Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747275

RESUMO

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Assuntos
Dióxido de Carbono , Quitosana , Cinnamomum zeylanicum , Liberação Controlada de Fármacos , Nanopartículas , Dióxido de Silício , Quitosana/química , Dióxido de Silício/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Dióxido de Carbono/química , Porosidade , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Óleos Voláteis/química , Óleos Voláteis/administração & dosagem , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Preparações de Ação Retardada
2.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724994

RESUMO

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Assuntos
Cinnamomum zeylanicum , Escherichia coli , Óleos Voláteis , Animais , Óleos Voláteis/farmacocinética , Óleos Voláteis/administração & dosagem , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Suínos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Salmonella/efeitos dos fármacos , Satureja/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/química , Masculino , Centrifugação
3.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
4.
Medicine (Baltimore) ; 103(17): e37902, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669415

RESUMO

Cinnamon and motherwort are traditional Chinese medicines and are often combined to treat benign prostatic hyperplasia; however, the specific therapeutic mechanisms involved remain unclear. Therefore, in this study, we applied a network pharmacology approach to investigate the potential mechanisms of action of the drug pair cinnamon and motherwort (PCM) for the treatment of benign prostatic hyperplasia. Relevant targets for the use of PCM to treat benign prostatic hyperplasia were obtained through databases. Protein-protein interactions were then identified by the STRING database and core targets were screened. Enrichment analysis was conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target proteins and ligands of PCM. We identified 22 active ingredients in PCM, 315 corresponding targets and 130 effective targets of PCM for the treatment of benign prostatic hyperplasia. These targets were related to the PI3K-Akt, MAPK, FoxO, TNF, and IL-17 signaling pathways. Network pharmacology was used to identify the effective components and action targets of PCM. We also identified potential mechanisms of action for PCM in the treatment of benign prostatic hyperplasia. Our results provide a foundation for expanding the clinical application of PCM and provide new ideas and directions for further research on the mechanisms of action of PCM and its components for the treatment of benign prostatic hyperplasia.


Assuntos
Cinnamomum zeylanicum , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hiperplasia Prostática , Hiperplasia Prostática/tratamento farmacológico , Masculino , Humanos , Farmacologia em Rede/métodos , Cinnamomum zeylanicum/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
5.
Int J Biol Macromol ; 267(Pt 2): 131606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631566

RESUMO

This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Glucanos , Estruturas Metalorgânicas , Óleos Voláteis , Gelatina/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Embalagem de Alimentos/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Glucanos/química , Glucanos/farmacologia , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Carne/microbiologia , Animais , Testes de Sensibilidade Microbiana
6.
Environ Sci Pollut Res Int ; 31(21): 31414-31423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632195

RESUMO

Growing concern about the environmental effects of metal mordants and synthetic dyes is encouraging the use of bio-mordants and natural colorants. Cinnamon bark is a rich source of natural colorants such as cinnamaldehyde and tannins. The main purpose of this research was to study and compare the effect of bio-mordants versus metal mordants in terms of colorimetric parameters and color fastness properties of cinnamon bark on wool fibers. Accordingly, some bio-mordants, including date kernel, peppermint, banana peel, and artemisia, as well as some metal mordants like aluminum potassium sulphate and copper sulphate, were studied based on three conventional mordanting methods (pre-, meta-, and post-mordanting). The results indicated that the conjunction of metal mordants and polyphenolic bio-mordants with cinnamon colorants can create different hues and tones of brown. Also, the color produced by cinnamon in wool fibers has poor color fastness and low color strength. Overall, bio-mordants have presented good color properties, making the dyeing process eco-friendly and greener. Among the applied bio-mordants, peppermint has created the best color strength and color fastness.


Assuntos
Cinnamomum zeylanicum , Corantes , Cinnamomum zeylanicum/química , Corantes/química , Animais , Fibra de Lã , Casca de Planta/química , Metais/química
7.
Int J Biol Macromol ; 266(Pt 1): 131173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554904

RESUMO

Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.


Assuntos
Antioxidantes , Cinnamomum zeylanicum , Filmes Comestíveis , Emulsões , Óleos Voláteis , Mucilagem Vegetal , Sementes , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Mucilagem Vegetal/química , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos
8.
Int J Biol Macromol ; 264(Pt 1): 130344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401581

RESUMO

Pure gelatin film often exhibits high hydrophilicity and a lack of antibacterial activity, hindering its practical application in the field of food preservation. To address these issues, we incorporated 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (TOBC) nanofibers stabilized cinnamon essential oil (CEO) Pickering emulsions into the gelatin matrix to develop active food packaging films. The study revealed that the good distribution of emulsion droplets in the film matrix. While with increasing Pickering emulsion proportion, the microstructures of composite films were more heterogeneous, showing some pores or cavities. In addition, the insertion of TOBC-stabilized CEO emulsions could improve the elongation at break (EAB), water-resistance, UV blocking ability, and antibacterial activity of film, but reduced its tensile strength (TS) and water vapor barrier properties (WVP). Notably, the film prepared with 4 % TOBC-stabilized CEO Pickering emulsion demonstrated enhanced preservation of strawberries. Overall, the as-prepared gelatin-based active composite films have considerable potential for food packaging.


Assuntos
Celulose Oxidada , Nanofibras , Óleos Voláteis , Celulose Oxidada/química , Gelatina/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Emulsões/química , Antibacterianos
9.
Sci Rep ; 14(1): 2288, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280925

RESUMO

Bacterial cells can form biofilm on food contact surfaces, becoming a source of food contamination with profound health implications. The current study aimed to determine some Egyptian medicinal plants antibacterial and antibiofilm effects against foodborne bacterial strains in milk plants. Results indicated that four ethanolic plant extracts, Cinnamon (Cinnamomum verum), Chamomile (Matricaria chamomilla), Marigold (Calendula officinalis), and Sage (Salvia officinalis), had antibacterial (12.0-26.5 mm of inhibition zone diameter) and antibiofilm (10-99%) activities against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella Typhimurium. The tested extracts had minimum inhibitory concentration values between 0.14 and 2.50 mg/ml and minimum bactericidal concentration values between 0.14 and 12.50 mg/ml. L. monocytogenes was more sensitive for all tested ethanolic extracts; Sage and Cinnamon showed a bacteriocidal effect, while Chamomile and Marigold were bacteriostatic. The ethanolic extracts mixture from Chamomile, Sage, and Cinnamon was chosen for its antibiofilm activity against L. monocytogenes using L-optimal mixture design. Gas chromatography and mass spectrometry analysis showed that this mixture contained 12 chemical compounds, where 2-Propenal,3-phenyl- had the maximum area % (34.82%). At concentrations up to 500 µg/ml, it had no cytotoxicity in the normal Vero cell line, and the IC50 value was 671.76 ± 9.03 µg/ml. Also, this mixture showed the most significant antibacterial effect against detached L. monocytogenes cells from formed biofilm in stainless steel milk tanks. At the same time, white soft cheese fortified with this mixture was significantly accepted overall for the panelist (92.2 ± 2.7) than other cheese samples, including the control group.


Assuntos
Queijo , Listeria monocytogenes , Animais , Aço Inoxidável/farmacologia , Queijo/microbiologia , Leite , Cromatografia Gasosa-Espectrometria de Massas , Biofilmes , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Microbiologia de Alimentos
10.
Int J Biol Macromol ; 259(Pt 2): 129204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185302

RESUMO

Cinnamon essential oil (CEO) was emulsified by hydroxypropyl-ß-cyclodextrin/ ethyl lauroyl arginate (HPCD/LAE) complex to make nanoemulsions, which were then incorporated into maltodextrin (MD) to prepare HPCD/LAE/CEO/MD microcapsules by spray drying. The starch/polybutylene adipate terephthalate (starch/PBAT, SP) based extrusion-blowing films containing above microcapsules were developed and used as packaging materials for strawberry preservation. The morphology, encapsulation efficiency, thermal and antibacterial properties of microcapsules with different formulations were investigated. The effects of microcapsules on the physicochemical and antimicrobial properties of SP films were evaluated. When the formula was 4 % HPCD/LAE-3% CEO-10% MD (HL-3C-MD), the microcapsule had the smallest particle size (3.3 µm), the highest encapsulation efficiency (84.51 %) of CEO and the best antibacterial effect. The mechanical and antimicrobial properties of the SP film were enhanced while the water vapor transmittance and oxygen permeability decreased with the incorporation of HL-3C-MD microcapsules. The films effectively reduced the weight loss rate (49.03 %), decay rate (40.59 %) and the total number of colonies (2.474 log CFU/g) and molds (2.936 log CFU/g), thus extending the shelf life of strawberries. This study revealed that the developed SP films containing HPCD/LAE/CEO microcapsules had potential applications in degradable bioactive food packaging materials.


Assuntos
Anti-Infecciosos , Fragaria , Óleos Voláteis , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , 2-Hidroxipropil-beta-Ciclodextrina , Cápsulas , Amido/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Embalagem de Alimentos
11.
Int J Biol Macromol ; 262(Pt 2): 129711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278379

RESUMO

Green active film from chitosan (C) incorporated with spontaneous emulsified cinnamon oil nanoemulsion (CONE; droplet size of 79.27 nm and polydispersity index of 0.27) was developed. The obtained chitosan film containing CONE (C + CONE) had tensile elongation and light protective effect higher than C film due to the incorporation of bioactive compounds from cinnamon oil as proven by Fourier Transform Infrared Spectroscopy. The effect of C + CONE as active edible coating on the physical, chemical, and microbiological properties of dried shrimp was then investigated. The quality of samples coated with C + CONE (DS + C + CONE) was compared to those coated with C (DS + C) and without coating (DS). In this study, C + CONE could enhance astaxanthin content and reduce lipid oxidation in dried shrimp. During 6 weeks of storage, C + CONE was found to be an effective antimicrobial coating that significantly inhibited growth of bacteria, delayed lipid oxidation and retarded the production of volatile amines in dried shrimp. DS + C + CONE had lower malonaldehyde equivalents (0.52 mg/kg oil), trimethylamine (11.74 mg/100 g), total volatile base nitrogen (84.33 mg/100 g) and total viable count (4.80 Log CFU/g), but had higher astaxanthin content (12.53 ± 0.12 µg/g) than DS and DS + C. The results suggested that the developed C + CONE coating has potential to be used as active coating for preserving food quality.


Assuntos
Quitosana , Óleos Voláteis , Conservação de Alimentos/métodos , Quitosana/química , Cinnamomum zeylanicum/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Xantofilas
12.
Poult Sci ; 103(1): 103245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007904

RESUMO

Ectoparasite infestations significantly impact the health and productivity of poultry. Chemical applications, although common for pest control, lead to pesticide residues and parasite resistance in poultry. Nanoemulsion-based plant essential oil formulations (NEOFs) provide a promising alternative for controlling poultry ectoparasites. This study aimed to assess the efficacy of NEOFs from clove, cinnamon, and turmeric essential oils (EOs) against ectoparasites, Menopon gallinae and Megninia ginglymura, under laboratory conditions. The toxicity and repellent properties of the NEOFs were examined, with the major chemical compounds of the EOs analyzed using chromatography mass spectrometer. Results identified eugenol as the dominant component in clove and cinnamon EOs (84.60 and 75.19%, respectively), while turmerone (68.46%) was the major compound in turmeric EO. NEOFs with clove:cinnamon:turmeric ratios of 4:0:0, 2:2:0, and 2:0:2 had particle size of 20.76 nm, 20.66 nm, and 89.56 nm, respectively, while those based on eugenol and turmerone standards had sizes <21.0 nm. In addition, NEOFs at 0.3% concentration with ratios of 4:0:0 and 2:2:0 achieved full control of both ectoparasites. These formulas demonstrated exceptional potency in exterminating ectoparasites, with LC50 and LC90 at <0.160 and <0.250%, respectively, 6 h after treatments. Furthermore, both NEOFs showed higher repellence responses in M. gallinae compared to M. ginglymura. The toxicities of these NEOFs were comparably effective against both parasites, showing no significant difference compared with chemical insecticide treatment. Therefore, further research will explore the practicality of using clove and cinnamon-derived NEOFs under farm conditions.


Assuntos
Óleos Voláteis , Praguicidas , Animais , Óleos de Plantas , Óleo de Cravo/farmacologia , Eugenol , Praguicidas/toxicidade , Aves Domésticas/parasitologia , Galinhas , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cinnamomum zeylanicum/química
13.
Int J Biol Macromol ; 258(Pt 2): 128981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158064

RESUMO

This investigation aims to highlight the applicability of a potent eco-friendly developed composite film to combat the Escherichia coli biofilm formed in a model food system. ZnO nanoparticles (NPs) synthesized using green methods were anchored on the surface of cellulose nanocrystals (CNCs). Subsequently, nano-chitosan (NCh) solutions were used to disperse the synthesized nanoparticles and cinnamon essential oil (CEO). These solutions, containing various concentrations of CNC@ZnO NPs and CEO, were sequentially coated onto cellulosic papers to inhibit Escherichia coli biofilms on grey zucchini slices. Six films were developed, and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, biodegradation, and mechanical properties were assessed. The film containing 5 % nano-emulsified CEO + 3 % dispersed CNC@ZnO nano-hybrid in an NCh solution was selected for further testing since it exhibited the largest zone of inhibition (34.32 mm) against E. coli and the highest anti-biofilm activity on biofilms developed on glass surfaces. The efficacy of the film against biofilms on zucchini surfaces was temperature-dependent. During 60 h, the selected film resulted in log reductions of approximately 4.5 logs, 2.85 logs, and 1.57 logs at 10 °C, 25 °C, and 37 °C, respectively. Applying the selected film onto zucchini surfaces containing biofilm structures leads to the disappearance of the distinctive three-dimensional biofilm framework. This innovative anti-biofilm film offers considerable potential in combatting biofilm issues on food surfaces. The film also preserved the sensory quality of zucchini evaluated for up to 60 days.


Assuntos
Quitosana , Óleos Voláteis , Óxido de Zinco , Quitosana/química , Antibacterianos/farmacologia , Escherichia coli , Cinnamomum zeylanicum/química , Óxido de Zinco/química , Óleos Voláteis/farmacologia , Biofilmes
14.
Int J Biol Macromol ; 253(Pt 4): 126859, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714243

RESUMO

In this study, cinnamon essential oil and tea polyphenols were added to chitosan/ polyvinyl alcohol/ hydroxypropyl methylcellulose/ alizarin composite films to enhance their mechanical and functional properties. Their addition to the composite films enhanced their antibacterial and antioxidant properties and significantly improved its elongation at break (p < 0.05). Cinnamon essential oil reduced the water vapor permeability, water content, and water solubility of composite films and improved their transparency. The composite films with additive exhibited excellent UV-barrier ability and pH responsivity. Fourier Transform infrared spectroscopy and X-Ray Diffraction analyses confirmed hydrogen bond formation between the polymer molecules and additives. The results of Scanning Electron Microscope-Focused Ion Beam revealed improved surface and cross-section morphology of the films, leading to the generation of a cross-linked structure. Thermogravimetric and differential scanning calorimetry analysis indicated enhanced thermal stability of the composite films upon cinnamon essential oil addition. Analysis of storage quality indicators (TBARS value, TVC, and TVB-N) revealed that the composite films could prolong the freshness of surimi. The incorporation of cinnamon essential oil and tea polyphenols into the composite films has demonstrated significant potential as an effective and natural alternative for active food packaging.


Assuntos
Quitosana , Óleos Voláteis , Polifenóis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Álcool de Polivinil , Cinnamomum zeylanicum/química , Derivados da Hipromelose , Embalagem de Alimentos/métodos , Chá
15.
Mol Nutr Food Res ; 67(20): e2200768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658489

RESUMO

SCOPE: Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS: A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION: The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.


Assuntos
Lipopolissacarídeos , Polifenóis , Camundongos , Animais , Polifenóis/farmacologia , Lipopolissacarídeos/toxicidade , Cinnamomum zeylanicum/química , Ativação de Macrófagos , Citocinas/genética , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia
16.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570651

RESUMO

Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.


Assuntos
Quitosana , Nanopartículas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida , Cinnamomum zeylanicum/química , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Candida albicans , Nanopartículas/química
17.
Adv Colloid Interface Sci ; 318: 102965, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480830

RESUMO

Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.


Assuntos
Óleos Voláteis , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Antioxidantes/farmacologia , Antibacterianos/química , Conservação de Alimentos/métodos
18.
Int J Biol Macromol ; 245: 125225, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285892

RESUMO

The aim of this investigation was to prepare and characterize active composite films made of chitosan (CS), tragacanth gum (TG), polyvinyl alcohol (PVA) and loaded with different concentrations of cinnamon essential oil (CEO) nanoemulsion (CEO, 2 and 4 % v/v). For this purpose, the amount of CS was fixed and the ratio of TG to PVA (90:10, 80:20, 70:30, and 60:40) was considered variable. The physical (thickness and opacity), mechanical, antibacterial and water-resistance properties of the composite films were evaluated. According to the microbial tests, the optimal sample was determined and evaluated with several analytical instruments. CEO loading increased the thickness and EAB of composite films, while decreasing light transmission, tensile strength, and water vapor permeability. All the films containing CEO nanoemulsion had antimicrobial properties, but this activity was higher against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) than Gram-negative types (Escherichia coli (O157:H7) and Salmonella typhimurium). According to the results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD), the interaction between the components of the composite film was confirmed. It can be concluded that the CEO nanoemulsion can be incorporated in CS/TG/PVA composite films and successfully used as active and environmentally friendly packaging.


Assuntos
Anti-Infecciosos , Quitosana , Óleos Voláteis , Tragacanto , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Cinnamomum zeylanicum/química , Álcool de Polivinil/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
19.
J Biomater Sci Polym Ed ; 34(15): 2144-2160, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382897

RESUMO

The aim of the present study was to investigate the characteristics of alginate beads filled with cinnamon essential oil nanoemulsions (CEONs). The influence of the alginate and CaCl2 concentrations on their physical, antimicrobial and antioxidant properties was studied. The droplet size of CEON was 146.20 ± 39.28 nm and the zeta potential was -33.8 ± 0.72 mV demonstrating proper nanoemulsions stability. Decreasing the alginate and CaCl2 concentrations resulted in higher EOs release due to the increased pore size of the alginate beads. The scavenging activity of DPPH of beads was found to be dependent on the alginate and calcium ion concentrations which affected the pore size of the fabricated beads. The FT-IR results declared the new bands in the spectra of filled hydrogel beads, which verified the encapsulation of EOs in the beads. The surface morphology of beads was studied using SEM images which showed the spherical shape and porous structure of alginate beads. In addition, the alginate beads filled with CEO nanoemulsion demonstrated strong antibacterial activity.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Hidrogéis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Cálcio , Emulsões/química , Anti-Infecciosos/farmacologia
20.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175897

RESUMO

Cinnamon is a natural spice with a wide range of pharmacological functions, including anti-microbial, antioxidant, and anti-tumor activities. The aim of this study is to investigate the effects of cinnamaldehyde-rich cinnamon extract (CRCE) on the colorectal cancer cell lines HCT 116 and HT-29. The gas chromatography mass spectrometry analysis of a lipophilic extract of cinnamon revealed the dominance of trans-cinnamaldehyde. Cells treated with CRCE (10-60 µg/mL) showed significantly decreased cell viability in a time- and dose-dependent manner. We also observed that cell proliferation and migration capacity were inhibited in CRCE-treated cells. In addition, a remarkable increase in the number of sub-G1-phase cells was observed with arrest at the G2 phase by CRCE treatment. CRCE also induced mitochondrial stress, and finally, CRCE treatment resulted in activation of apoptotic proteins Caspase-3, -9, and PARP and decreased levels of mu-2-related death-inducing gene protein expression with BH3-interacting domain death agonist (BID) activation.


Assuntos
Cinnamomum zeylanicum , Neoplasias do Colo , Humanos , Cinnamomum zeylanicum/química , Apoptose , Neoplasias do Colo/tratamento farmacológico , Células HT29 , Morte Celular , Proliferação de Células , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA