to find the effects of reversible synaptic blockade of the LPBN on the chemoreflex responses, and to find the roles of GABAA receptor and α2-adenoreceptor (α2-AR) in chemoreflex. It also aimed to seek possible interaction between GABA and noradrenergic systems of the LPBN in urethane-anesthetized male rats. Cardiovascular chemoreflex was activated by intravenous injection of potassium cyanide (KCN, 80 µg/kg). The cardiovascular responses of chemoreflex were evaluated before (control), 5 and 15 min after microinjection of each drug (100 nl) into the LPBN. Microinjections of cobalt chloride (5 mM), a reversible synaptic blocker, into the LPBN greatly attenuated the chemoreflex pressor and bradycardic responses indicating that the LPBN plays a main role in chemoreflex. Local injection of yohimbine (10 nmol), an α2-AR antagonist, attenuated the pressor response with no effect on bradycardic response, suggesting that α2-adrenoreceptors are involved in producing the pressor response of the chemoreflex. Microinjection of bicuculline methiodide (BMI, 100 pmol), a GABAA antagonist, into the LPBN augmented the pressor response and attenuated the bradycardic response, indicating that GABA inhibits the sympathetic output to the heart and vasculature. Sequential injection of yohimbine and BMI had no significant effect on the pressor response but attenuated the bradycardia. In conclusion, the LPBN is essential for the chemoreflex responses. The pressor response of the chemoreflex, at least partly, is produced by α2- adenoreceptors. GABA in the LPBN inhibits the cardiovascular system. Finally, there is no interaction between GABAergic and adrenergic neurons of the LPBN in producing the cardiovascular chemoreflex.


Assuntos
Sistema Cardiovascular/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de GABA-A/metabolismo , Reflexo/fisiologia , Animais , Sistema Cardiovascular/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Cianeto de Potássio , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos
9.
Biochemistry (Mosc) ; 82(10): 1140-1146, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037134

RESUMO

In this work, it was found that the ability of common uncouplers - carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol (DNP) - to reduce membrane potential of isolated rat liver mitochondria was diminished in the presence of millimolar concentrations of the known cytochrome c oxidase inhibitor - cyanide. In the experiments, mitochondria were energized by addition of ATP in the presence of rotenone, inhibiting oxidation of endogenous substrates via respiratory complex I. Cyanide also reduced the uncoupling effect of FCCP and DNP on mitochondria energized by succinate in the presence of ferricyanide. Importantly, cyanide did not alter the protonophoric activity of FCCP and DNP in artificial bilayer lipid membranes. The causes of the effect of cyanide on the efficiency of protonophoric uncouplers in mitochondria are considered in the framework of the suggestion that conformational changes of membrane proteins could affect the state of lipids in their vicinity. In particular, changes in local microviscosity and vacuum permittivity could change the efficiency of protonophore-mediated translocation.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Desacopladores/farmacologia , 2,4-Dinitrofenol/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Cianeto de Potássio/farmacologia , Ratos , Rotenona/farmacologia
10.
Neuroscience ; 348: 228-240, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223243

RESUMO

Intravenous injections of potassium cyanide (KCN) both elicit escape by its own and facilitate escape to electrical stimulation of the periaqueductal gray matter (PAG). Moreover, whereas the KCN-evoked escape is potentiated by CO2, it is suppressed by both lesions of PAG and clinically effective treatments with panicolytics. These and other data suggest that the PAG harbors a hypoxia-sensitive alarm system the activation of which could both precipitate panic and render the subject hypersensitive to CO2. Although prior c-Fos immunohistochemistry studies reported widespread activations of PAG following KCN injections, the employment of repeated injections of high doses of KCN (>60µg) in anesthetized rats compromised both the localization of KCN-responsive areas and their correlation with escape behavior. Accordingly, here we compared the brainstem activations of saline-injected controls (air/saline) with those produced by a single intravenous injection of 40-µg KCN (air/KCN), a 2-min exposure to 13% CO2 (CO2/saline), or a combined stimulus (CO2/KCN). Behavioral effects of KCN microinjections into the PAG were assessed as well. Data showed that whereas the KCN microinjections were ineffective, KCN intravenous injections elicited escape in all tested rats. Moreover, whereas the CO2 alone was ineffective, it potentiated the KCN-evoked escape. Compared to controls, the nucleus tractus solitarius was significantly activated in both CO2/saline and CO2/KCN groups. Additionally, whereas the laterodorsal tegmental nucleus was activated by all treatments, the rostrolateral and caudoventrolateral PAG were activated by air/KCN only. Data suggest that the latter structures are key components of a hypoxia-sensitive suffocation alarm which activation may trigger a panic attack.


Assuntos
Comportamento Animal/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Cianeto de Potássio/farmacologia , Animais , Masculino , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
11.
J Gen Appl Microbiol ; 62(4): 174-80, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27250664

RESUMO

One of the nitrile-synthesizing enzymes, ß-cyano-L-alanine synthase, catalyzes ß-cyano-L-alanine (ß-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the ß-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of ß-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.


Assuntos
Clonagem Molecular , Escherichia coli/genética , Liases/genética , Liases/metabolismo , Nitrilas/metabolismo , Pseudomonas/enzimologia , Rhodococcus/genética , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Aminoácidos/química , Aminoidrolases/genética , Asparagina/biossíntese , Ácido Aspártico/biossíntese , Escherichia coli/metabolismo , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Tomografia por Emissão de Pósitrons , Cianeto de Potássio/metabolismo , Pseudomonas/genética , Rhodococcus/metabolismo , Especificidade por Substrato
12.
Clin Toxicol (Phila) ; 54(4): 303-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26846815

RESUMO

OBJECTIVES: The objective of this study is to measure mitochondrial respiration using intact cells from whole blood exposed to cyanide as a new biomarker for mitochondrial inhibition. METHODS: A single nontourniqueted venous blood sample was collected from 10 healthy volunteers after informed consent. Venous lactate was measured immediately following blood collection. Half of the remaining blood sample was then incubated with 100 mM of potassium cyanide (KCN) for 5 min, and half of the sample remained unexposed. Repeat lactate measurements were performed from blood exposed and not exposed to KCN. Measurement of mitochondrial respiration: intact PBMCs were placed in a 2-mL chamber at a final concentration of 2-3 × 10(6) cells/mL. Measurements of oxygen consumption were performed at 37°C in a high-resolution oxygraph (Oxygraph-2k Oroboros Instruments, Innsbruck, Austria). Oxygen flux (in pmol O2/s/10(6) cells), which is directly proportional to oxygen consumption, was recorded continuously using DatLab software 6 (Oroboros Instruments). RESULTS: There were significance differences in the relevant key parameters of mitochondrial respiration: Of the parameters measuring mitochondrial respiration, four of the six demonstrated a statistically significant mean difference between control and cyanide: for routine respiration (mean difference [control-cyanide]: 8.9 pmol O2/s/10(6) cells; 95% CI: 5.6-12.2, p < 0.0001); Proton Leak (mean difference: 0.73 pmol O2/s/10(6) cells; 95% CI: -0.33-1.79, p = 0.157); Maximal respiration (mean difference: 21.7 pmol O2/s/10(6) cells; 95% CI: 16.0-27.6, p < 0.0001); Residual oxygen consumption (mean difference 0.25 pmol O2/s/10(6) cells; 95% CI: -0.68-1.18, p = 0.557). There was a significant difference in spare respiratory capacity (SRC) and adenosine triphosphate (ATP)-linked respiration with the control samples demonstrating a higher SRC and ATP-linked respiration. Finally, there is a statistically significant difference in lactate (mean difference -0.32, 95% CI: -0.41 to -0.23, p < 0.0001), though clinically similar level, with a higher lactate concentration in the cyanide samples. CONCLUSIONS: In this ex vivo model, the measurements of key parameters in mitochondrial respiration may be a more sensitive measure of cellular function when compared to lactate.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Cianeto de Potássio/toxicidade , Adulto , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino
13.
Adv Exp Med Biol ; 876: 169-175, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782209

RESUMO

The presence of hypoxia in solid tumours is correlated with poor treatment outcome. We have developed a 3-D tissue engineered construct to quantitatively monitor oxygen penetration through tumour tissue using the exogenous 2-nitroimidazole bioreductive probe pimonidazole and phosphorescence quenching technologies. Using this in vitro model we were able to examine the influence of the biguanides metformin and phenformin, antimycin A and KCN, on the distribution and kinetics of oxygen delivery as prototypes of modulators of oxygen metabolism.


Assuntos
Neoplasias/metabolismo , Oxigênio/metabolismo , Engenharia Tecidual , Antimicina A/farmacologia , Hipóxia Celular , Humanos , Cianeto de Potássio/farmacologia , Técnicas de Cultura de Tecidos
14.
Proc Natl Acad Sci U S A ; 112(37): 11455-60, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324916

RESUMO

Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe-4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN(-), and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the "dangler" Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that L-cysteine (Cys) binds the auxiliary [4Fe-4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe-4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe(2+) binding and synthon release.


Assuntos
Cisteína/química , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/metabolismo , Transativadores/química , Catálise , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Ferro/metabolismo , Ligantes , Metionina/química , Cianeto de Potássio/química , Ligação Proteica , Prótons , Energia Solar , Tirosina/química
15.
Water Res ; 81: 1-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024959

RESUMO

Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems.


Assuntos
Bacteriófagos/efeitos dos fármacos , Reatores Biológicos/microbiologia , Ciprofloxacina/farmacologia , Cobre/farmacologia , Fósforo/metabolismo , Cianeto de Potássio/farmacologia , Proteobactérias/virologia , Antibacterianos/farmacologia , Genoma Bacteriano , Polifosfatos/metabolismo , Prófagos/fisiologia , Águas Residuárias/microbiologia
16.
Basic Clin Pharmacol Toxicol ; 117(3): 209-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25645744

RESUMO

Hydroxocobalamin is an effective first-line antidote used mainly in monotherapy of cyanide poisonings, while the opinions are different on the effects of its combination with sodium thiosulfate. A 58-year-old male committed a suicide attempt by ingesting of 1200-1500 mg of potassium cyanide; he was unconscious for 1-1.5 min. after ingestion with the episode of generalized seizures. On admission to the ICU, the patient was acidotic (pH 7.28; HCO3 14.0 mmol/L, base excess -12.7 mmol/L, saturation O2 0.999) with high serum lactate (12.5 mmol/L). Hydroxocobalamin was administered 1.5 hr after ingestion in two subsequent intravenous infusions at a total dose of 7.5 g. The infusion was followed by continuous intravenous administration of 1 mL/hr/kg of 10% sodium thiosulfate at a total dose of 12 g. No complications and adverse reactions were registered. Serum lactate decreased to 0.6 mmol/L the same day, and arterial blood gases became normal (pH 7.49; HCO3 27.2 mmol/L, base excess 2.2 mmol/L, saturation O2 0.994). The follow-up examination 5 months later revealed no damage of basal ganglia and cerebellum on magnetic resonance imaging. The neurological examination revealed no pathological findings. On the ocular coherence tomography, the retinal nerve fibres layer was normal. In visual evoked potentials, there was a normal evoked complex on the left eye and minor decrease in amplitude on the right eye. Combination of hydroxocobalamin and sodium thiosulfate can have a positive effect on the survival without long-term neurological and visual sequelae in the cases of massive cyanide poisonings due to the possibility of a potentiation or synergism of hydroxocobalamin effects by sodium thiosulfate. This synergism can be explained by the different time-points of action of two antidotes: the initial and immediate effect of hydroxocobalamin, followed by the delayed, but more persistent effect of sodium thiosulfate.


Assuntos
Antídotos/uso terapêutico , Hidroxocobalamina/uso terapêutico , Cianeto de Potássio/intoxicação , Tiossulfatos/uso terapêutico , Antídotos/administração & dosagem , Quimioterapia Combinada , Humanos , Hidroxocobalamina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Tentativa de Suicídio , Tiossulfatos/administração & dosagem
17.
Planta ; 241(3): 641-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25408506

RESUMO

Salicylic acid (SA) plays a critical role in plant defense against pathogen attack. The SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense, which is pathogenesis-related protein-independent but involves an RNA-dependent RNA polymerase 1 (RDR1)-mediated RNA silencing mechanism and/or an alternative oxidase (AOX)-associated defense pathway. However, the relationship between these two viral defense-related pathways remains unclear. In this study, Tobacco mosaic virus (TMV) inoculation onto Solanum lycopersicum (tomato) leaves induced a rapid induction of the SlAOX1a transcript level as well as the total and CN-resistant respiration at 0.5 dpi, followed by an increase in SlRDR1 gene expression at 1 dpi in the upper uninoculated leaves. Silencing SlRDR1 using virus-induced gene silencing system significantly reduced SlRDR1 expression and tomato defense against TMV but had no evident effect on SlAOX1a transcription. Conversely, silencing SlAOX1a not only effectively reduced the AOX1a transcript level, but also blocked the TMV-induced SlRDR1 expression and decreased the basal defense against TMV. Furthermore, the application of an exogenous AOX activator on empty vector-silenced control plants greatly induced the accumulation of SlRDR1 and SlAOX1a transcript and reduced TMV viral RNA accumulation, but failed to have such effects on SlRDR1-silenced plants. Moreover, RDR1-overexpressed transgenic Nicotiana benthamiana plants enhanced defense against TMV than the empty vector-transformed plants, but these effects were not affected by the exogenous AOX activator or inhibitor. These results indicate that RDR1 is involved in the AOX-mediated defense pathway against TMV infection and plays a crucial role in enhancing RNA silencing to limit virus systemic spread.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Solanum lycopersicum/enzimologia , Vírus do Mosaico do Tabaco/fisiologia , Sequência de Bases , Respiração Celular , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Cianeto de Potássio , Receptor Cross-Talk
18.
Eur Respir J ; 44(5): 1253-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186256

RESUMO

We have previously reported cyanide at concentrations of up to 150 µM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 µM: 47% fall, p<0.0012; 75 µM: 32% fall, p<0.0001). Samples from cystic fibrosis patients (n = 3) showed similar results (150 µM: 55% fall, p = 0.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway.


Assuntos
Cílios/metabolismo , Cianetos/química , Fibrose Cística/metabolismo , Mucosa Nasal/metabolismo , Escarro/metabolismo , Trifosfato de Adenosina/química , Sobrevivência Celular , Células Cultivadas/efeitos dos fármacos , Fibrose Cística/microbiologia , Voluntários Saudáveis , Humanos , Muco/fisiologia , Mucosa Nasal/microbiologia , Cianeto de Potássio/química , Prognóstico , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa , Testes de Função Respiratória , Sistema Respiratório/fisiopatologia
19.
Chem Phys Lipids ; 183: 159-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24995676

RESUMO

Cardiolipin (CL) is a unique anionic, dimeric phospholipid found almost exclusively in the inner mitochondrial membrane and is essential for the function of numerous enzymes that are involved in mitochondrial energy metabolism. While the role of cardiolipin in apoptosis is well established, its involvement in necrosis is enigmatic. In the present study, KCN-induced necrosis in U937 cells was used as an experimental model to assess the role of CL in necrosis. KCN addition to U937 cells induced reactive oxygen species (ROS) formation, while the antioxidants inhibited necrosis, indicating that ROS play a role in KCN-induced cell death. Further, CL oxidation was confirmed by the monomer green fluorescence of 10-N-nonyl acridine orange (NAO) and by TLC. Utilizing the red fluorescence of the dimeric NAO, redistribution of CL in mitochondrial membrane during necrosis was revealed. We also showed that the catalytic activity of purified adenosine triphosphate (ATP) synthase complex, known to be modulated by cardiolipin, decreased following KCN treatment. All these events occurred at an early phase of the necrotic process prior to rupture of the cell membrane. Furthermore, CL-deficient HeLa cells were found to be resistant to KCN-induced necrosis as compared with the wild type cells. We suggest that KCN, an effective reversible inhibitor of cytochrome oxidase and thereby of the respiratory chain leads to ROS increase, which in turn oxidizes CL (amongst other membrane phospholipids) and leads to mitochondrial membrane lipid reorganization and loss of CL symmetry. Finally, the resistance of CL-deficient cells to necrosis further supports the notion that CL, which undergoes oxidation during necrotic cell death, is an integral part of the milieu of events taking place in mitochondria leading to membrane disorganization and mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Cardiolipinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Necrose/patologia , Necrose/fisiopatologia , Cianeto de Potássio/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Células U937
20.
J Inorg Biochem ; 135: 20-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632414

RESUMO

Cytoglobin (Cgb) was discovered a decade ago and is a fourth member of the group of hexacoordinated globin-folded proteins. Although some crystal structures have been reported and several functions have been proposed for Cgb, its physiological role remains uncertain. In this study, we measured cyanide binding to the ferric state of the wild-type (WT) Cgb, and found that the binding consisted of multiple steps. These results indicated that Cgb may be comprised of several forms, and the presence of monomers, dimers, and tetramers was subsequently confirmed by SDS-PAGE. Remarkably, each species contained two distinguishable forms, and, in the monomer, analyses of alternative cysteine states suggested the presence of an intramolecular disulfide bond (monomer SS form) and a structure with unpaired thiol groups (monomer SH form). These confirmed that forms were separated by gel-exclusion chromatography, and that the cyanide binding of the separated fractions was again measured; they showed different affinities for cyanide, with the monomer fraction showing the highest affinity. In addition, the ferrous state in each fraction showed distinct carbon monoxide (CO)-binding properties, and the affinities for cyanide and CO suggested a linear correlation. Furthermore, we also prepared several variants involving the two cysteine residues. The C38S and C83S variants showed a binding affinity for cyanide similar to the value for the monomer SH form, and hence the fraction with the highest affinity for exogenous ligands was designated as a monomer SS form. We concluded that polymerization could be a mechanism that triggers the exertion of various physiological functions of this protein and that an appropriate disulfide bond between the two cysteine residues was critical for regulating the binding affinity of Cgb, which can act as a ROS scavenger, for exogenous ligands.


Assuntos
Cistina/química , Globinas/química , Substituição de Aminoácidos , Monóxido de Carbono/química , Citoglobina , Globinas/genética , Heme/química , Humanos , Cinética , Ligantes , Mutagênese Sítio-Dirigida , Oxirredução , Cianeto de Potássio/química , Ligação Proteica , Multimerização Proteica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA