Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563891

RESUMO

The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal damage caused by cisplatin. This functional and confocal microscopy study shows the renal focal-segmental expression of TNFα after cisplatin administration in rats, predominantly of tubular localization and mostly prevented by co-administration of cilastatin. FKBP51, AmotL2 and IQGAP1 protein expression increases slightly with cilastatin administration and to a much higher extent with cisplatin, in a cellular- and subcellular-specific manner. Kidney tubule cells expressing FKBP51 show either very low or no expression of TNFα, while cells expressing TNFα have low levels of FKBP51. AmotL2 and TNFα seem to colocalize and their expression is increased in tubular cells. IQGAP1 fluorescence increases with cilastatin, cisplatin and joint cilastatin-cisplatin treatment, and does not correlate with TNFα expression or localization. These data suggest a role for FKBP51, AmotL2 and IQGAP1 in cisplatin toxicity in kidney tubules and in the protective effect of cilastatin through inhibition of dehydropeptidase-I.


Assuntos
Cilastatina , Cisplatino , Angiomotinas , Animais , Proteínas de Transporte/metabolismo , Cilastatina/metabolismo , Cilastatina/farmacologia , Cilastatina/uso terapêutico , Cisplatino/metabolismo , Cisplatino/toxicidade , Humanos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
2.
J Lipid Res ; 59(9): 1561-1574, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30049708

RESUMO

Nephrotoxicity is a major limitation to cisplatin antitumor therapies. Cilastatin, an inhibitor of renal dehydropeptidase-I, was recently proposed as a promising nephroprotector against cisplatin toxicity, preventing apoptotic cell death. In this work, cilastatin nephroprotection was further investigated in a rat model, with a focus on its effect on 76 renal lipids altered by cisplatin, including 13 new cisplatin-altered mitochondrial cardiolipin species. Lipid imaging was performed with MALDI mass spectrometry imaging (MALDI-MSI) in kidney sections from treated rats. Cilastatin was proved to significantly diminish the lipid distribution alterations caused by cisplatin, lipid levels being almost completely recovered to those of control samples. The extent of recovery of cisplatin-altered lipids by cilastatin turned out to be relevant for discriminating direct or secondary lipid alterations driven by cisplatin. Lipid peroxidation induced by cisplatin was also shown to be reduced when cilastatin was administered. Importantly, significant groups separation was achieved during multivariate analysis of cortex and outer-medullary lipids, indicating that damaged kidney can be discerned from the nephroprotected and healthy groups and classified according to lipid distribution. Therefore, we propose MALDI-MSI as a powerful potential tool offering multimolecule detection possibilities to visualize and evaluate nephrotoxicity and nephroprotection based on lipid analysis.


Assuntos
Cilastatina/metabolismo , Cisplatino/efeitos adversos , Rim/efeitos dos fármacos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Imagem Molecular , Animais , Citoproteção/efeitos dos fármacos , Feminino , Rim/diagnóstico por imagem , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Pharmacol Exp Ther ; 334(2): 419-29, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20435919

RESUMO

A major area in cancer therapy is the search for protective strategies against cisplatin-induced nephrotoxicity. We investigated the protective effect of cilastatin on cisplatin-induced injury to renal proximal tubular cells. Cilastatin is a specific inhibitor of renal dehydrodipeptidase I (DHP-I), which prevents hydrolysis of imipenem and its accumulation in the proximal tubule. Primary cultures of proximal cells were treated with cisplatin (1-30 microM) in the presence or absence of cilastatin (200 microg/ml). Apoptosis and mitochondrial injury were assessed by different techniques. Cisplatin uptake and DNA binding were measured by inductively coupled plasma spectrometry. HeLa cells were used to control the effect of cilastatin on the tumoricidal activity of cisplatin. Cisplatin increased cell death, apoptotic-like morphology, caspase activation, and mitochondrial injury in proximal tubular cells in a dose- and time-dependent way. Concomitant treatment with cilastatin reduced cisplatin-induced changes. Cilastatin also reduced the DNA-bound platinum but did not modify cisplatin-dependent up-regulation of death receptors (Fas) or ligands (tumor necrosis factor alpha, Fas ligand). In contrast, cilastatin did not show any effects on cisplatin-treated HeLa cells. Renal DHP-I was virtually absent in HeLa cells. Cilastatin attenuates cisplatin-induced cell death in proximal tubular cells without reducing the cytotoxic activity of cisplatin in tumor cells. Our findings suggest that the affinity of cilastatin for renal dipeptidase makes this effect specific for proximal tubular cells and may be related to a reduction in intracellular drug accumulation. Therefore, cilastatin administration might represent a novel strategy in the prevention of cisplatin-induced acute renal injury.


Assuntos
Antineoplásicos/toxicidade , Cilastatina/farmacologia , Cisplatino/toxicidade , Dipeptidases/antagonistas & inibidores , Túbulos Renais Proximais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cilastatina/metabolismo , DNA/metabolismo , Proteína Ligante Fas/biossíntese , Proteína Ligante Fas/genética , Células HeLa , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/enzimologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , RNA Mensageiro/biossíntese , Suínos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Receptor fas/biossíntese , Receptor fas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA