Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Biochem Pharmacol ; 224: 116229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643904

RESUMO

Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.


Assuntos
Progressão da Doença , Cinesinas , Neoplasias da Próstata , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Cinesinas/fisiologia , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais
2.
Proc Natl Acad Sci U S A ; 119(33): e2206398119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960844

RESUMO

During cell division, cross-linking motors determine the architecture of the spindle, a dynamic microtubule network that segregates the chromosomes in eukaryotes. It is unclear how motors with opposite directionality coordinate to drive both contractile and extensile behaviors in the spindle. Particularly, the impact of different cross-linker designs on network self-organization is not understood, limiting our understanding of self-organizing structures in cells but also our ability to engineer new active materials. Here, we use experiment and theory to examine active microtubule networks driven by mixtures of motors with opposite directionality and different cross-linker design. We find that although the kinesin-14 HSET causes network contraction when dominant, it can also assist the opposing kinesin-5 KIF11 to generate extensile networks. This bifunctionality results from HSET's asymmetric design, distinct from symmetric KIF11. These findings expand the set of rules underlying patterning of active microtubule assemblies and allow a better understanding of motor cooperation in the spindle.


Assuntos
Cinesinas , Microtúbulos , Proteínas Oncogênicas , Fuso Acromático , Divisão Celular , Humanos , Cinesinas/química , Cinesinas/fisiologia , Microtúbulos/química , Microtúbulos/fisiologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/fisiologia , Fuso Acromático/química , Fuso Acromático/fisiologia
3.
Sci Rep ; 12(1): 3081, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197505

RESUMO

Microtubules and kinesin motor proteins are involved in intracellular transports in living cells. Such intracellular material transport systems can be reconstructed for utilisation in synthetic environments, and they are called molecular shuttles driven by kinesin motors. The performance of the molecular shuttles depends on the nature of their trajectories, which can be characterized by the path persistence length of microtubules. It has been theoretically predicted that the path persistence length should be equal to the filament persistence length of the microtubules, where the filament persistence length is a measure of microtubule flexural stiffness. However, previous experiments have shown that there is a significant discrepancy between the path and filament persistence lengths. Here, we showed how this discrepancy arises by using computer simulation. By simulating molecular shuttle movements under external forces, the discrepancy between the path and filament persistence lengths was reproduced as observed in experiments. Our close investigations of molecular shuttle movements revealed that the part of the microtubules bent due to the external force was extended more than it was assumed in the theory. By considering the extended length, we could elucidate the discrepancy. The insights obtained here are expected to lead to better control of molecular shuttle movements.


Assuntos
Cinesinas/fisiologia , Microtúbulos/fisiologia , Proteínas Motores Moleculares/fisiologia , Transporte Biológico , Simulação por Computador , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Fenômenos Mecânicos , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo
4.
Mol Biol Cell ; 33(1): br1, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705483

RESUMO

The kinesin-4 motor KIF7 is a conserved regulator of the Hedgehog signaling pathway. In vertebrates, Hedgehog signaling requires the primary cilium, and KIF7 and Gli transcription factors accumulate at the cilium tip in response to Hedgehog activation. Unlike conventional kinesins, KIF7 is an immotile kinesin and its mechanism of ciliary accumulation is unknown. We generated KIF7 variants with altered microtubule binding or motility. We demonstrate that microtubule binding of KIF7 is not required for the increase in KIF7 or Gli localization at the cilium tip in response to Hedgehog signaling. In addition, we show that the immotile behavior of KIF7 is required to prevent ciliary localization of Gli transcription factors in the absence of Hedgehog signaling. Using an engineered kinesin-2 motor that enables acute inhibition of intraflagellar transport, we demonstrate that kinesin-2 KIF3A/KIF3B/KAP mediates the translocation of KIF7 to the cilium tip in response to Hedgehog pathway activation. Together, these results suggest that KIF7's role at the tip of the cilium is unrelated to its ability to bind to microtubules.


Assuntos
Cílios/metabolismo , Cinesinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Hedgehog/metabolismo , Cinesinas/genética , Cinesinas/fisiologia , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Ligação Proteica , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
5.
Front Immunol ; 12: 711145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659201

RESUMO

Background: Glycolytic effects and immune microenvironments play important roles in the development of melanoma. However, reliable biomarkers for prognostic prediction of melanoma as based on glycolysis and immune status remain to be identified. Methods: Glycolysis-related genes (GRGs) were obtained from the Molecular Signatures database and immune-related genes (IRGs) were downloaded from the ImmPort dataset. Prognostic GRGs and IRGs in the TCGA (The Cancer Genome Atlas) and GSE65904 datasets were identified. Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used for model construction. Glycolysis expression profiles and the infiltration of immune cells were analyzed and compared. Finally, in vitro experiments were performed to assess the expression and function of these CIGI genes. Results: Four prognostic glycolysis- and immune-related signatures (SEMA4D, IFITM1, KIF20A and GPR87) were identified for use in constructing a comprehensive glycolysis and immune (CIGI) model. CIGI proved to be a stable, predictive method as determined from different datasets and subgroups of patients and served as an independent prognostic factor for melanoma patients. In addition, patients in the high-CIGI group showed increased levels of glycolytic gene expressions and exhibited immune-suppressive features. Finally, SEMA4D and IFITM1 may function as tumor suppressor genes, while KIF20A and GPR87 may function as oncogenes in melanoma as revealed from results of in vitro experiments. Conclusion: In this report we present our findings on the development and validation of a novel prognostic classifier for use in patients with melanoma as based on glycolysis and immune expression profiles.


Assuntos
Glicólise , Melanoma/imunologia , Células Cultivadas , Humanos , Cinesinas/genética , Cinesinas/fisiologia , Melanoma/metabolismo , Melanoma/mortalidade , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/fisiologia , Microambiente Tumoral
6.
Mol Biol Cell ; 32(21): ar29, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432485

RESUMO

Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.


Assuntos
Cinesinas/metabolismo , Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Animais , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Feminino , Queratinócitos/metabolismo , Cinesinas/fisiologia , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Mitose , Cultura Primária de Células , Fuso Acromático/metabolismo
7.
Commun Biol ; 4(1): 552, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976373

RESUMO

During mammalian brain development, neural progenitor cells proliferate extensively but can ensure the production of correct numbers of various types of mature cells by balancing symmetric proliferative versus asymmetric differentiative cell divisions. This process of cell fate determination may be harnessed for developing cancer therapy. Here, we test this idea by targeting KIF20A, a mitotic kinesin crucial for the control of cell division modes, in a genetic model of medulloblastoma (MB) and human MB cells. Inducible Kif20a knockout in both normal and MB-initiating granule neuron progenitors (GNPs) causes early cell cycle exit and precocious neuronal differentiation without causing cytokinesis failure and suppresses the development of Sonic Hedgehog (SHH)-activated MB. Inducible KIF20A knockdown in human MB cells inhibits proliferation both in cultures and in growing tumors. Our results indicate that targeting the fate specification process of nascent daughter cells presents a novel avenue for developing anti-proliferation treatment for malignant brain tumors.


Assuntos
Cinesinas/metabolismo , Meduloblastoma/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Cinesinas/genética , Cinesinas/fisiologia , Meduloblastoma/fisiopatologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo
8.
Cancer Lett ; 506: 1-10, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33652084

RESUMO

Treatment of aggressive meningiomas remains challenging due to a high rate of recurrence in higher-grade meningiomas, frequent subtotal resections, and the lack of effective systemic treatments. Substantial overexpression associated with a poor prognosis has been demonstrated for kinesin family member 11 (KIF11) in high-grade meningiomas. Due to anti-tumor activity for KIF11 inhibitors (KIF11i) filanesib and ispinesib in other cancer types, we sought to investigate their mode of action and efficacy for the treatment of aggressive meningiomas. Dose curve analysis of both KIF11i revealed IC50 values of less than 1 nM in anaplastic and benign meningioma cell lines. Both compounds induced G2/M arrest and subsequent subG1 increase in all cell lines. Profound induction of apoptosis was detected in the anaplastic cell lines determined by annexin V staining. KIF11i significantly inhibited meningioma growth in xenotransplanted mice by up to 83%. Furthermore, both drugs induced minor hematological side effects, which were less pronounced for filanesib. We identified substantial in vitro and in vivo anti-tumor effects of the KIF11 inhibitors filanesib and ispinesib, with filanesib demonstrating better tolerability, suggesting future use of filanesib for the treatment of aggressive meningioma.


Assuntos
Benzamidas/farmacologia , Cinesinas/antagonistas & inibidores , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Quinazolinas/farmacologia , Tiadiazóis/farmacologia , Animais , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Cinesinas/fisiologia , Neoplasias Meníngeas/patologia , Meningioma/patologia , Camundongos , Quinazolinas/uso terapêutico , Tiadiazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Biol Sci ; 17(2): 514-526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613109

RESUMO

Proliferation is one of the significant hallmarks of gallbladder cancer, which is a relatively rare but fatal malignance. Aim of this study was to examine the biological impact and molecular mechanism of the candidate hub-gene on the proliferation and tumorigenesis of gallbladder cancer. We analyzed the differentially expressed genes and the correlation between these genes with MKI67, and showed that KIF11 is one of the major upregulated regulators of proliferation in gallbladder cancer (GBC). The Gene Ontology, Gene Sets Enrichment Analysis and KEGG Pathway analysis indicated that KIF11 may promote GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. Gain-of-function and loss-of-function assay demonstrated that KIF11 regulated GBC cell cycle and cancer cell proliferation in vitro. GBC cells exhibited G2M phase cell cycle arrest, cell proliferation and clone formation ability reduction after treatment with Monastrol, a specific inhibitor of KIF11. Xenograft model showed that KIF11 promotes GBC growth in vivo. Rescue experiments showed that KIF11-induced GBC cell proliferation dependented on ERBB2/PI3K/AKT pathway. Moreover, we found that H3K27ac signals are enriched among the promoter region of KIF11 in the UCSC Genome Browser Database. Differentially expressed analysis showed that EP300, a major histone acetyltransferase modifying H3K27ac signal, is highly expressed in gallbladder cancer and correlation analysis illustrated that EP300 is positively related with KIF11 in almost all the cancer types. We further found that KIF11 was significantly downregulated in a dose-dependent and time-dependent manner after histone acetylation inhibitor treatment. The present results highlight that high KIF11 expression promotes GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. The findings may help deepen our understanding of mechanism underlying GBC cancer development and development of novel diagnostic and therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células/fisiologia , Neoplasias da Vesícula Biliar/patologia , Cinesinas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Acetilação , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias da Vesícula Biliar/metabolismo , Xenoenxertos , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Pirimidinas/farmacologia , Tionas/farmacologia
10.
Cancer Res ; 81(4): 1026-1039, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33277366

RESUMO

The new generation androgen receptor (AR) pathway inhibitor enzalutamide can prolong the survival of patients with metastatic prostate cancer. However, resistance to enzalutamide inevitably develops in these patients, and the underlying mechanisms of this resistance are not fully defined. Here we demonstrate that the kinesin family member 15 (KIF15) contributes to enzalutamide resistance by enhancing the AR signaling in prostate cancer cells. KIF15 directly bound the N-terminus of AR/AR-V7 and prevented AR/AR-V7 proteins from degradation by increasing the protein association of ubiquitin-specific protease 14 (USP14) with AR/AR-V7. In turn, the transcriptionally active AR stimulated KIF15 expression. KIF15 inhibitors alone or in combination with enzalutamide significantly suppressed enzalutamide-resistant prostate cancer cell growth and xenograft progression. These findings highlight a key role of KIF15 in enabling prostate cancer cells to develop therapy resistance to enzalutamide and rationalize KIF15 as a potential therapeutic target. SIGNIFICANCE: These findings demonstrate how reciprocal activation between KIF15 and AR contributes to enzalutamide resistance in prostate cancer and highlights cotargeting KIF15 and AR as a therapeutic strategy for these tumors.


Assuntos
Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Cinesinas/fisiologia , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Células HEK293 , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteólise , Receptores Androgênicos/química , Receptores Androgênicos/genética
11.
J Neurosci ; 40(48): 9169-9185, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097641

RESUMO

Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting.SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.


Assuntos
Axônios/fisiologia , Cinesinas/fisiologia , Proteínas de Membrana/fisiologia , Miosinas/fisiologia , Netrina-1/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Receptor DCC/genética , Receptor DCC/fisiologia , Feminino , Cinesinas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosinas/genética , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Netrina-1/genética , Gravidez
12.
Sci Rep ; 10(1): 13864, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807823

RESUMO

Armadillo (Arm) is crucial for transducing Wingless (Wg) signaling. Previously, we have shown that Klp64D, a motor subunit of Drosophila kinesin-II, interacts with Arm for Wg signaling. Molecular basis for this interaction has remained unknown. Here we identify a critical Arm repeat (AR) required for binding Klp64D and Wg signaling. Arm/[Formula: see text]-catenin family proteins contain a conserved domain of 12 Arm repeats (ARs). Five of these ARs can interact with Klp64D, but only the second AR (AR2) binds to the cargo/tail domain of Klp64D. Overexpression of AR2 in wing imaginal disc is sufficient to cause notched wing margin. This phenotype by AR2 is enhanced or suppressed by reducing or increasing Klp64D expression, respectively. AR2 overexpression inhibits Wg signaling activity in TopFlash assay, consistent with its dominant-negative effects on Klp64D-dependent Wg signaling. Overexpression of the Klp64D cargo domain also results in dominant-negative wing notching. Genetic rescue data indicate that both AR2 and Klp64D cargo regions are required for the function of Arm and Klp64D, respectively. AR2 overexpression leads to an accumulation of Arm with GM130 Golgi marker in Klp64D knockdown. This study suggests that Wg signaling for wing development is regulated by specific interaction between AR2 and the cargo domain of Klp64D.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/genética , Animais , Drosophila/genética , Genes de Insetos , Cinesinas/fisiologia , Via de Sinalização Wnt
13.
Mol Biol Cell ; 31(12): 1246-1258, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267197

RESUMO

The orientation of microtubule (MT) networks is exploited by motors to deliver cargoes to specific intracellular destinations and is thus essential for cell polarity and function. Reconstituted in vitro systems have largely contributed to understanding the molecular framework regulating the behavior of MT filaments. In cells, however, MTs are exposed to various biomechanical forces that might impact on their orientation, but little is known about it. Oocytes, which display forceful cytoplasmic streaming, are excellent model systems to study the impact of motion forces on cytoskeletons in vivo. Here we implement variational optical flow analysis as a new approach to analyze the polarity of MTs in the Drosophila oocyte, a cell that displays distinct Kinesin-dependent streaming. After validating the method as robust for describing MT orientation from confocal movies, we find that increasing the speed of flows results in aberrant plus end growth direction. Furthermore, we find that in oocytes where Kinesin is unable to induce cytoplasmic streaming, the growth direction of MT plus ends is also altered. These findings lead us to propose that cytoplasmic streaming - and thus motion by advection - contributes to the correct orientation of MTs in vivo. Finally, we propose a possible mechanism for a specialized cytoplasmic actin network (the actin mesh) to act as a regulator of flow speeds to counteract the recruitment of Kinesin to MTs.


Assuntos
Cinesinas/metabolismo , Microtúbulos/fisiologia , Oócitos/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Polaridade Celular , Citoplasma/metabolismo , Corrente Citoplasmática/fisiologia , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Feminino , Cinesinas/fisiologia , Fenômenos Mecânicos , Microtúbulos/metabolismo , Fluxo Óptico , Orientação Espacial/fisiologia
14.
J Neurochem ; 155(1): 10-28, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196676

RESUMO

One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.


Assuntos
Dendritos , Complexo Dinactina/fisiologia , Dineínas/fisiologia , Cinesinas/fisiologia , Neurônios Motores/fisiologia , Animais , Humanos , Neurogênese/fisiologia , Fosforilação
15.
Mol Biol Cell ; 31(16): 1802-1814, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32129712

RESUMO

How cells position their organelles is a fundamental biological question. During Drosophila embryonic muscle development, multiple nuclei transition from being clustered together to splitting into two smaller clusters to spreading along the myotube's length. Perturbations of microtubules and motor proteins disrupt this sequence of events. These perturbations do not allow intuiting which molecular forces govern the nuclear positioning; we therefore used computational screening to reverse-engineer and identify these forces. The screen reveals three models. Two suggest that the initial clustering is due to nuclear repulsion from the cell poles, while the third, most robust, model poses that this clustering is due to a short-ranged internuclear attraction. All three models suggest that the nuclear spreading is due to long-ranged internuclear repulsion. We test the robust model quantitatively by comparing it with data from perturbed muscle cells. We also test the model using agent-based simulations with elastic dynamic microtubules and molecular motors. The model predicts that, in longer mammalian myotubes with a large number of nuclei, the spreading stage would be preceded by segregation of the nuclei into a large number of clusters, proportional to the myotube length, with a small average number of nuclei per cluster.


Assuntos
Núcleo Celular/fisiologia , Drosophila melanogaster/embriologia , Microtúbulos/metabolismo , Animais , Transporte Biológico , Núcleo Celular/metabolismo , Análise por Conglomerados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Dineínas/fisiologia , Cinesinas/metabolismo , Cinesinas/fisiologia , Microtúbulos/fisiologia , Modelos Biológicos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Miosinas/metabolismo
16.
PLoS One ; 15(2): e0228930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053680

RESUMO

Intraflagellar transport (IFT) in C. elegans chemosensory cilia is an example of functional coordination and cooperation of two motor proteins with distinct motility properties operating together in large groups to transport cargoes: a fast and processive homodimeric kinesin-2, OSM-3, and a slow and less processive heterotrimeric kinesin-2, kinesin-II. To study the mechanism of the collective dynamics of kinesin-II of C. elegans cilia in an in vitro system, we used Total Internal Reflection Fluorescence microscopy to image the motility of truncated, heterodimeric kinesin-II constructs at high motor densities. Using an analysis technique based on correlation of the fluorescence intensities, we extracted quantitative motor parameters, such as motor density, velocity and average run length, from the image. Our experiments and analyses show that kinesin-II motility parameters are far less affected by (self) crowding than OSM-3. Our observations are supported by numerical calculations based on the TASEP-LK model (Totally Asymmetric Simple Exclusion Process-Langmuir Kinetics). From a comparison of data and modelling of OSM-3 and kinesin-II, a general picture emerges of the collective dynamics of the kinesin motors driving IFT in C. elegans chemosensory cilia and the way the motors deal with crowding.


Assuntos
Cílios/metabolismo , Cinesinas/metabolismo , Cinesinas/fisiologia , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Cinética , Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo , Transporte Proteico
17.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075931

RESUMO

Alphaherpesviruses, including pseudorabies virus (PRV), are neuroinvasive pathogens that establish lifelong latency in peripheral ganglia following the initial infection at mucosal surfaces. The establishment of latent infection and subsequent reactivations, during which newly assembled virions are sorted into and transported anterogradely inside axons to the initial mucosal site of infection, rely on axonal bidirectional transport mediated by microtubule-based motors. Previous studies using cultured peripheral nervous system (PNS) neurons have demonstrated that KIF1A, a kinesin-3 motor, mediates the efficient axonal sorting and transport of newly assembled PRV virions. Here we report that KIF1A, unlike other axonal kinesins, is an intrinsically unstable protein prone to proteasomal degradation. Interestingly, PRV infection of neuronal cells leads not only to a nonspecific depletion of KIF1A mRNA but also to an accelerated proteasomal degradation of KIF1A proteins, leading to a near depletion of KIF1A protein late in infection. Using a series of PRV mutants deficient in axonal sorting and anterograde spread, we identified the PRV US9/gE/gI protein complex as a viral factor facilitating the proteasomal degradation of KIF1A proteins. Moreover, by using compartmented neuronal cultures that fluidically and physically separate axons from cell bodies, we found that the proteasomal degradation of KIF1A occurs in axons during infection. We propose that the PRV anterograde sorting complex, gE/gI/US9, recruits KIF1A to viral transport vesicles for axonal sorting and transport and eventually accelerates the proteasomal degradation of KIF1A in axons.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens herpes simplex viruses 1 and 2 and varicella-zoster virus. Alphaherpesviruses are neuroinvasive pathogens that establish lifelong latent infections in the host peripheral nervous system (PNS). Following reactivation from latency, infection spreads from the PNS back via axons to the peripheral mucosal tissues, a process mediated by kinesin motors. Here, we unveil and characterize the underlying mechanisms for a PRV-induced, accelerated degradation of KIF1A, a kinesin-3 motor promoting the sorting and transport of PRV virions in axons. We show that PRV infection disrupts the synthesis of KIF1A and simultaneously promotes the degradation of intrinsically unstable KIF1A proteins by proteasomes in axons. Our work implies that the timing of motor reduction after reactivation would be critical because progeny particles would have a limited time window for sorting into and transport in axons for further host-to-host spread.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Cinesinas/metabolismo , Pseudorraiva/metabolismo , Animais , Transporte Axonal/fisiologia , Axônios/virologia , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/fisiologia , Masculino , Microtúbulos/metabolismo , Neurônios/virologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Proteínas do Envelope Viral/genética , Vírion/metabolismo
18.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31919497

RESUMO

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Assuntos
Comportamento Animal , Cinesinas/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Mutação , Neurônios/patologia , Proteínas Repressoras/fisiologia , Animais , Masculino , Malformações do Desenvolvimento Cortical/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
19.
Elife ; 92020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31951198

RESUMO

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.


DNA can be damaged in many ways, and a double strand break is one of the most dangerous. This occurs when both strands of the double helix snap at the same time, leaving two broken ends. When cells detect this kind of damage, they race to get it fixed as quickly as possible. Fixing these double strand breaks is thought to involve the broken ends being moved to 'repair centers' in the nucleus of the cell, but it was unclear how the broken ends were moved. One possibility was that the cells transport the broken ends along protein filaments called microtubules. Cells can assemble these track-like filaments on-demand to carry cargo attached to molecular motors called kinesins. However, this type of transport happens outside of the cell's nucleus, and while there are different kinesin proteins localized inside the nucleus, their roles are largely unknown. In an effort to understand how broken DNA ends are repaired, Zhu, Paydar et al. conducted experiments that simulated double strand breaks and examined the proteins that responded. The first set of experiments involved mixing cut pieces of DNA with extracts taken from frog eggs or human cells. Zhu, Paydar et al. found that one kinesin called Kif2C stuck to the DNA fragments, and attached to many proteins known to play a role in DNA damage repair. Kif2C had previously been shown to help separate the chromosomes during cell division. To find out more about its potential role in DNA repair, Zhu, Paydar et al. then used a laser to create breaks in the DNA of living human cells and tracked Kif2C movement. The kinesin arrived within 60 seconds of the DNA damage and appeared to transport the cut DNA ends to 'repair centers'. Getting rid of Kif2C, or blocking its activity, had dire effects on the cells' abilities to mobilize and repair breaks to its DNA. Without the molecular motor, fewer double strand breaks were repaired, and so DNA damage started to build up. Defects in double strand break repair happen in many human diseases, including cancer. Many cancer treatments damage the DNA of cancer cells, sometimes in combination with drugs that stop cells from building and using their microtubule transport systems. Understanding the new role of Kif2C in DNA damage repair could therefore help optimize these treatment combinations.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Cinesinas/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microtúbulos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Xenopus
20.
Mol Cell Biol ; 40(8)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31964755

RESUMO

Kinesin motors provide the molecular forces at the kinetochore-microtubule interface and along the spindle to control chromosome segregation. During meiosis with two rounds of microtubule assembly-disassembly, the roles of motor proteins remain unexplored. We observed that in contrast to mitosis, Cin8 and Kip3 together are indispensable for meiosis. While examining meiosis in cin8Δ kip3Δ cells, we detected chromosome breakage in the meiosis II cells. The double mutant exhibits a delay in cohesin removal during anaphase I. Consequently, some cells fail to undergo meiosis II and form dyads, while some, as they progress through meiosis II, cause a defect in chromosome integrity. We believe that in the latter cells, an imbalance of spindle-mediated force and the simultaneous persistence of cohesin on chromosomes cause their breakage. We provide evidence that tension generated by Cin8 and Kip3 through microtubule cross-linking is essential for signaling efficient cohesin removal and the maintenance of chromosome integrity during meiosis.


Assuntos
Cinesinas/metabolismo , Meiose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Cinesinas/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA