Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.279
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719748

RESUMO

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Assuntos
Dineínas , Ligação Proteica , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Dineínas/metabolismo , Dineínas/química , Sítios de Ligação , Cinesinas/metabolismo , Cinesinas/química , Cinesinas/genética , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Transporte Proteico , Modelos Moleculares , Guanosina Trifosfato/metabolismo
2.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713252

RESUMO

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Assuntos
Proteína Quinase CDC2 , Ciclina B1 , Proteínas de Ligação a DNA , Progressão da Doença , Cinesinas , Camundongos Nus , Mieloma Múltiplo , Fosfatases cdc25 , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Animais , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Camundongos , Feminino , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Masculino , Ciclina B1/metabolismo , Ciclina B1/genética , Proliferação de Células , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Prognóstico , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Camundongos Endogâmicos BALB C
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 665-672, 2024 May 06.
Artigo em Chinês | MEDLINE | ID: mdl-38715507

RESUMO

To investigate the expression of mRNA in esophageal cancer (ESCA) tissues and its potential and diagnostic and prognostic value by high-throughput sequencing data. Using the Cancer Genome Atlas Program (TCGA) database in USA by integrative bioinformatics analysis methods, the gene expression profiles and clinical data of 173 patients with ECSA were collected. The mRNA expression levels in ESCA tissue and para-cancerous tissue samples were analyzed using DESeq2, edgeR and limma to screen the differentially expressed genes (DEGs). DEGs-related protein network diagrams were drawn. GO and KEGG function enrichment analysis were performed and the hub genes were screened and the survival analysis of hub genes was analyzed. Genes related to the prognosis of ESCA were selected and their prognostic value in ESCA was analyzed. Finally, the receiver operating characteristic curve was drawn to evaluate its diagnostic value. The results showed that using TCGA cancer data, a total of 620 up-regulated DEGs and 668 down-regulated DEGs with significant differential expression between ESCA and para-cancerous tissues were screened. DEGs were mainly involved in receptor complexes, ubiquitin ligase complexes, etc., playing GTPase activity, phospholipid binding, and other molecular functions, and participating in the regulation of intracellular substance transport, small molecule metabolism, and other biological processes. Protein functional enrichment analysis showed that these proteins were mainly enriched in the IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, Epstein-Barr virus infection, neutrophil extracellular trap formation, and other pathways involved in the formation and development process of ESCA. Survival analysis showed that the overall survival rate of ESCA patients with high expression of KIF4A, RAD51AP1, and CDKN3 was significantly shortened, and the difference was statistically significant (P<0.05). Furthermore, the areas under the curve (AUC) of KIF4A, RAD51AP1, and CDKN3 for diagnosing esophageal cancer were 0.956, 0.951 and 0.979, respectively, with sensitivities and specificities both exceeding 80%. Additionally, ROC results of the combined diagnostic model of these three genes showed an AUC of 0.979, with sensitivities and specificities of 0.914 and 1, respectively. This indicates that KIF4A, RAD51AP1 and CDKN3 have individual or combined auxiliary diagnostic value for ESCA. In conclusion, KIF4A, RAD51AP1 and CDKN3 have high diagnostic efficiency for ESCA, and their increased expression is closely related to the prognosis, suggesting that these three genes could be used as auxiliary diagnostic and prognostic factors for ESCA.


Assuntos
Neoplasias Esofágicas , Cinesinas , Humanos , Prognóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapas de Interação de Proteínas , Proteínas de Ligação a RNA
4.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
5.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669326

RESUMO

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Assuntos
Cerebelo , Cerebelo/anormalidades , Proteínas Hedgehog , Cinesinas , Malformações do Sistema Nervoso , Células de Purkinje , Animais , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Células de Purkinje/metabolismo , Transdução de Sinais , Proliferação de Células , Camundongos Knockout , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Deficiências do Desenvolvimento
6.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675612

RESUMO

Kinesin-14s, a subfamily of the large superfamily of kinesin motor proteins, function mainly in spindle assembly and maintenance during mitosis and meiosis. KlpA from Aspergillus nidulans and GiKIN14a from Giardia intestinalis are two types of kinesin-14s. Available experimental results puzzlingly showed that while KlpA moves preferentially toward the minus end in microtubule-gliding setups and inside parallel microtubule overlaps, it moves preferentially toward the plus end on single microtubules. More puzzlingly, the insertion of an extra polypeptide linker in the central region of the neck stalk switches the motility direction of KlpA on single microtubules to the minus end. Prior experimental results showed that GiKIN14a moves preferentially toward the minus end on single microtubules in either tailless or full-length forms. The tail not only greatly enhances the processivity but also accelerates the ATPase rate and velocity of GiKIN14a. The insertion of an extra polypeptide linker in the central region of the neck stalk reduces the ATPase rate of GiKIN14a. However, the underlying mechanism of these puzzling dynamical features for KlpA and GiKIN14a is unclear. Here, to understand this mechanism, the dynamics of KlpA and GiKIN14a were studied theoretically on the basis of the proposed model, incorporating potential changes between the kinesin head and microtubule, as well as the potential between the tail and microtubule. The theoretical results quantitatively explain the available experimental results and provide predicted results. It was found that the elasticity of the neck stalk determines the directionality of KlpA on single microtubules and affects the ATPase rate and velocity of GiKIN14a on single microtubules.


Assuntos
Cinesinas , Microtúbulos , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Modelos Moleculares , Aspergillus nidulans/metabolismo
7.
Nat Commun ; 15(1): 3456, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658528

RESUMO

Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Caenorhabditis elegans/metabolismo , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas/metabolismo , Transporte Biológico , Imagem Individual de Molécula , Transporte Proteico
8.
J Phys Chem Lett ; 15(14): 3893-3899, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563569

RESUMO

Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.


Assuntos
Trifosfato de Adenosina , Cinesinas , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Cinética
9.
Biomolecules ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672404

RESUMO

Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.


Assuntos
Cinesinas , Mitose , Neoplasias , Cinesinas/metabolismo , Cinesinas/genética , Humanos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Regulação Neoplásica da Expressão Gênica , Fuso Acromático/metabolismo , Fuso Acromático/genética
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 116-124, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650144

RESUMO

It has been shown that kinesin family member 20A (KIF20A) is involved in the development of several cancers. However, research on clear cell renal cell carcinoma (ccRCC) and KIF20A is still exploratory. The current research was carried out to determine whether KIF20A expression has any prognosis value in ccRCC. Data were downloaded from The Cancer Genome Atlas (TCGA) database to validate the KIF20A mRNA expression and to perform clinicopathological analysis. Receiver operating characteristic (ROC) curves were used in evaluating KIF20A's diagnostic performance for ccRCC. The prognostic value of KIF20A in ccRCC was estimated by the Kaplan-Meier survival curve and Cox regression analysis. Gene set enrichment analysis (GSEA), functional annotations, and immune infiltration analysis were used to determine the potential mechanism of KIF20A's role in ccRCC. The increase in KIF20A mRNA expression was associated with sex, clinical stage, histologic grade, and TNM stage. ROC curve indicated that KIF20A could distinguish ccRCC from normal kidney samples. Survival study showed that high KIF20A expression predicted poor ccRCC prognosis. Thus, KIF20A expression could be used as an independent overall survival (OS) risk factor for ccRCC patients. Co-expression analysis identified TPX2 as a strong, positively correlated factor with KIF20A in ccRCC. Functional enrichment analyses and GSEA showed that KIF20A and TPX2 participated in various tumor-related pathways. Moreover, KIF20A and TPX2 expression were significantly associated with the level of immune infiltration into ccRCC. KIF20A may be a therapeutic target and a prognostic biomarker for ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Estimativa de Kaplan-Meier , Neoplasias Renais , Cinesinas , Proteínas Associadas aos Microtúbulos , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Cinesinas/genética , Cinesinas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Biologia Computacional/métodos , Neoplasias Renais/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Curva ROC , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Mol Biol Cell ; 35(6): ar84, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598297

RESUMO

The spindle is a bipolar microtubule-based machine that is crucial for accurate chromosome segregation. Spindle bipolarity is generated by Eg5 (a kinesin-5), a conserved motor that drives spindle assembly by localizing to and sliding apart antiparallel microtubules. In the presence of Eg5 inhibitors (K5Is), KIF15 (a kinesin-12) can promote spindle assembly, resulting in K5I-resistant cells (KIRCs). However, KIF15 is a less potent motor than Eg5, suggesting that other factors may contribute to spindle formation in KIRCs. Protein Regulator of Cytokinesis 1 (PRC1) preferentially bundles antiparallel microtubules, and we previously showed that PRC1 promotes KIF15-microtubule binding, leading us to hypothesize that PRC1 may enhance KIF15 activity in KIRCs. Here, we demonstrate that: 1) loss of PRC1 in KIRCs decreases spindle bipolarity, 2) overexpression of PRC1 increases spindle formation efficiency in KIRCs, 3) overexpression of PRC1 protects K5I naïve cells against the K5I S-trityl-L-cysteine (STLC), and 4) PRC1 overexpression promotes the establishment of K5I resistance. These effects are not fully reproduced by a TPX2, a microtubule bundler with no known preference for microtubule orientation. These results suggest a model wherein PRC1-mediated bundling of microtubules creates a more favorable microtubule architecture for KIF15-driven mitotic spindle assembly in the context of Eg5 inhibition.


Assuntos
Cinesinas , Microtúbulos , Fuso Acromático , Cinesinas/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Células HeLa , Segregação de Cromossomos
12.
Arch Biochem Biophys ; 756: 109998, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641233

RESUMO

The kinesin-5 family member, Eg5, plays very important role in the mitosis. As a mitotic protein, Eg5 is the target of various mitotic inhibitors. There are two targeting pockets in the motor domain of Eg5, which locates in the α2/L5/α3 region and the α4/α6 region respectively. We investigated the interactions between the different inhibitors and the two binding pockets of Eg5 by using all-atom molecular dynamics method. Combined the conformational analysis with the free-energy calculation, the binding patterns of inhibitors to the two binding pockets are shown. The α2/L5/α3 pocket can be divided into 4 regions. The structures and binding conformations of inhibitors in region 1 and 2 are highly conserved. The shape of α4/α6 pocket is alterable. The space of this pocket in ADP-binding state of Eg5 is larger than that in ADP·Pi-binding state due to the limitation of a hydrogen bond formed in the ADP·Pi-binding state. The results of this investigation provide the structural basis of the inhibitor-Eg5 interaction and offer a reference for the Eg5-targeted drug design.


Assuntos
Cinesinas , Simulação de Dinâmica Molecular , Ligação Proteica , Cinesinas/antagonistas & inibidores , Cinesinas/química , Cinesinas/metabolismo , Sítios de Ligação , Humanos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Ligação de Hidrogênio
13.
J Comput Aided Mol Des ; 38(1): 16, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556596

RESUMO

The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.


Assuntos
Cinesinas , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Cinesinas/metabolismo , Ligantes , Mitose
14.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446308

RESUMO

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Cinesinas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno
15.
Int Immunopharmacol ; 131: 111613, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489970

RESUMO

BACKGROUND: Bladder cancer (BCa) is a common malignant disease with high recurrence and poor prognosis. Several circular RNAs (circRNAs) have been found to be associated with the malignant progression of bladder cancer (BCa). Here, the aim of this study was to investigate the expression, role and mechanism of circRAPGEF5 in BCa progression. METHODS: Quantitative real-time PCR (qRT-PCR) and immunoblotting were used to detect gene and protein expression levels. In vitro functional studies were performed using CCK-8, colony formation, wound healing and Transwell assays, respectively, and a mouse xenograft tumor model was established to perform in vivo experiments. Bioinformatic predictions as well as luciferase reporter assays and RNA pull-down assays were used to probe circRAPGEF5-mediated competitive endogenous RNA (ceRNA) network. RESULTS: CircRAPGEF5 was significantly overexpressed in BCa patients (p < 0.05), indicating a potential unsatisfactory prognosis. Functionally, knockdown of circRAPGEF5 inhibited the growth, migration and invasion of BCa cells in vitro (p < 0.05), as well as BCa growth in vivo (p < 0.05). Mechanistically, circRAPGEF5 acted as a sponge for miR-582-3p and targeted kinesin family member 3A (KIF3A). In addition, rescue experiments showed that inhibition of miR-582-3p or overexpression of KIF3A reversed the anticancer effects of circRAPGEF5 knockdown on BCa cells (p < 0.05). CONCLUSION: Silencing circRAPGEF5 inhibits BCa proliferation, migration and invasion via the miR-582-3p/KIF3A axis, demonstrating a promising target for BCa-targeted therapy.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA Circular/metabolismo
16.
Cell Death Dis ; 15(3): 222, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493150

RESUMO

Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.


Assuntos
Centrossomo , Neoplasias , Humanos , Ciclo Celular , Morte Celular , Centrossomo/metabolismo , Análise por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitose , Neoplasias/genética , Neoplasias/metabolismo , Fuso Acromático/metabolismo
17.
Int J Oncol ; 64(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426627

RESUMO

Despite advances in treatment and early detection, breast cancer remains one of the most common types of cancer and is the second leading cause of cancer death after lung cancer in women. Therefore, there is an urgent need to develop new biomarkers and therapeutic targets for the treatment of breast cancer. Based on gene expression profiles and subsequent screening performed in a preliminary study, kinesin family member 20B (KIF20B) was selected as a candidate target molecule, because it was highly and frequently expressed in all subtypes of breast cancer and barely detected in normal tissues. Reverse transcription­quantitative PCR and western blotting revealed that KIF20B mRNA and protein expression levels were upregulated in most breast cancer cell lines but were scarcely expressed in normal mammary epithelial cells. Immunohistochemical staining of a tissue microarray showed that KIF20B was detected in 145 out of 251 (57.8%) breast cancer tissues. Strong KIF20B expression was significantly related to advanced pathological N stage. Moreover, patients with breast cancer and strong KIF20B expression exhibited a significantly worse prognosis than those with weak or negative KIF20B expression (P<0.0001, log­rank test). In multivariate analysis, strong expression was an independent prognostic factor for patients with breast cancer. Furthermore, knockdown of KIF20B expression by small interfering RNA inhibited breast cancer cell proliferation and induced apoptosis. In addition, Matrigel cell invasion assays revealed that the invasiveness of breast cancer cells was significantly decreased by KIF20B silencing. Since KIF20B is an oncoprotein that is strongly expressed in highly malignant clinical breast cancer and serves a pivotal role in breast cancer cell proliferation, survival and invasion, KIF20B could be considered a candidate biomarker for prognostic prediction and a potential molecular target for developing new therapeutics, such as small molecule inhibitors, for a wide variety of breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , RNA Interferente Pequeno , Células MCF-7 , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Movimento Celular/genética , Cinesinas/metabolismo
18.
PLoS One ; 19(3): e0295652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478520

RESUMO

In intracellular active transport, molecular motors are responsible for moving biological cargo along networks of microtubules that serve as scaffolds. Cargo dynamics can be modified by different features of microtubule networks such as geometry, density, orientation modifications. Also, the dynamical behaviour of the molecular motors is determined by the microtubule network and by the individual and/or collective action of the motors. For example, unlike single kinesins, the mechanistic behavior of multiple kinesins varies from one experiment to another. However, the reasons for this experimental variability are unknown. Here we show theoretically how non-radial and quasi-radial microtubule architectures modify the collective behavior of two kinesins attached on a cargo. We found out under which structural conditions transport is most efficient and the most likely way in which kinesins are organized in active transport. In addition, with motor activity, mean intermotor distance and motor organization, we determined the character of the collective interaction of the kinesins during transport. Our results demonstrate that two-dimensional microtubule structures promote branching due to crossovers that alter directionality in cargo movement and may provide insight into the collective organization of the motors. Our article offers a perspective to analyze how the two-dimensional network can modify the cargo-motor dynamics for the case in which multiple motors move in different directions as in the case of kinesin and dynein.


Assuntos
Dineínas , Cinesinas , Cinesinas/metabolismo , Transporte Biológico , Transporte Biológico Ativo , Dineínas/metabolismo , Microtúbulos/metabolismo
19.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490329

RESUMO

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Assuntos
Cromatina , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Receptores Androgênicos/metabolismo , Cinesinas/metabolismo
20.
Aging (Albany NY) ; 16(7): 6163-6187, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552217

RESUMO

Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.


Assuntos
Biomarcadores Tumorais , Cinesinas , Neoplasias Gástricas , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA