Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Nat Commun ; 15(1): 6565, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095373

RESUMO

The legume albumin-1 gene family, arising after nodulation, encodes linear a- and b-chain peptides for nutrient storage and defense. Intriguingly, in one prominent legume, Clitoria ternatea, the b-chains are replaced by domains producing ultra-stable cyclic peptides called cyclotides. The mechanism of this gene hijacking is until now unknown. Cyclotides require recruitment of ligase-type asparaginyl endopeptidases (AEPs) for maturation (cyclization), necessitating co-evolution of two gene families. Here we compare a chromosome-level C. ternatea genome with grain legumes to reveal an 8 to 40-fold expansion of the albumin-1 gene family, enabling the additional loci to undergo diversification. Iterative rounds of albumin-1 duplication and diversification create four albumin-1 enriched genomic islands encoding cyclotides, where they are physically grouped by similar pI and net charge values. We identify an ancestral hydrolytic AEP that exhibits neofunctionalization and multiple duplication events to yield two ligase-type AEPs. We propose cyclotides arise by convergence in C. ternatea where their presence enhances defense from biotic attack, thus increasing fitness compared to lineages with linear b-chains and ultimately driving the replacement of b-chains with cyclotides.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clitoria/metabolismo , Clitoria/genética , Ciclotídeos/genética , Ciclotídeos/química , Ciclotídeos/metabolismo , Fixação de Nitrogênio/genética , Evolução Molecular , Ciclização , Filogenia , Família Multigênica , Duplicação Gênica , Fabaceae/genética , Fabaceae/metabolismo , Albuminas/metabolismo , Albuminas/genética , Genoma de Planta , Cisteína Endopeptidases
2.
Biomed Pharmacother ; 177: 117057, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976957

RESUMO

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.


Assuntos
Ciclotídeos , Células Matadoras Naturais , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Animais , Ciclotídeos/farmacologia , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Camundongos , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia
3.
Plant Sci ; 347: 112185, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986912

RESUMO

The cyclic peptides, cyclotides, are identified mostly with 29-31-aa (amino acid residues) but rarely with ≥ 34-aa in plants. Viola philippica is a well-known medicinal plant but a rare metallophyte with cyclotides. A hypothesis was hence raised that the potential novel 34-aa cyclotide of Viola philippica would clearly broaden the structural and functional diversities of plant cyclotides. After homology-cloning the cyclotide precursor gene of VpCP5, a 34-aa cyclotide (viphi I) was identified to be larger than 22 other known cyclotides in V. philippica. It had a chimeric primary structure, due to its unusual loop structures (8 residues in loop 2 and 6 residues in loop 5) and aa composition (3 E and 5 R), by using phylogenetic analyses and an in-house cyclotide analysis tool, CyExcel_V1. A plasmid pCYC-viphi_I and a lab-used recombinant process were specially constructed for preparing viphi I. Typically, 0.12 or 0.25 mg ml-1 co-exposed viphi I could significantly remain cell activities with elevating Cd2+-exposed doses from 10-8 to 10-6 mol l-1 in MCF7 cells. In the model nematode Caenorhabditis elegans, IC50 values of viphi I to inhibit adult ratios and to induce death ratios, were 184.7 and 585.9 µg ml-1, respectively; the median lifespan of adult worms decreased from 14 to 2 d at viphi I doses ranging from 0.05 to 2 mg ml-1. Taken together, the newly identified viphi I exhibits functional potentials against cadmium and nematodes, providing new insights into structural and functional diversity of chimeric cyclotides in plants.


Assuntos
Cádmio , Ciclotídeos , Viola , Animais , Ciclotídeos/genética , Ciclotídeos/química , Viola/genética , Viola/metabolismo , Sequência de Aminoácidos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Nematoides/genética
4.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679329

RESUMO

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Assuntos
Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Humanos , Ligantes , Ciclotídeos/química , Ciclotídeos/farmacologia , Células HEK293 , Descoberta de Drogas
5.
ChemMedChem ; 19(14): e202400124, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38632079

RESUMO

Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclotídeos/farmacologia , Animais , Relação Estrutura-Atividade , Bicamadas Lipídicas/química , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Fosfatidiletanolaminas/química
6.
Protein Pept Lett ; 31(3): 247-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445693

RESUMO

BACKGROUND: Fungal infections in plants, animals, and humans are widespread across the world. Limited classes of antifungal drugs to treat fungal infections and loss of drug efficacy due to rapidly evolving fungal strains pose a challenge in the agriculture and health sectors. Hence, the search for a new class of antifungal agents is imperative. Cyclotides are cyclic plant peptides with multiple bioactivities, including antifungal activity. They have six conserved cysteine residues forming three disulfide linkages (CI-CIV, CII-CV, CIII-CVI) that establish a Cyclic Cystine Knot (CCK) structure, making them extremely resistant to chemical, enzymatic, and thermal attacks. AIM: This in silico analysis of natural, plant-derived cyclotides aimed to assess the parameters that can assist and hasten the process of selecting the cyclotides with potent antifungal activity and prioritize them for in vivo/ in vitro experiments. OBJECTIVE: The objective of this study was to conduct in silico studies to compare the physicochemical parameters, sequence diversity, surface structures, and membrane-cyclotide interactions of experimentally screened (from literature survey) potent (MIC ≤ 20 µM) and non-potent (MIC > 20 µM) cyclotides for antifungal activity. METHODOLOGY: Cyclotide sequences assessed for antifungal activity were retrieved from the database (Cybase). Various online and offline tools were used for sequence-based studies, such as physicochemical parameters, sequence diversity, and neighbor-joining trees. Structure-based studies involving surface structure analysis and membrane-cyclotide interaction were also carried out. All investigations were conducted in silico. RESULTS: Physicochemical parameter values, viz. isoelectric point, net charge, and the number of basic amino acids, were significantly higher in potent cyclotides compared to non-potent cyclotides. The surface structure of potent cyclotides showed a larger hydrophobic patch with a higher number of hydrophobic amino acids. Furthermore, the membrane-cyclotide interaction studies of potent cyclotides revealed lower transfer free energy (ΔG transfer) and higher penetration depth into fungal membranes, indicating higher binding stability and membrane-disruption ability. CONCLUSION: These in silico studies can be applied for rapidly identifying putatively potent antifungal cyclotides for in vivo and in vitro experiments, which will ultimately be relevant in the agriculture and pharmaceutical sectors.


Assuntos
Antifúngicos , Ciclotídeos , Fungos , Ciclotídeos/química , Ciclotídeos/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Fungos/efeitos dos fármacos , Simulação por Computador , Testes de Sensibilidade Microbiana , Sequência de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia
7.
J Biol Chem ; 300(4): 107125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432638

RESUMO

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.


Assuntos
Ciclotídeos , Oxirredução , Dobramento de Proteína , Ciclotídeos/química , Proteínas de Plantas/química , Sequência de Aminoácidos
8.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317283

RESUMO

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Assuntos
Agricultura , Ciclotídeos , Ciclotídeos/química , Agricultura/métodos , Agentes de Controle Biológico/química , Praguicidas/química , Humanos
9.
Toxicon ; 239: 107606, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181837

RESUMO

Cyclotides, plant-derived cysteine-rich peptides, exhibit a wide range of beneficial biological activities and possess exceptional structural stability. Cyclotides are commonly distributed throughout the Violaceae family. Viola dalatensis Gagnep, a Vietnamese species, has not been well studied, especially for cyclotides. This pioneering research explores cyclotides from V. dalatensis as antimicrobials. This study used a novel approach to enhance cyclotides after extraction. The approach combined 30% ammonium sulfate salt precipitation and RP-HPLC. A comprehensive analysis was performed to ascertain the overall protein content, flavonoids content, polyphenol content, and free radical scavenging capacity of compounds derived from V. dalatensis. Six known cyclotides were sequenced utilizing MS tandem. Semi-purified cyclotide mixtures (M1, M2, and M3) exhibited antibacterial efficacy against Bacillus subtilis (inhibitory diameters: 19.67-23.50 mm), Pseudomonas aeruginosa (22.17-23.50 mm), and Aspergillus flavus (14.67-21.33 mm). The enriched cyclotide precipitate from the stem extract demonstrated a minimum inhibitory concentration (MIC) of 0.08 mg/mL against P. aeruginosa, showcasing significant antibacterial effectiveness compared to the stem extract (MIC: 12.50 mg/mL). Considerable advancements have been achieved in the realm of cyclotides, specifically in their application as antimicrobial agents.


Assuntos
Ciclotídeos , Viola , Ciclotídeos/farmacologia , Ciclotídeos/química , Viola/química , Viola/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Vietnã
10.
Anal Bioanal Chem ; 415(27): 6873-6883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792070

RESUMO

Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.


Assuntos
Ciclotídeos , Viola , Sequência de Aminoácidos , Ciclotídeos/análise , Ciclotídeos/química , Sílica Gel , Microfluídica , Viola/química , Extratos Vegetais
11.
Planta Med ; 89(15): 1493-1504, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748505

RESUMO

Viola tricolor is a medicinal plant with documented application as an anti-inflammatory herb. The standard of care for the treatment of inflammatory bowel disease is immunosuppressive therapeutics or biologics, which often have undesired effects. We explored V. tricolor herbal preparations that are rich in an emerging class of phytochemicals with drug-like properties, so-called cyclotides. As an alternative to existing inflammatory bowel disease medications, cyclotides have immunomodulatory properties, and their intrinsic stability allows for application in the gastrointestinal tract, for instance, via oral administration. We optimized the isolation procedure to improve the yield of cyclotides and compared the cellular effects of violet-derived organic solvent-extracts, aqueous preparations, and an isolated cyclotide from this plant on primary human T lymphocytes and macrophages, i.e., cells that are crucial for the initiation and progression of inflammatory bowel disease. The hot water herbal decoctions have a stronger immunosuppressive activity towards proliferation, interferon-γ, and interleukin-21 secretion of primary human T cells than a DCM/MeOH cyclotide-enriched extract, and the isolated cyclotide kalata S appears as one of the active components responsible for the observed effects. This effect was increased by a longer boiling duration. In contrast, the DCM/MeOH cyclotide-enriched extract was more effective in reducing the levels of cytokines interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α, and C - X-C motif chemokine ligand 10, secreted by human monocyte-derived macrophages. Defined cyclotide preparations of V. tricolor have promising pharmacological effects in modulating immune cell responses at the cytokine levels. This is important towards understanding the role of cyclotide-containing herbal drug preparations for future applications in immune disorders, such as inflammatory bowel disease.


Assuntos
Ciclotídeos , Doenças Inflamatórias Intestinais , Plantas Medicinais , Viola , Humanos , Ciclotídeos/química , Viola/química , Linfócitos T , Extratos Vegetais/farmacologia , Extratos Vegetais/química
12.
Amino Acids ; 55(6): 713-729, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142771

RESUMO

Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.


Assuntos
Ciclotídeos , Ciclotídeos/farmacologia , Ciclotídeos/uso terapêutico , Ciclotídeos/química , Sequência de Aminoácidos , Plantas/metabolismo , Cisteína , Relação Estrutura-Atividade
13.
Transgenic Res ; 32(1-2): 121-133, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930229

RESUMO

Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.


Assuntos
Ciclotídeos , Esclerose Múltipla , Camundongos , Humanos , Animais , Ciclotídeos/genética , Ciclotídeos/química , Ciclotídeos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Austrália , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
14.
Proteins ; 91(2): 256-267, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107799

RESUMO

The archetypal Viola odorata cyclotide cycloviolacin-O1 and its seven analogs, created by partial or total reduction of the three native S-S linkages belonging to the "cyclic cystine knot" (CCK) motif are studied for their structural and dynamical diversities using molecular dynamics simulations. The results indicate interesting interplay between the constraints imposed by the S-S bonds on the dynamical modes and the corresponding structure of the model peptide. Principal component analysis brings out the variation in the extent of dynamical freedom along the peptide backbone for each model. The motions are characterized by low amplitude diffusive modes in the peptides retaining most of the native S-S linkages in contrast to the large amplitude discrete jumps where at least two or all of the three S-S linkages are reduced. Simulation results further indicate that the disulfide bond between Cys1-18 is formed at a much faster pace compared with its two other peers Cys5-20 and Cys10-25 as found in the native peptide. This gives insight as to why the S-S linkages appear in the native peptide in a particular combination. Model therapeutics and drug delivery engines can potentially utilize this information to customize the engineered S-S bonds and gauge its impact on the dynamic flexibility of a model macrocyclic peptide.


Assuntos
Ciclotídeos , Ciclotídeos/química , Cistina/química , Sequência de Aminoácidos , Modelos Moleculares
15.
Nanoscale ; 15(1): 321-336, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484694

RESUMO

Cyclotides are backbone-cyclized peptides of plant origin enriched with disulfide bonds, having exceptional stability towards thermal denaturation and proteolytic degradation. They have a plethora of activities like antibacterial, antifungal, anti-tumor and anti-HIV properties predominantly owing to their selective interaction with certain phospholipids, thereby leading to the disruption of cellular membranes. On the other hand, low-dimensional materials like graphene and hexagonal boron nitride (h-BN) are also known to show membrane-proliferating activities through lipid extraction. A plausible and more effective antibacterial, anti-tumor and antifungal agent would be a composite of these 2D materials and cyclotides, provided the structures of the peptides remain unperturbed upon adsorption and interaction. In this study, classical molecular dynamics simulations are performed to understand the nature of adsorption of cyclotides belonging to different families on graphene and h-BN and analyze the resulting structural changes. It is revealed that, due to their exceptional structural stability, cyclotides maintain their structural integrity upon adsorption on the 2D materials. In addition, the aggregated states of the cyclotides, which are ubiquitous in plant organs, are also not disrupted upon adsorption. Extensive free energy calculations show that the adsorption strength of the cyclotides is moderate in comparison to those of other similar-sized biomolecules, and the larger the size of the aggregates, the weaker the binding of individual peptides with the 2D materials, thereby leading to their lower release times from the materials. It is predicted that graphene and h-BN may safely be used for the preparation of composites with cyclotides, which in turn may be envisaged to be probable candidates for manufacturing next-generation bionano agents for agricultural, antibacterial and therapeutic applications.


Assuntos
Ciclotídeos , Grafite , Humanos , Ciclotídeos/química , Ciclotídeos/uso terapêutico , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Plantas
16.
J Biol Chem ; 298(10): 102413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007611

RESUMO

Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.


Assuntos
Ciclotídeos , Drosophila melanogaster , Inseticidas , Proteínas de Plantas , Violaceae , Animais , Humanos , Sequência de Aminoácidos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Violaceae/química , Eritrócitos/efeitos dos fármacos
17.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36044031

RESUMO

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/química
18.
Sci Rep ; 12(1): 9215, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654807

RESUMO

The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Animais , Ciclotídeos/química , Células HEK293 , Humanos , Ligantes , Camundongos , Extratos Vegetais , Receptor de Colecistocinina B , Sincalida
19.
J Biol Chem ; 298(4): 101822, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283188

RESUMO

Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclotídeos/genética , Ciclotídeos/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Mutagênese , Ligação Proteica/genética
20.
Methods Enzymol ; 663: 19-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168789

RESUMO

Cyclotides are plant host-defense peptides that have a wide range of biological activities and have diverse potential applications in medicine and agriculture. These 27-37 amino acid peptides have a head-to-tail cyclic backbone and are built around a cystine knot core, which makes them exceptionally stable. This stability and their amenability to sequence modifications has made cyclotides attractive scaffolds in drug design, and many synthetic cyclotides have now been designed and synthesized to test their efficacy as leads for a wide range of diseases, including infectious disease, cancer, pain and multiple sclerosis. Additionally, some natural cyclotides are selectively toxic to certain cancer cell lines, opening their potential as anticancer agents, and others have insecticidal activity, with applications in crop protection. With these applications in mind, there is a need to be able to measure cyclotides in pharmaceutical or agrichemical formulations and in biological media such as blood serum, as well as to assess their potential persistence in the environment when used as agrichemical agents. This chapter describes protocols for quantifying cyclotides in biological fluids, measuring their stability, and assessing their relative cytotoxicity on various types of cells.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclotídeos/farmacologia , Desenho de Fármacos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA