Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
mBio ; 14(5): e0042023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37676006

RESUMO

IMPORTANCE: Unlike humans, mice are unable to support HIV-1 infection. This is due, in part, to a constellation of defined minor, species-specific differences in conserved host proteins needed for viral gene expression. Here, we used precision CRISPR/Cas9 gene editing to engineer a "mousified" version of one such host protein, cyclin T1 (CCNT1), in human T cells. CCNT1 is essential for efficient HIV-1 transcription, making it an intriguing target for gene-based inactivation of virus replication. We show that isogenic cell lines engineered to encode CCNT1 bearing a single mouse-informed amino acid change (tyrosine in place of cysteine at position 261) exhibit potent, durable, and broad-spectrum resistance to HIV-1 and other pathogenic lentiviruses, and with no discernible impact on host cell biology. These results provide proof of concept for targeting CCNT1 in the context of one or more functional HIV-1 cure strategies.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Camundongos , Animais , HIV-1/fisiologia , Roedores , Linhagem Celular , Ciclina T/genética , Ciclina T/metabolismo , Expressão Gênica , Linfócitos T
2.
Chem Biodivers ; 20(8): e202300769, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349855

RESUMO

Direct modulation of the non-kinase functions of cyclin and CDK-cyclin complexes poses challenges. We utilize hydrophobic tag (HyT) based small-molecule degraders induced degradation of cyclin T1 and its corresponding kinase partner CDK9. LL-CDK9-12 demonstrated the most potent and selective degradation ability, with DC50 values of 0.362 µM against CDK9 and 0.680 µM against cyclin T1. In prostate cancer cells, LL-CDK9-12 showed enhanced anti-proliferative activity than its parental molecule SNS032 and LL-K9-3, the previous reported CDK9-cyclin T1 degrader. Moreover, LL-CDK9-12 suppressed the downstream signaling of CDK9 and AR efficiently. Altogether, LL-CDK9-12 was an effective dual degrader of CDK9-cyclin T1 and helped study the unknown function of CDK9-cyclin T1. These results suggest that HyT-based degraders could be used as a strategy to induce the degradation of protein complexes, providing insights for the design of protein complexes' degraders.


Assuntos
Núcleo Celular , Ciclinas , Humanos , Masculino , Pontos de Checagem do Ciclo Celular , Núcleo Celular/metabolismo , Ciclina T/metabolismo , Ciclinas/metabolismo , Ligação Proteica
3.
Mol Cell ; 83(3): 393-403, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599353

RESUMO

The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Leukemia ; 37(2): 326-338, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376377

RESUMO

Chronic lymphocytic leukemia (CLL) is effectively treated with targeted therapies including Bruton tyrosine kinase inhibitors and BCL2 antagonists. When these become ineffective, treatment options are limited. Positive transcription elongation factor complex (P-TEFb), a heterodimeric protein complex composed of cyclin dependent kinase 9 (CDK9) and cyclin T1, functions to regulate short half-life transcripts by phosphorylation of RNA Polymerase II (POLII). These transcripts are frequently dysregulated in hematologic malignancies; however, therapies targeting inhibition of P-TEFb have not yet achieved approval for cancer treatment. VIP152 kinome profiling revealed CDK9 as the main enzyme inhibited at 100 nM, with over a 10-fold increase in potency compared with other inhibitors currently in development for this target. VIP152 induced cell death in CLL cell lines and primary patient samples. Transcriptome analysis revealed inhibition of RNA degradation through the AU-Rich Element (ARE) dysregulation. Mechanistically, VIP152 inhibits the assembly of P-TEFb onto the transcription machinery and disturbs binding partners. Finally, immune competent mice engrafted with CLL-like cells of Eµ-MTCP1 over-expressing mice and treated with VIP152 demonstrated reduced disease burden and improvement in overall survival compared to vehicle-treated mice. These data suggest that VIP152 is a highly selective inhibitor of CDK9 that represents an attractive new therapy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Fator B de Elongação Transcricional Positiva , Animais , Camundongos , Fator B de Elongação Transcricional Positiva/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Quinase 9 Dependente de Ciclina , Ciclina T/metabolismo , Fosforilação , Núcleo Celular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
5.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194873, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064110

RESUMO

Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Complexos de Coordenação , MicroRNAs , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Complexos de Coordenação/metabolismo , Complexos de Coordenação/uso terapêutico , Ciclina T/genética , Ciclina T/metabolismo , Epigênese Genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , MicroRNAs/genética
6.
J Med Chem ; 65(16): 11034-11057, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35925880

RESUMO

Aberrant hyperactivation of cyclins results in carcinogenesis and therapy resistance in cancers. Direct degradation of the specific cyclin or cyclin-dependent kinase (CDK)-cyclin complex by small-molecule degraders remains a great challenge. Here, we applied the first application of hydrophobic tagging to induce degradation of CDK9-cyclin T1 heterodimer, which is required to keep productive transcription of oncogenes in cancers. LL-K9-3 was identified as a potent small-molecule degrader of CDK9-cyclin T1. Quantitative and time-resolved proteome profiling exhibited LL-K9-3 induced selective and synchronous degradation of CDK9 and cyclin T1. The expressions of androgen receptor (AR) and cMyc were reduced by LL-K9-3 in 22RV1 cells. LL-K9-3 exhibited enhanced anti-proliferative and pro-apoptotic effects compared with its parental CDK9 inhibitor SNS032 and suppressed downstream signaling of CDK9 and AR more effectively than SNS032. Moreover, LL-K9-3 inhibited AR and Myc-driven oncogenic transcriptional programs and exerted stronger inhibitory effects on several intrinsic target genes of AR than the monomeric CDK9 PROTAC (Thal-SNS032).


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias da Próstata , Núcleo Celular/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Humanos , Masculino
7.
Bioengineered ; 13(1): 1828-1837, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012431

RESUMO

Long non-coding RNA nuclear-enriched abundant transcript 1 (Lnc-NEAT1) is a crucial mediator in cancer progression, which is associated with poor prognosis of patients with laryngeal papilloma (LP). Herein, we aimed to determine how Lnc-NEAT1 promotes LP development. q-PCR, MTT, EDU and Western blotting were performed to determine that Lnc-NEAT1 facilitates LP cell proliferation and hinders cell apoptosis. LncBase database, q-PCR, GEPIA online database, Dual luciferase reporter and RIP assays were utilized to confirm that Lnc-NEAT1 sponged miR-577/miR-1224-5p and negatively mediated CCNT2. Western blotting, MTT and EDU were used to confirm that Lnc-NEAT1 promoted LP cell proliferation and inhibited cell apoptosis through CCNT2. Lnc-NEAT1 was highly expressed in LP, and enhanced LP cell proliferation, and it was inhibited by Lnc-NEAT1 depleting. Concerning the underlying mechanism, it was found that Lnc-NEAT1 could functionally sponge microRNA-577 (miR-577) and microRNA-1224-5p (miR-1224-5p) and up-regulate Cyclin T2 (CCNT2) in LP cells. Notably, CCNT2 knockdown blocked Lnc-NEAT1-induced LP cell proliferation, and rescued cell apoptosis, which was specifically indicated by restoration of Bax, Cleaved caspase 3 and Cleaved caspase 9. Lnc-NEAT1 played a carcinogenic role in LP through mediating miR-577 or miR-1224-5p/CCNT2 axis, which may provide promising insights for the treatment of LP.


Assuntos
Ciclina T/genética , Neoplasias Laríngeas/genética , MicroRNAs/genética , Papiloma/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Ciclina T/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Laríngeas/metabolismo , Papiloma/metabolismo
8.
Acta Pharmacol Sin ; 43(7): 1633-1645, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34811514

RESUMO

Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p-TEFb) complex responsible for transcriptional regulation. It has been shown that CDK9 modulates the expression and activity of oncogenes, such as MYC and murine double minute 4 (MDM4), and it also plays an important role in development and/or maintenance of the malignant cell phenotype. Malfunction of CDK9 is frequently observed in numerous cancers. Recent studies have highlighted the function of CDK9 through a variety of mechanisms in cancers, including the formation of new complexes and epigenetic alterations. Due to the importance of CDK9 activation in cancer cells, CDK9 inhibitors have emerged as promising candidates for cancer therapy. Natural product-derived and chemically synthesized CDK9 inhibitors are being examined in preclinical and clinical research. In this review, we summarize the current knowledge on the role of CDK9 in transcriptional regulation, epigenetic regulation, and different cellular factor interactions, focusing on new advances. We show the importance of CDK9 in mediating tumorigenesis and tumor progression. Then, we provide an overview of some CDK9 inhibitors supported by multiple oncologic preclinical and clinical investigations. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias , Animais , Ciclina T/genética , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Camundongos , Neoplasias/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica
9.
Cell Cycle ; 19(14): 1768-1776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32564665

RESUMO

HTLV-1 is a human retrovirus responsible for adult T-cell leukemia (ATL) and certain other clinical disorders. The viral Tax oncoprotein plays a central role in HTLV-1 pathogenicity, mainly due to its capacity of inducing the transcriptional activity of various transcriptional factors like NFқB. Eucalyptus camaldulensis (Ec) is considered as a traditional medicinal plant with valuable therapeutic effects. Here we evaluated the activity of its ethanolic leave extract on different Tax activities by testing its influence on Tax-induced activity of NFқB and HTLV-1 LTR in Jurkat cells. Our results showed that Ec inhibited Tax induced activation of NFқB -, SRF- dependent promoters and HTLV-1 LTR. Ec extract has no effect on the binding of Tax to NFқB while it strongly prevented the degradation of IҝBα induced by Tax probably as a result of preventing the link between Tax and IKKγ. In addition, increasing the cellular level of P-TEFb-cyclinT1 significantly reduced the inhibitory effect of Ec on Tax activities, probably by preventing the interaction between Tax and P-TEFb-cyclin T1. The 40%-MeOH fraction of this extract, which is rich with polyphenols, offered the highest inhibitory effect against Tax activities. Further studies are required for the isolation and identification of active component/s in this extract which may be developed in the future as preventive/curing drugs for HTLV-1 related diseases.


Assuntos
Etanol/química , Eucalyptus/química , Produtos do Gene tax , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ciclina T/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Concentração Inibidora 50 , Células Jurkat , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Sequências Repetidas Terminais/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
Nat Commun ; 11(1): 1827, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286286

RESUMO

It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.


Assuntos
Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Animais , Proliferação de Células/genética , Cromatina/metabolismo , Ciclina T/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional/genética
11.
Anticancer Drugs ; 31(6): 623-631, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32058347

RESUMO

Gastric cancer has become the second most common malignant tumor in the world, revealing the molecular mechanism of gastric cancer development is essential for the treatment of gastric cancer and improvement of prognosis. Recent studies have shown that microRNAs may play a carcinogenic or tumor-suppressive role in many types of cancer. It has been detected that miR-216b is down-regulated in many cancer types, indicating that miR-216b can be used as a prognostic marker for these particular types of cancer. However, the effect of miR-216b on gastric cancer remains unclear. In the present study, miR-216 was observed to be significantly down-regulated in cancer tissues compared to normal tissues, and the level of miR-216b in various gastric cancer cell lines was decreased. In addition, miR-216b overexpression inhibits proliferation, migration, invasion, cell cycle and apoptosis of gastric cancer cells. We further verified that the inhibitory effect of miR-216b on proliferation and invasion of gastric cancer cells is mediated by cyclin T2. Overexpression of cyclin T2 can reverse the anti-cancer effect of miR-216b mimics. The results further enriched the mechanism of miR-216b in the development and progression of gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Ciclina T/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/patologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Ciclina T/genética , Humanos , Invasividade Neoplásica , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
12.
Eur Rev Med Pharmacol Sci ; 24(1): 29-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957815

RESUMO

OBJECTIVE: The aim of this study was to investigate the biological role of microRNA-188-5p (miRNA-188-5p) in mediating the progression of osteosarcoma by degrading CCNT2. PATIENTS AND METHODS: The relative expression levels of miRNA-188-5p and CCNT2 in osteosarcoma tissues and para-cancerous normal tissues were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Meanwhile, their expression levels in osteosarcoma cell lines were examined. The regulatory effects of miRNA-188-5p on the proliferative ability and cell cycle progression of osteosarcoma cells were evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. Dual-Luciferase reporter gene assay was applied to verify the binding relationship between miRNA-188-5p and CCNT2. Furthermore, rescue experiments were conducted to clarify the role of miRNA-188-5p/CCNT2 in mediating the progression of osteosarcoma. RESULTS: MiRNA-188-5p was lowly expressed in osteosarcoma tissues when compared with paracancerous normal tissues. Overexpression of miRNA-188-5p significantly suppressed the proliferative ability and arrested cell cycle progression of osteosarcoma cells. However, knockdown of miRNA-188-5p obtained the opposite trends. The Dual-Luciferase reporter gene assay verified the binding relationship between miRNA-188-5p and CCNT2. The expression level of CCNT2 in HOS and MG-63 cells was markedly downregulated after transfection of miRNA-188-5p mimics. In addition, overexpression of CCNT2 could partially reverse the inhibitory effect of miRNA-188-5p on the proliferative ability and cell cycle progression of osteosarcoma cells. CONCLUSIONS: MiRNA-188-5p is downregulated in osteosarcoma. Furthermore, it suppresses the proliferative ability and cell cycle progression of osteosarcoma cells via target degrading CCNT2.


Assuntos
Neoplasias Ósseas/metabolismo , Ciclina T/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Células Cultivadas , Ciclina T/genética , Humanos , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia
13.
J Cancer Res Ther ; 15(5): 1131-1140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603123

RESUMO

OBJECTIVE: CDK9/Cyclin T1 kinase is a protein kinase, indirectly involved in the cell cycle progression in the form of transcription elongation, CDK9 specific inhibitors may be a potential alternative treatment not only for cancer but also other life-threatening diseases. MATERIALS AND METHODS: Ligand-based and structure-based pharmacophore model was developed for discovering of the new anticancer agents. These models used as three-dimensional query for virtual screening against the chemical structure databases such as Maybridge HitFinder, MDPI, and ZINC. Subsequently, the potential hit compound was filtered by the ADMET and docking score. RESULTS: After applying all filtration, 11 hits were found as potential hits based on good docking scores as well as good ADMET properties. Compound 2-[4-[6-(isopropylamino) pyrimidin-4-yl]-1H-pyrrolo[2,3-b] pyridin-6-yl] amino] ethanol was found to be most potent among all the potential hits. These hits could be used as an anticancer agent in near future. CONCLUSIONS: So many advances in the treatment of death leading diseases have been made over the past few decades, However, looking for the development in this research ligand-based and structure-based pharmacophore modeling was done, hit1 2-[4-[6-(isopropylamino) pyrimidin-4-yl]-1H-pyrrolo[2,3 b] pyridin-6 yl] amino] ethanol was found to be more potent and selective. It is understandable that these hits could be as selective and potent anticancer agents of cyclin-dependent kinase complex.


Assuntos
Antineoplásicos/uso terapêutico , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
14.
J Biol Chem ; 294(15): 6188-6203, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30782840

RESUMO

Human cytomegalovirus (HCMV) is a common ß-herpesvirus causing life-long latent infections. HCMV replication interferes with cell cycle regulation in host cells because the HCMV-encoded cyclin-dependent kinase (CDK) ortholog pUL97 extensively phosphorylates the checkpoint regulator retinoblastoma protein. pUL97 also interacts with cyclins B1, T1, and H, and recent findings have strongly suggested that these interactions influence pUL97 substrate recognition. Interestingly, here we detected profound mechanistic differences among these pUL97-cyclin interactions. Our study revealed the following. (i) pUL97 interacts with cyclins B1 and H in a manner dependent on pUL97 activity and HCMV-specific cyclin modulation, respectively. (ii) The phosphorylated state of both proteins is an important determinant of the pUL97-cyclin B1 interaction. (iii) Activated phospho-Thr-315 cyclin H is up-regulated during HCMV replication. (iv) Thr-315 phosphorylation is independent of intracellular pUL97 or CDK7 activity. (v) pUL97-mediated in vitro phosphorylation is detectable for cyclin B1 but not H. (vi) Mutual transphosphorylation between pUL97 and CDK7 is not detectable, and an MS-based phosphosite analysis indicated that pUL97 might unexpectedly not be phosphorylated in its T-loop. (vii) The binary complexes pUL97-cyclin H and CDK7-cyclin H as well as the ternary complex pUL97-cyclin-H-CDK7 are detectable in an assembly-based CoIP approach. (viii) pUL97 self-interaction can be bridged by the transcriptional cyclins T1 or H but not by the classical cell cycle-regulating B1 cyclin. Combined, our findings unravel a number of cyclin type-specific differences in pUL97 interactions and suggest a multifaceted regulatory impact of cyclins on HCMV replication.


Assuntos
Ciclina B1/metabolismo , Ciclina H/metabolismo , Ciclina T/metabolismo , Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Ciclina B1/genética , Ciclina H/genética , Ciclina T/genética , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Virais/genética
15.
J Cell Biochem ; 119(2): 1273-1284, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722178

RESUMO

Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.


Assuntos
Doenças Cardiovasculares/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Viroses/metabolismo , Animais , Doenças Cardiovasculares/genética , Ciclina T/genética , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Elongação da Transcrição Genética , Viroses/genética
16.
Cell Rep ; 20(12): 2833-2845, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930680

RESUMO

Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.


Assuntos
Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Genes Cells ; 22(5): 424-435, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28326644

RESUMO

We developed transgenic (Tg) rats that express human CD4, CCR5, CXCR4, CyclinT1, and CRM1 genes. Tg rat macrophages were efficiently infected with HIV-1 and supported production of infectious progeny virus. By contrast, both rat primary CD4+ T cells and established T cell lines expressing human CD4, CCR5, CyclinT1, and CRM1 genes were infected inefficiently, but this was ameliorated by inhibition of cyclophilin A. The infectivity of rat T cell-derived virus was lower than that of human T cell-derived virus.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ciclina T/metabolismo , Infecções por HIV/imunologia , Carioferinas/metabolismo , Macrófagos/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Ciclina T/genética , Suscetibilidade a Doenças , HIV-1/patogenicidade , Humanos , Carioferinas/genética , Macrófagos/virologia , Ratos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
18.
Drug Deliv Transl Res ; 7(4): 497-506, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28315051

RESUMO

RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b TfR-mediated transcytosis of nanoparticles across the epithelial cells. c B2R-mediated endocytosis of nanoparticles in astrocytes. d The molecular interactions between HIV-1 Tat protein and Cyclin T1 and Tip110 cellular proteins. e A schematic representation of chitosan nanoparticles with its components. RNAPII RNA polymerase II, TAR transactivation response RNA element, LTR long terminal repeat, Ab antibody, CS chitosan, TPP tripolyphosphate.


Assuntos
Anticorpos/administração & dosagem , Quitosana/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Receptor B2 da Bradicinina/imunologia , Transferrina/imunologia , Anticorpos/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Barreira Hematoencefálica/metabolismo , Carbocianinas/administração & dosagem , Carbocianinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Ciclina T/genética , Ciclina T/metabolismo , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Nanopartículas/química , RNA Interferente Pequeno/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Virology ; 504: 45-51, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28152383

RESUMO

HIV-1 latency is a major obstacle to HIV-1 eradication. Coinfection with HTLV-1 has been associated with faster progression to AIDS. HTLV-1 encodes the transactivator Tax which can activate both HTLV-1 and HIV-1 transcription. Here, we demonstrate that Tax activates HIV transcription in latent CD4+ T cells. Tax promotes the activation of P-TEFb, releasing CDK9 and Cyclin T1 from inactive forms, promoting transcription elongation and reactivation of latent HIV-1. Tax mutants lacking interaction with the HIV-1-LTR promoter were not able to activate P-TEFb, with no subsequent activation of latent HIV. In HIV-infected primary resting CD4+ T cells, Tax-1 reactivated HIV-1 transcription up to five fold, confirming these findings in an ex vivo latency model. Finally, our results confirms that HTLV-1/Tax hijacks cellular partners, promoting HIV-1 transcription, and this interaction should be further investigated in HIV-1 latency studies in patients with HIV/HTLV-1 co-infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Produtos do Gene tax/genética , HIV-1/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Linhagem Celular Tumoral , Coinfecção , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Células Jurkat , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas/genética , Latência Viral/genética
20.
Cell Cycle ; 15(19): 2626-2635, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27420286

RESUMO

The activated estrogen (E2) receptor α (ERα) is a potent transcription factor that is involved in the activation of various genes by 2 different pathways; a classical and non-classical. In classical pathway, ERα binds directly to E2-responsive elements (EREs) located in the appropriate genes promoters and stimulates their transcription. However, in non-classical pathway, the ERα can indirectly bind with promoters and enhance their activity. For instance, ERα activates BRCA1 expression by interacting with jun/fos complex bound to the AP-1 site in BRCA1 promoter. Interference with the expression and/or functions of BRCA1, leads to high risk of breast or/and ovarian cancer. HTLV-1Tax was found to strongly inhibit BRCA1 expression by preventing the binding of E2-ERα complex to BRCA1 promoter. Here we examined Tax effect on ERα induced activation of genes by the classical pathway by testing its influence on E2-induced expression of ERE promoter-driven luciferase reporter (ERE-Luc). Our findings showed that E2 profoundly stimulated this reporter expression and that HTLV-1Tax significantly induced this stimulation. This result is highly interesting because in our previous study Tax was found to strongly block the E2-ERα-mediated activation of BRCA1 expression. ERα was found to produce a big complex by recruiting various cofactors in the nucleus before binding to the ERE region. We also found that only part of the reqruited cofactors are required for the transcriptional activity of ERα complex. Chip assay revealed that the binding of Tax to the ERα complex, did not interfere with its link to ERE region.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ciclina T/metabolismo , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Luciferases/metabolismo , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Elementos de Resposta/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA