Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1197-1208, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38174919

RESUMO

Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.


Assuntos
Peptídeos Penetradores de Células , Ciclotídeos , Neoplasias , Humanos , Ciclotídeos/farmacologia , Ciclotídeos/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo
2.
Transgenic Res ; 32(1-2): 121-133, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930229

RESUMO

Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.


Assuntos
Ciclotídeos , Esclerose Múltipla , Camundongos , Humanos , Animais , Ciclotídeos/genética , Ciclotídeos/química , Ciclotídeos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Austrália , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
3.
J Biol Chem ; 297(6): 101325, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710371

RESUMO

Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.


Assuntos
Cisteína Endopeptidases/metabolismo , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Ciclização , Ciclotídeos/genética , Ciclotídeos/metabolismo , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Modelos Moleculares , Momordica/química , Momordica/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Engenharia de Proteínas , Transcriptoma
4.
ACS Chem Biol ; 16(11): 2373-2386, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592097

RESUMO

The cyclotide T20K inhibits the proliferation of human immune cells and is currently in clinical trials for multiple sclerosis. Here, we provide novel functional data and mechanistic insights into structure-activity relationships of T20K. Analogs with partial or complete reduction of the cystine knot had loss of function in proliferation experiments. Similarly, an acyclic analog of T20K was inactive in lymphocyte bioassays. The lack of activity of non-native peptide analogs appears to be associated with the ability of cyclotides to interact with and penetrate cell membranes, since cellular uptake studies demonstrated fast fractional transfer only of the native peptide into the cytosol of human immune cells. Therefore, structural differences between cyclic and linear native folded peptides were investigated by NMR to elucidate structure-activity relationships. Acyclic T20K had a less rigid backbone and considerable structural changes in loops 1 and 6 compared to the native cyclic T20K, supporting the idea that the cyclic cystine knot motif is a unique bioactive scaffold. This study provides evidence that this structural motif in cyclotides governs bioactivity, interactions with and transport across biological membranes, and the structural integrity of these peptides. These observations could be useful to understand the structure-activity of other cystine knot proteins due to the structural conservation of the cystine knot motif across evolution and to provide guidance for the design of novel cyclic cysteine-stabilized molecules.


Assuntos
Ciclotídeos/química , Ciclotídeos/farmacologia , Motivos Nó de Cisteína , Imunossupressores/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclotídeos/metabolismo , Humanos , Imunossupressores/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Conformação Proteica
5.
Biochem Soc Trans ; 49(3): 1279-1285, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156400

RESUMO

Cyclic peptides are widespread throughout the plant kingdom, and display diverse sequences, structures and bioactivities. The potential applications attributed to these peptides and their unusual biosynthesis has captivated the attention of researchers for many years. Several gene sequences for plant cyclic peptides have been discovered over the last two decades but it is only recently that we are beginning to understand the intricacies associated with their biosynthesis. Recent studies have focussed on three main classes of plant derived cyclic peptides, namely orbitides, SFTI related peptides and cyclotides. In this mini-review, we discuss the expansion of the known sequence and structural diversity in these families, insights into the enzymes involved in the biosynthesis, the exciting applications which includes a cyclotide currently in clinical trials for the treatment of multiple sclerosis, and new production methods that are being developed to realise the potential of plant cyclic peptides as pharmaceutical or agricultural agents.


Assuntos
Ciclotídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Animais , Ciclotídeos/química , Ciclotídeos/farmacologia , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Esclerose Múltipla/tratamento farmacológico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo
6.
Nat Protoc ; 16(3): 1740-1760, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597770

RESUMO

Cyclic disulfide-rich peptides have attracted significant interest in drug development and biotechnology. Here, we describe a protocol for producing cyclic peptide precursors in Pichia pastoris that undergo in vitro enzymatic maturation into cyclic peptides using recombinant asparaginyl endopeptidases (AEPs). Peptide precursors are expressed with a C-terminal His tag and secreted into the media, enabling facile purification by immobilized metal affinity chromatography. After AEP-mediated cyclization, cyclic peptides are purified by reverse-phase high-performance liquid chromatography and characterized by mass spectrometry, peptide mass fingerprinting, NMR spectroscopy, and activity assays. We demonstrate the broad applicability of this protocol by generating cyclic peptides from three distinct classes that are either naturally occurring or synthetically backbone cyclized, and range in size from 14 amino acids with one disulfide bond, to 34 amino acids with a cystine knot comprising three disulfide bonds. The protocol requires 14 d to identify and optimize a high-expressing Pichia clone in small-scale cultures (24 well plates or 50 mL tubes), after which large-scale production in a bioreactor and peptide purification can be completed in 10 d. We use the cyclotide Momordica cochinchinensis trypsin inhibitor II as an example. We also include a protocol for recombinant AEP production in Escherichia coli as AEPs are emerging tools for orthogonal peptide and protein ligation. We focus on two AEPs that preferentially cyclize different peptide precursors, namely an engineered AEP with improved catalytic efficiency [C247A]OaAEP1b and the plant-derived MCoAEP2. Rudimentary proficiency and equipment in molecular biology, protein biochemistry and analytical chemistry are needed.


Assuntos
Cisteína Endopeptidases/metabolismo , Biossíntese Peptídica/efeitos dos fármacos , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Biotecnologia , Ciclização , Ciclotídeos/química , Ciclotídeos/genética , Ciclotídeos/metabolismo , Cisteína Endopeptidases/farmacologia , Dissulfetos , Modelos Moleculares , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Saccharomycetales/metabolismo
7.
J Nat Prod ; 84(1): 81-90, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33397096

RESUMO

Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.


Assuntos
Ciclotídeos/efeitos dos fármacos , Ciclotídeos/metabolismo , Fabaceae/química , Linfócitos/metabolismo , Solanaceae/química , Violaceae/química , Brasil , Ciclotídeos/química , Humanos , Linfócitos/química , Linfócitos/efeitos dos fármacos , Magnoliopsida , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo
8.
Chembiochem ; 22(6): 961-973, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33095969

RESUMO

Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.


Assuntos
Cisteína/química , Peptídeos/metabolismo , Engenharia de Proteínas , Animais , Ciclotídeos/química , Ciclotídeos/genética , Ciclotídeos/metabolismo , Defensinas/química , Defensinas/genética , Defensinas/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Estabilidade Proteica , Toxinas Biológicas/química , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo
9.
J Phys Chem B ; 123(43): 9104-9110, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31580077

RESUMO

Nerve growth factor (NGF) is an endogenously produced polypeptide that promotes the differentiation, survival, and repair of neurons in the central and peripheral nervous systems. While trophic proteins hold promise for the treatment of neuronal injury and disease, use of NGF is limited by its large molecular weight, lack of permeability through the blood-brain barrier, and peripheral side effects. Previously, we found that an extract of the Momordica cochinchinensis seed stimulated PC-12 neurite outgrowth. Bioactivity-guided fractioning of the seed extract suggested that the NGF mimetic agent was one of few defined proteins from this plant: one group being the defense Knottins and the other group of the lowest mass is the potent trypsin inhibitor MCoTI-II. Here, the NGF mimetic potential of this latter protein was investigated using two concurrent but different approaches. A biological study used recombinant purified MCoTI-II, which when tested in rat PC-12 cells grown on collagen, failed to initiate outgrowth relative to the positive control 7S NGF. In a separate computational study, the possibility was investigated such that MCoTI-II could exert an effect through binding to the serine protease γ-NGF subunit of the 7S NGF complex, analogous to its binding to its native receptor trypsin. Molecular dynamics simulations showed that MCoTI-II can bind stably to γ-NGF for >350 ns. Modeling indicated that this interaction could sterically inhibit 7S NGF complex formation, potentially altering the equilibrium between inactive complexed and free active NFG protein. In conclusion, the biological study now excludes the MCoTI-II protein as the NGF mimetic factor in the Momordica extract, an important and required step to identify the active component in this seed. On the other hand, the theoretical study has revealed a novel observation that may be of use in the development of strategies to affect NGF activity.


Assuntos
Ciclotídeos/metabolismo , Miniproteínas Nó de Cistina/metabolismo , Fatores de Crescimento Neural/metabolismo , Crescimento Neuronal , Extratos Vegetais/metabolismo , Animais , Biomimética , Simulação por Computador , Ciclotídeos/química , Miniproteínas Nó de Cistina/química , Simulação de Dinâmica Molecular , Momordica/química , Fatores de Crescimento Neural/química , Células PC12 , Ligação Proteica , Conformação Proteica , Ratos , Serina Endopeptidases/metabolismo
10.
Methods Mol Biol ; 2001: 17-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134565

RESUMO

Macrocyclic peptides are a unique class of molecules that display a relatively constrained peptidic backbone as compared to their linear counterparts leading to the defined 3-D orientation of the constituent amino acids (pharmacophore). Although they are attractive candidates for lead discovery owing to the unique conformational features, their peptidic backbone is susceptible to proteolytic cleavage in various biological fluids that compromise their efficacy. In this chapter we review the various classical and contemporary chemical and biological approaches that have been utilized to combat the metabolic instability of macrocyclic peptides. We note that any chemical modification that helps in providing either local or global conformational rigidity to these macrocyclic peptides aids in improving their metabolic stability typically by slowing the cleavage kinetics by the proteases.


Assuntos
Ciclotídeos/química , Hormônios Peptídicos/química , Peptídeos Cíclicos/química , Administração Oral , Conotoxinas/química , Conotoxinas/metabolismo , Ciclização , Ciclotídeos/metabolismo , Ciclotídeos/farmacologia , Ciclotídeos/uso terapêutico , Ensaios de Triagem em Larga Escala , Cinética , Metilação , Conformação Molecular , Hormônios Peptídicos/metabolismo , Peptídeos Cíclicos/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
11.
Proc Natl Acad Sci U S A ; 116(16): 7831-7836, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944220

RESUMO

Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.


Assuntos
Ciclotídeos , Cisteína Proteases , Papaína , Proteínas de Plantas , Ciclotídeos/química , Ciclotídeos/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Defensinas/química , Defensinas/metabolismo , Modelos Moleculares , Papaína/química , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
12.
Bioorg Med Chem Lett ; 27(23): 5089-5099, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29110985

RESUMO

Cyclotides are fascinating microproteins (≈30-40 residues long) with a unique head-to-tail cyclized backbone, stabilized by three disulfide bonds forming a cystine knot. This unique topology makes them exceptionally stable to chemical, thermal and biological degradation compared to other peptides of similar size. Cyclotides have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo. These properties make them ideal scaffolds for many biotechnological applications. This article provides and overview of the properties of cyclotides and their applications as molecular imaging agents and peptide-based therapeutics.


Assuntos
Ciclotídeos/química , Animais , Meios de Contraste/química , Ciclotídeos/genética , Ciclotídeos/metabolismo , Desenho de Fármacos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
13.
Chemistry ; 23(58): 14469-14475, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28771849

RESUMO

The CXCR4 chemokine receptor plays a key regulatory role in many biological functions, including embryonic development and controlling leukocyte functions during inflammation and immunity. CXCR4 has been also associated with multiple types of cancers where its overexpression/activation promotes metastasis, angiogenesis, and tumor growth and/or survival. Furthermore, CXCR4 is involved in HIV replication, as it is a co-receptor for viral entry into host cells. Altogether, these features make CXCR4 a very attractive target for the development of imaging and therapeutic agents. Here, the in vivo evaluation of the MCoTI-based cyclotide, MCo-CVX-5c, for the development of imaging agents that target CXCR4 is reported. Cyclotide MCo-CVX-5c is a potent CXCR4 antagonist with a remarkable in vivo resistance to biological degradation in serum. A [64 Cu]-DOTA-labeled version of this cyclotide demonstrated high and significant uptake in U87-stb-CXCR4 tumors compared to the control U87 tumors. Furthermore, protracted imaging studies demonstrated radiotracer retention in the U87-stb-CXCR4 tumor at 24 h post injection. Uptake in U87-stb-CXCR4 tumors could be blocked by unlabeled MCo-CVX-5c, showing high in vivo specificity. These results demonstrate the in vivo specificity and retention of a bioactive molecularly targeted cyclotide and highlight the potential of bioactive cyclotides for the development of new imaging agents that target CXCR4.


Assuntos
Meios de Contraste/química , Ciclotídeos/química , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Ciclotídeos/síntese química , Ciclotídeos/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores CXCR4/antagonistas & inibidores , Distribuição Tecidual , Transplante Heterólogo
14.
Sci Rep ; 6: 35179, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734922

RESUMO

Cyclotides or cyclic cystine-knot peptides have emerged as a promising class of pharmacological ligands that modulate protein function. Interestingly, very few cyclotides have been shown to enter into cells. Yet, it remains unknown whether backbone cyclization is required for their cellular internalization. In this report, we studied the cellular behavior of EETI-II, a model acyclic cystine-knot peptide. Even though synthetic methods have been used to generate EETI-II, recombinant methods that allow efficient large scale biosynthesis of EETI-II have been lagging. Here, we describe a novel protocol for recombinant generation of folded EETI-II in high yields and to near homogeneity. We also uncover that EETI-II is efficiently uptaken via an active endocytic pathway to early endosomes in mammalian cells, eventually accumulating in late endosomes and lysosomes. Notably, co-incubation with a cell-penetrating peptide enhanced the cellular uptake and altered the trafficking of EETI-II, leading to its evasion of lysosomes. Our results demonstrate the feasibility of modulating the subcellular distribution and intracellular targeting of cystine-knot peptides, and hence enable future exploration of their utility in drug discovery and delivery.


Assuntos
Cistina/metabolismo , Peptídeos Cíclicos/metabolismo , Transporte Proteico/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/metabolismo , Ciclização/fisiologia , Ciclotídeos/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Camundongos , Células NIH 3T3 , Proteínas de Plantas/metabolismo
15.
Planta ; 244(5): 1029-1040, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27394154

RESUMO

MAIN CONCLUSION: The distribution of cyclotides was visualized in plant cells, tissues and organs using immunohistochemistry. Finding of cyclotides in tissues potentially vulnerable to pathogen attacks supports their role as defense molecules. The cyclotide family of plant peptides is characterized by the cyclic cystine knot motif and its diverse biological activities. Given their insecticidal and antimicrobial properties, the role of cyclotides in planta is probably associated with host defense. Our current understanding of the cellular compartmentalization of cyclotides in the vacuole is based on indirect studies on transgenic model plants that do not express cyclotides naturally. Matrix-assisted laser desorption ionization (MALDI) imaging has also been used to study the distribution of cyclotides, but the technique's resolution was insufficient to determine their tissue or cell distribution. To avoid the limitations of these approaches, immunohistochemical visualization methods were used. Antibodies were raised in rabbits using cycloviolacin O2 (cyO2), and their specificity was determined by Western and dot blot experiments. Slides for immunohistochemical analysis were prepared from leaf, petiole and root fragments of Viola odorata and Viola uliginosa, and specimens were visualized using indirect epifluorescence microscopy. The antibodies against cyclotides were specific against selected bracelet cyclotides with high similarity (cyO2, cyO3, cyO8, cyO13) and suitable for immunohistochemistry. The tissue distribution of the cyclotides visualized in this way is consistent with their proposed role in host defense-relatively large quantities were observed in the leaf and petiole epidermis in both Viola species. Cyclotides were also found in vascular tissue in all the assessed plant organs. The vacuole storage of cyclotides was directly shown.


Assuntos
Ciclotídeos/metabolismo , Especificidade de Órgãos , Células Vegetais/metabolismo , Imunidade Vegetal , Viola/imunologia , Sequência de Aminoácidos , Anticorpos/metabolismo , Especificidade de Anticorpos/imunologia , Compartimento Celular , Ciclotídeos/biossíntese , Ciclotídeos/química , Imuno-Histoquímica , Folhas de Planta/metabolismo , Ligação Proteica
16.
J Exp Bot ; 67(16): 4801-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222514

RESUMO

Cyclotides are plant-derived cyclic peptides that have a head-to-tail cyclic backbone and three conserved disulphide bonds that form a cyclic cystine knot motif. They occur in plants from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families, typically with 10-100 cyclotides in a given plant species, in a wide range of tissues, including flowers, leaves, stems, and roots. Some cyclotides are expressed in large amounts (up to 1g kg(-1) wet plant weight) and their natural function appears to be to protect plants from pests or pathogens. This article provides a brief overview of their discovery, distribution in plants, and applications. In particular, their exceptional stability has led to their use as peptide-based scaffolds in drug design applications. They also have potential as natural 'ecofriendly' insecticides, and as protein engineering frameworks.


Assuntos
Ciclotídeos/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Ciclotídeos/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Rubiaceae/genética , Rubiaceae/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Violaceae/genética , Violaceae/metabolismo
17.
PLoS One ; 10(11): e0139562, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517259

RESUMO

Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV/metabolismo , Peptídeos Cíclicos/química , Algoritmos , Sequência de Aminoácidos , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Ciclotídeos/química , Ciclotídeos/metabolismo , Dissulfetos , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos Cíclicos/metabolismo , Estrutura Terciária de Proteína
18.
J Proteome Res ; 14(11): 4851-62, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26399495

RESUMO

Cyclotides are plant-derived mini proteins. They are genetically encoded as precursor proteins that become post-translationally modified to yield circular cystine-knotted molecules. Because of this structural topology cyclotides resist enzymatic degradation in biological fluids, and hence they are considered as promising lead molecules for pharmaceutical applications. Despite ongoing efforts to discover novel cyclotides and analyze their biodiversity, it is not clear how many individual peptides a single plant specimen can express. Therefore, we investigated the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide precursor architecture and processing sites important for biosynthesis of mature peptides. The cyclotide peptidome was explored by mass spectrometry and bottom-up proteomics using the extracted peptide sequences as queries for database searching. In total 164 cyclotides were discovered by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source to as many as 150 000 individual cyclotides. Encompassing the diversity of V. tricolor as a combinatorial library of bioactive peptides, this commercially available medicinal herb may be a suitable starting point for future bioactivity-guided screening studies.


Assuntos
Ciclotídeos/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Transcriptoma , Violaceae/genética , Cromatografia Líquida de Alta Pressão , Ciclotídeos/genética , Ciclotídeos/isolamento & purificação , Ciclotídeos/metabolismo , Motivos Nó de Cisteína/genética , Mineração de Dados , Biblioteca Gênica , Extração Líquido-Líquido , Modelos Moleculares , Dados de Sequência Molecular , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Violaceae/metabolismo
19.
Phytochemistry ; 117: 527-536, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26246035

RESUMO

Plants from Violaceae produce cyclotides, peptides characterized by a circular peptide backbone and a cystine knot. This signature motif gives stability that can harness a wide spectrum of biological activities, with implications in plant defense and with applications in medicine and biotechnology. In the current work, cyclotide expressing in vitro cultures were established from Viola uliginosa. These cultures are useful models for studying biosynthesis of cyclotides and can also be used in their production. The cyclotide expression pattern is shown to be dependent on exogenous plant growth regulators, both on peptide and gene expression levels. The highest yields of cyclotides were obtained on media containing only a cytokinin and were correlated with storage material accumulation. Exposure to auxins decreased cyclotide production and caused shifting of the biosynthesis pattern to root specific cyclotides. The response to stimuli in terms of cyclotide expression pattern appears to be developmental, and related to polar auxin transportation and the auxin/cytokinin ratio regulating tissue differentiation. By the use of whole transcriptome shotgun sequencing (WTSS) and peptidomics, 20 cyclotide sequences from V. uliginosa (including 12 new) and 12 complete precursor proteins could be identified. The most abundant cyclotides were cycloviolacin O3 (CyO3), CyO8 and CyO13. A suspension culture was obtained that grew exponentially with a doubling time of approximately 3 days. After ten days of growth, the culture provided a yield of more than 4 mg CyO13 per gram dry mass.


Assuntos
Ciclotídeos/genética , Ciclotídeos/metabolismo , Viola/metabolismo , Sequência de Aminoácidos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Citocininas/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tiadiazóis/farmacologia , Técnicas de Cultura de Tecidos , Viola/efeitos dos fármacos , Viola/genética , Viola/crescimento & desenvolvimento
20.
J Plant Physiol ; 178: 17-26, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25756919

RESUMO

Cysteine (Cys)-rich proteins (CRPs) are frequently associated with plant defense and stress resistance. Viola baoshanensis is a cadmium (Cd) hyper-accumulating plant whose CRPs-based defense systems are so far poorly understood. Next generation sequencing (NGS) techniques and a specialist searching tool, CrpExcel, were employed for identifying CRPs in V. baoshanensis. The transcriptome sequences of V. baoshanensis were assembled primarily from 454FLX/Hiseq2000 reads of plant cDNA sequencing libraries. CrpExcel was then used to search the ORFs and 9687 CRPs were identified, and included zinc finger (ZF) proteins, lipid transfer proteins, thaumatins and cyclotide precursors. Real-time PCR results showed that all CRP genes tested are constitutively expressed, but the genes of defensive peptides showed greater up-regulated expression than those of ZF-proteins in Cd- and/or wounding (Wd) treatments of V. baoshanensis seedlings. The NGS-derived sequences of cyclotide precursor genes were verified by RT-PCR and ABI3730 sequencing studies, and 32 novel cyclotides were identified in V. baoshanensis. In general, the metal-binding sites of ZF-containing CRPs also represented the potential vulnerable targets of toxic metals. This study provides broad insights into CRPs-based defense systems and stress-vulnerable targets in V. baoshanensis. It now brings the number of cyclotide sequences in V. baoshanensis to 53 and based on projections from this work, the number of cyclotides in the Violaceae is now conservatively estimated to be >30000.


Assuntos
Ciclotídeos/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transcriptoma , Viola/genética , Sequência de Aminoácidos , Ciclotídeos/metabolismo , Cisteína/genética , Cisteína/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Viola/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA