Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Vet Med Sci ; 10(5): e70001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39189840

RESUMO

BACKGROUND: This field efficacy study was designed to determine the efficacy of a new bivalent vaccine containing porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae at three independent pig farms. METHODS: Three pig farms were selected based on their history of subclinical PCV2 infection and enzootic pneumonia. Each farm housed a total of 40, 18-day-old pigs that were randomly allocated to 1 of 2 treatment groups. Pigs were administered a 2.0 mL dose of the bivalent vaccine intramuscularly at 21 days of age in accordance with the manufacturer's recommendations, whereas unvaccinated pigs were administered a single dose of phosphate-buffered saline at the same age. RESULTS: Clinically, the average daily weight gain of vaccinated groups was significantly higher (p < 0.05) than those of unvaccinated animals during the growing (70-112 days of age), finishing (112-175 days of age) and overall (3-175 days of age) stages of production. Vaccinated animals elicited neutralizing anti-PCV2 antibodies and PCV2d-specific interferon-γ secreting cells (IFN-γ-SC), which reduced the amount of PCV2d genomic copies in blood and reduced lymphoid lesions severity when compared with unvaccinated animals. Similarly, vaccinated animals elicited M. hyopneumoniae-specific IFN-γ-SC, which reduced the amount of M. hyopneumoniae in the larynx and reduced lung lesions severity. CONCLUSIONS: The result of the field trial demonstrated that the bivalent vaccine was efficacious in the protection of swine herds suffering from subclinical PCV2d infection and enzootic pneumonia.


Assuntos
Vacinas Bacterianas , Infecções por Circoviridae , Circovirus , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Vacinas Virais , Animais , Circovirus/imunologia , Mycoplasma hyopneumoniae/imunologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/prevenção & controle , Suínos , Pneumonia Suína Micoplasmática/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Combinadas/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia , Distribuição Aleatória , Sus scrofa , Infecções Assintomáticas
2.
Int Immunopharmacol ; 139: 112701, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024747

RESUMO

Current evidence suggests that porcine circovirus type 2 (PCV2) infection induces immunosuppression in piglets. Sophora subprostrate polysaccharide (SSP) exhibits various pharmacological activities, including immunoregulatory, anti-inflammatory, antiviral, and antioxidant properties. However, the acts of lncRNAs in regulating the therapeutic effects of SSP on PCV2-infected RAW264.7 cells remains poorly understood. This study aimed to investigate the molecular mechanisms by which lncRNAs regulate PCV2-induced immunosuppression during SSP treatment. Our findings revealed that 1699 mRNAs, 373 lncRNAs, and 129 miRNAs were differentially expressed in PCV2-infected RAW264.7 cells. Additionally, 359 mRNAs, 271 lncRNAs, and 79 miRNAs exhibited differential expression in SSP-treated PCV2-infected RAW264.7 cells. GO and KEGG analyses indicated that the candidate genes were enriched in the TNF/NF-κB signaling pathway. Furthermore, based on GO and KEGG pathway analysis, a ceRNA network involving chemokine (C-X-C motif) ligand 2 (CXCL2), miR-217-x, and MSTRG.5823.1 was constructed. We demonstrated that lncRNA MSTRG.5823.1 localized to the cytoplasm. Moreover, we found that silencing or overexpressing lncRNA MSTRG.5823.1 significantly modulated PCV2-induced immunosuppression by regulating the activation of the TNF/NF-κB signaling pathway. Specifically, lncRNA MSTRG.5823.1 overexpression increased the expression of TNF/NF-κB signaling pathway-related genes and proteins in PCV2-infected RAW264.7 cells. Conversely, silencing lncRNA MSTRG.5823.1 decreased their expression. Rescue assays further revealed that the suppressive effects of miR-217-x overexpression on TNF/NF-κB signaling pathway-related genes and proteins could be reversed by MSTRG.5823.1 overexpression. These findings highlight the critical role of lncRNA MSTRG.5823.1 in PCV2 infection progression and suggest a new strategy for the prevention and treatment of PCV2 infection.


Assuntos
Infecções por Circoviridae , Circovirus , NF-kappa B , Polissacarídeos , RNA Longo não Codificante , Transdução de Sinais , Sophora , Animais , Camundongos , Circovirus/imunologia , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Infecções por Circoviridae/imunologia , Polissacarídeos/farmacologia , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Tolerância Imunológica/efeitos dos fármacos
3.
Front Immunol ; 15: 1438371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081314

RESUMO

Introduction: Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods: We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results: An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion: Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.


Assuntos
Infecções por Circoviridae , Circovirus , Herpesvirus Suídeo 1 , Animais , Circovirus/imunologia , Circovirus/genética , Camundongos , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/genética , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Suínos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Vacinas Sintéticas/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Feminino , Camundongos Endogâmicos BALB C
4.
Microbiol Spectr ; 12(8): e0087024, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916319

RESUMO

Since Porcine Circovirus 3 (PCV3) was first identified in 2016, our understanding of the humoral response is still relatively scarce. Current knowledge of the PCV3 humoral response is primarily based on field studies identifying the seroprevalence of PCV3 Cap-induced antibodies. Studies on the humoral response following experimental PCV3 infection have conflicting results where one study reports the development of the Cap IgG response 7 days postinfection with no concurrent Cap IgM response, while a second study shows a Cap IgM response at the same time point with no detection of Cap IgG. The dynamics of the PCV3 Cap and Rep IgG following maternal antibody transfer and experimental infection have not been well characterized. Additionally, the cross-reactivity of convalescent serum from PCV2 and PCV3 experimentally infected animals to serologic methods of the alternate PCV has limited evaluation. Here, we show that maternally derived antibodies were detectable in piglet serum 7-9 weeks postfarrowing for the Cap IgG and 5-weeks-post farrowing for the Rep IgG using Cap- and Rep-specific enzyme linked immunosorbent assays (ELISA) and immunofluorescent assays (IFA) methods. Following experimental inoculation, Cap IgG was detected at 2-weeks-post inoculation and Rep IgG detection was delayed until 4-weeks-post inoculation. Furthermore, convalescent serum from either PCV2 or PCV3 methods displayed no cross-reactivity by serological methods against the other PCV. The information gained in this study highlights the development of both the Cap- and Rep-specific antibodies following experimental infection and through the transfer of maternal antibodies. The increased understanding of the dynamics of maternal antibody transfer and development of the humoral response following infection gained in the present study may aid in the establishment of husbandry practices and potential application of prophylactics to control PCV3 clinical disease. IMPORTANCE: Research on Porcine Circovirus 3 (PCV3) immunology is vital for understanding and controlling this virus. Previous studies primarily relied on field observations, but they have shown conflicting results about the immunological response against PCV3. This study helps fill those gaps by looking at how antibodies develop in pigs, especially those maternal-derived, and their impact in neonatal pigs preventing PCV3-associated disease in piglets. In addition, we look at the dynamics of antibodies in experimental infections mimicking infection in pigs in the grower-phase condition. Understanding this process can help to develop better strategies to prevent PCV3 infection. Also, this research found that PCV2 and PCV3 do not cross-react, which is crucial for serological test development and results interpretation. Overall, this work is essential for improving swine health and farming practices in the face of PCV3 infections.


Assuntos
Anticorpos Antivirais , Infecções por Circoviridae , Circovirus , Imunidade Humoral , Imunidade Materno-Adquirida , Imunoglobulina G , Doenças dos Suínos , Animais , Circovirus/imunologia , Suínos , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas/imunologia
5.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
6.
Front Immunol ; 12: 688294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394082

RESUMO

Polarization of macrophages to different functional states is important for mounting responses against pathogen infections. Macrophages are the major target cells of porcine circovirus type 2 (PCV2), which is the primary causative agent of porcine circovirus-associated disease (PCVAD) leading to immense economic losses in the global swine industry. Clinically, PCV2 is often found to increase risk of other pathogenic infections yet the underlying mechanisms remain to be elusive. Here we found that PCV2 infection skewed macrophages toward a M1 status through reprogramming expression of a subset of M1-associated genes and M2-associated genes. Mechanistically, induction of M1-associated genes by PCV2 infection is dependent on activation of nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways whereas suppression of M2-associated genes by PCV2 is via inhibiting expression of jumonji domain containing-3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase that regulates M2 activation of macrophages. Finally, we identified that PCV2 capsid protein (Cap) directly inhibits JMJD3 transcription to restrain expression of interferon regulatory factor (IRF4) that controls M2 macrophage polarization. Consequently, sustained infection of PCV2 facilitates bacterial infection in vitro. In summary, these findings showed that PCV2 infection functionally modulated M1 macrophage polarization via targeting canonical signals and epigenetic histone modification, which contributes to bacterial coinfection and virial pathogenesis.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/patogenicidade , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Coinfecção , Macrófagos/microbiologia , Macrófagos/virologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/imunologia , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Infecções por Circoviridae/imunologia , Circovirus/imunologia , Modelos Animais de Doenças , Epigênese Genética , Interações Hospedeiro-Patógeno , Fatores Reguladores de Interferon/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fenótipo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium/imunologia , Transdução de Sinais
7.
Arch Virol ; 166(8): 2141-2149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34009439

RESUMO

Porcine circovirus type 3 (PCV3) has been widely detected throughout the world since it was first discovered on pig farms in 2015. PCV3 is closely associated with cardiac and multisystem inflammation, respiratory disease, congenital tremors, myocarditis, diarrhea, encephalitis and neurologic disease, and periarteritis. However, there have been few reports on the relationship between PCV3 and inflammatory pathways. The NF-κB signaling pathway plays an important role in the defense against viral infection. Here, we demonstrate that the capsid protein (Cap) of PCV3 plays a key role in the activation of NF-κB signaling in HEK-293T cells. Furthermore, PCV3 Cap promotes the mRNA expression of the pro-inflammatory cytokines IL6 and TNFα. In addition, PCV3 Cap promotes RIG-I and MDA5 mRNA expression in RIG-like receptor (RLR) signaling and MyD88 mRNA expression in Toll-like receptor (TLR) signaling but does not influence TRIF mRNA expression in TLR signaling. These results show that PCV3 Cap activates NF-κB signaling, possibly through the RLR and the TLR signaling pathways. This work illustrates that PCV3 Cap activates NF-κB signaling and thus may provide a basis for the pathogenesis of PCV3 and the innate immunity of the host.


Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/metabolismo , Citocinas/genética , Transdução de Sinais , Circovirus/imunologia , Proteína DEAD-box 58/genética , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Interleucina-6/genética , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética
8.
J Vet Sci ; 22(1): e8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33522160

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. OBJECTIVES: A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. METHODS: In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. RESULTS: The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. CONCLUSIONS: The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.


Assuntos
Proteínas do Capsídeo/genética , Circovirus/imunologia , Dependovirus/genética , Imunidade Celular , Imunidade Humoral , Vacinas Virais/imunologia , Animais , Proteínas do Capsídeo/metabolismo , Circovirus/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C
9.
Int J Nanomedicine ; 15: 8507-8517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154640

RESUMO

PURPOSE: The vaccine design has shifted from attenuated or inactivated whole pathogen vaccines to more pure and defined subunit vaccines. The purification of antigen proteins, especially the precise display of antigen regions, has become a key step affecting the effectiveness of subunit vaccines. MATERIALS AND METHODS: This work presents the application of molecular docking for a peptide ligand designed for PCV2 Cap purification and assembly in one step. Based on the PCV2 Cap protein affinity peptide (L11-DYWWQSWE), the amino terminal of PCV2 Cap was covalently coupled with the polylactic acid-glycolic acid copolymer (PLGA) carboxyl terminal through the EDC/NHS method. RESULTS: The PLGA had an average diameter of 106 nm. The average diameter increased to 122 nm after the PCV2 Cap protein conjugation, and the Zeta potential shifted from -13.7 mV to -9.6 mV, indicating that the PCV2 Cap protein stably binds to the PLGA. Compared with the free PCV2 Cap protein group, the neutralizing antibody titer was significantly increased on the 14th day after the PLGA-Cap immunization (P < 0.05). The neutralizing antibody level was extremely significant on the 28th day (P < 0.001). The CCK-8 analysis showed that PLGA-Cap had an obvious cytotoxic effect on RAW264.7 cells at the PLGA nanoparticle concentration up to 200 µg/mL but had no obvious cytotoxic effect on DC2.4 cells. Compared with the Cap protein group, the antigen-presenting cells had a stronger antigen uptake capacity and a higher fluorescence in the PLGA-Cap group. The immune effect showed that the level of the neutralizing antibody produced by this structure is much better than that of purified protein and helps improve the immune system response. CONCLUSION: This technology provides a potential new perspective for the rapid enrichment of the antigen protein with the affinity peptide ligand.


Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Nanopartículas/química , Peptídeos/imunologia , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/metabolismo , Sítios de Ligação , Linhagem Celular , Infecções por Circoviridae/imunologia , Citocinas/biossíntese , Inflamação/patologia , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
10.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32868342

RESUMO

Porcine circovirus type 2 (PCV2) and Streptococcus suis serotype 2 (SS2) clinical coinfection cases have been frequently detected. The respiratory epithelium plays a crucial role in host defense against a variety of inhaled pathogens. Reactive oxygen species (ROS) are involved in killing of bacteria and host immune response. The aim of this study is to assess whether PCV2 and SS2 coinfection in swine tracheal epithelial cells (STEC) affects ROS production and investigate the roles of ROS in bacterial survival and the inflammatory response. Compared to SS2 infection, PCV2/SS2 coinfection inhibited the activity of NADPH oxidase, resulting in lower ROS levels. Bacterial intracellular survival experiments showed that coinfection with PCV2 and SS2 enhanced SS2 survival in STEC. Pretreatment of STEC with N-acetylcysteine (NAC) also helps SS2 intracellular survival, indicating that PCV2/SS2 coinfection enhances the survival of SS2 in STEC through a decrease in ROS production. In addition, compared to SS2-infected STEC, PCV2/SS2 coinfection and pretreatment of STEC with NAC prior to SS2 infection both downregulated the expression of the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1ß. Further research found that activation of p38/MAPK promoted the expression of inflammatory cytokines in SS2-infected STEC; however, PCV2/SS2 coinfection or NAC pretreatment of STEC inhibited p38 phosphorylation, suggesting that coinfection of STEC with PCV2 and SS2 weakens the inflammatory response to SS2 infection through reduced ROS production. Collectively, coinfection of STEC with PCV2 and SS2 enhances the intracellular survival of SS2 and weakens the inflammatory response through decreased ROS production, which might exacerbate SS2 infection in the host.


Assuntos
Infecções por Circoviridae/virologia , Coinfecção/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/microbiologia , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia , Animais , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/metabolismo , Circovirus/imunologia , Circovirus/metabolismo , Coinfecção/imunologia , Coinfecção/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Streptococcus suis/imunologia , Streptococcus suis/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Traqueia/imunologia , Traqueia/metabolismo , Traqueia/microbiologia
11.
Int J Nanomedicine ; 15: 5527-5543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848386

RESUMO

BACKGROUND: Poly(lactic-co-glycolic acid) (PLGA) has been extensively applied for sustained drug delivery and vaccine delivery system. However, vaccines delivered by PLGA nanoparticles alone could not effectively activate antigen-presenting cells (APCs) to induce strong immune responses. PURPOSE: The aim of the present study was to design polyethylenimine (PEI)-modified Chinese yam polysaccharide (CYP)-encapsulated PLGA nanoparticles (CYPP-PEI) as a vaccine delivery system and evaluate the adjuvant activities in vitro and in vivo. MATERIALS AND METHODS: Cationic-modified nanoparticles exhibited high antigen absorption and could be efficiently taken by APCs to enhance the immune responses. Therefore, PEI-modified CYP-encapsulated PLGA nanoparticles (CYPP-PEI) were prepared. The storage stability and effective adsorption capacity for porcine circovirus-2 (PCV-2) antigen of these antigen-absorbed nanoparticles were measured for one month. Furthermore, the adjuvant activity of CYPP-PEI nanoparticles was evaluated on macrophages in vitro and through immune responses triggered by PCV-2 antigen in vivo. RESULTS: The PCV-2 absorbed CYPP-PEI nanoparticles showed excellent storage stability and high absorption efficiency of PCV-2 antigen. In vitro, CYPP-PEI nanoparticles promoted antigen uptake, enhanced surface molecular expressions of CD80 and CD86, and improved cytokine secretion of TNF-α, IFN-γ, and IL-12p70 in macrophages. After immunization with CYPP-PEI/PCV-2 formulation in mice, the expressions of surface activation markers on dendritic cells which located in draining lymph nodes were increased, such as MHCI, MHCII, and CD80. In addition, CYPP-PEI nanoparticles induced dramatically high PCV-2-specific IgG levels which could last for a long time and stimulated the secretion of subtype antibodies and cytokines. The results showed that CYPP-PEI could induce Th1/Th2 mixed but Th1-biased type immune responses. CONCLUSION: Polyethylenimine-modified Chinese yam polysaccharide-encapsulated PLGA nanoparticle was a potential vaccine delivery system to trigger strong and persistent immune responses.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Dioscorea/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polissacarídeos/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Antígenos/farmacologia , Circovirus/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Estabilidade de Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Polietilenoimina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vacinas/administração & dosagem , Vacinas/imunologia
12.
J Virol Methods ; 284: 113928, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650038

RESUMO

Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure and causes economic losses in the domestic swine industry. The decoy epitope (169-180 amino acid (aa)) of the PCV2 capsid (Cap) protein is an immunodominant epitope and diverts the immune response away from protective epitopes. The mixed infection of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common co-infections in the pig industry and shows more severe clinical symptoms. Linear B-cell antigenic epitopes of PRRSV GP3 epitope Ⅰ (61-72aa) and PRRSV GP5 epitope Ⅳ (187-200aa) efficiently elicited neutralizing antibodies against PRRSV. The recombinant baculovirus expressing the Cap protein (Bac-Cap) was modified by replacing the decoy epitope of the Cap protein with either the PRRSV GP3 epitope Ⅰ, the PRRSV GP5 epitope Ⅳ, or the PRRSV GP3 epitope Ⅰ- GP5 epitope Ⅳ to produce the recombinant baculoviruses Bac-Cap-GP3, Bac-Cap-GP5 and Bac-Cap-GP35. The four recombinant baculoviruses were successfully established and characterized as demonstrated with western blot analysis and immunofluorescence assay. Immunogenicities of the four recombinant baculoviruses in mice were tested in sera harvested at 21 and 42 days post-primary immunization. The titers of antibodies in the sera were determined by a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The serum IFN-γ levels were measured by indirect ELISA. The results showed that Bac-Cap-GP3, Bac-Cap-GP5, and Bac-Cap-GP35 elicited higher GP3/GP5 and Cap antibody titers than the Bac-Cap. Virus neutralization test also confirmed that the serum from the Bac-Cap-GP3 immunized mice had high levels of the both PCV2 and PRRSV neutralization antibodies. These findings collectively demonstrated that substituting the decoy epitope of the PCV2 capsid substituted with PRRSV epitopes could be developed into an effective vaccine against PCV2.


Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Baculoviridae/genética , Proteínas do Capsídeo/genética , Citocinas/sangue , Epitopos de Linfócito B , Epitopos Imunodominantes , Camundongos , Vacinação , Vacinas Combinadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/genética
13.
Virol J ; 17(1): 72, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517704

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is an economically important pathogen affecting swine industry worldwide. The production of current PCV2 vaccines is time-consuming and expensive. Elastin-like polypeptides (ELP) undergo temperature-dependent inverse phase transition and ELPylated proteins can be purified simply by inverse transition cycling (ITC). METHODS: The Cap protein of PCV2b, together with the virus neutralizing (VN) epitopes of PCV2a, PCV2d and PCV2e, was expressed in E. coli as an ELPylated protein, and purified by ITC in the presence of mild detergents. For the control purpose, the Cap protein was also expressed as a His-tagged protein and purified by nickel affinity chromatography. The formation of ELPylated VLP (ELP-VLP) and His-tagged VLP (VLP) was revealed by transmission electron microscopy. Mice were immunized two times with the two forms of VLP and the antigen-specific IgG antibody, VN antibody, cytokine responses and immunoprotection against PCV2 challenge were compared. RESULTS: ELPylated Cap protein was expressed as a soluble protein and purified to 94.3% purity by ITC in the presence of 1% Triton X-100 and 0.5 M urea. His-tagged Cap fusion protein was expressed as insoluble inclusion bodies and purified to 90% purity under denatured conditions. The two purified fusion proteins assembled into VLP with similar morphology. Compared to immunization with VLP, immunization with ELP-VLP induced significantly (p < 0.01) stronger VN antibody response and slightly (p < 0.05) stronger Cap-specific IgG antibody response, cytokine production and immunoprotection against PCV2 challenge. CONCLUSION: A novel ELPylation platform for easy preparation of PCV2 VLP was established and the prepared ELP-VLP was more immunogenic than VLP. The ELPylation technology could be used for other VLP preparation and the prepared ELP-VLP could be developed as a novel PCV2 subunit vaccine.


Assuntos
Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Elastina/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Circoviridae/imunologia , Elastina/imunologia , Escherichia coli/genética , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem
14.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244384

RESUMO

Recombinant vaccines have low-cost manufacturing, regulatory requirements, and reduced side effects compared to attenuated or inactivated vaccines. In the porcine industry, post-weaning multisystemic disease syndrome generates economic losses, characterized by progressive weight loss and weakness in piglets, and it is caused by porcine circovirus type 2 (PCV2). We designed a chimeric antigen (Qm1) to assemble the main exposed epitopes of the Cap-PCV2 protein on the capsid protein of the tobacco necrosis virus (TNV). This design was based on the Cap-N-terminal of an isolated PCV2 virus obtained in Chile. The virus was characterized, and the sequence was clustered within the PCV2 genotype b clade. This chimeric protein was expressed as inclusion bodies in both monomeric and multimeric forms, suggesting a high-molecular-weight aggregate formation. Pigs immunized with Qm1 elicited a strong and specific antibody response, which reduced the viral loads after the PCV2 challenge. In conclusion, the implemented design allowed for the generation of an effective vaccine candidate. Our proposal could be used to express the domains or fragments of antigenic proteins, whose structural complexity does not allow for low-cost production in Escherichia coli. Hence, other antigen domains could be integrated into the TNV backbone for suitable antigenicity and immunogenicity. This work represents new biotechnological strategies, with a reduction in the costs associated with vaccine development.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Circovirus/imunologia , Vacinas Virais/genética , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Chile/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/genética , Epitopos , Fermentação , Filogenia , Síndrome Definhante Multissistêmico de Suínos Desmamados/epidemiologia , Síndrome Definhante Multissistêmico de Suínos Desmamados/prevenção & controle , Suínos , Tombusviridae/genética , Vacinação/veterinária , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/metabolismo
15.
Vet Microbiol ; 242: 108591, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122595

RESUMO

Pigeon circovirus (PiCV) is the most diagnosed virus in pigeons (Columba livia) and have been studied and reported globally. PiCV infections can lead to immunosuppression and pigeons infected with PiCV can result to lymphocyte apoptosis and atrophy of immune organs. Young pigeon disease syndrome (YPDS) is a complex disease and believed that PiCV could be one of the agents leading to this syndrome. An effective treatment regimen is needed to control the spread of PiCV in pigeons. In this study pigeon interferon alpha (PiIFN-α) was cloned and expressed and its antiviral effects were tested against fowl adenovirus type 4 (FAdV-4) in vitro and PiCV in vivo. No detectable levels of FAdV-4 viral genome in LMH cells stimulated with 300 µg/mL PiIFN-α were found. Additionally, PiIFN-α was stable at different temperature and pH for 4 h, and no reduction in antiviral activity was observed in untreated and treated cells. In pigeons naturally and experimentally infected by PiCV, no detectable levels of PiCV virus titers were found after treatment with PiIFN-α. Cytokine and ISG expression levels in liver and spleen samples were detected and IFN-γ and Mx1 genes were dominantly up-regulated following PiIFN-α treatment (p < 0.05). This study demonstrated that PiCV can be inhibited by administration of PiIFN-α and PiFN-α can be used as a therapeutic approach to prevent the spread of PiCV in pigeons.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Citocinas/imunologia , Interferon-alfa/farmacologia , Replicação Viral/imunologia , Animais , Doenças das Aves/imunologia , Linhagem Celular , Infecções por Circoviridae/imunologia , Circovirus/genética , Circovirus/imunologia , Columbidae/imunologia , Columbidae/virologia , Escherichia coli/genética , Feminino , Genoma Viral , Concentração de Íons de Hidrogênio , Fígado/imunologia , Fígado/virologia , Masculino , Estabilidade Proteica , Baço/imunologia , Baço/virologia , Temperatura , Carga Viral/imunologia , Replicação Viral/efeitos dos fármacos
16.
Food Chem Toxicol ; 138: 111187, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32061728

RESUMO

The objective of this study was to determine the immunotoxic effects of deoxynivalenol (DON) in weaning piglets, and potential efficacy of a modified hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to reduce DON toxicity. Four groups of 21-day-old male piglets (n = 7/group) were fed a control diet or diet containing 1.0 or 3.0 mg DON/kg, or 3.0 mg DON/kg plus 0.05% modified HSCAS for 4 weeks. Compared to the control, the DON diets decreased serum porcine circovirus antibody titer and the dermal hypersensitivity response to OVA at day 21 or 28. DON also induced focal necrosis and proliferation of cortical lymphocytes and apoptosis and increased the total antioxidant capacity and reduced glutathione, protein carbonyl concentrations in thymus. DON increased thymus mRNA, protein and (or) enzyme levels, cytokines (IL-6, IL-10, and TNF-α) and apoptosis-related genes (Caspase-3), while hematopoietic cell kinase (HCK) decreased. Intriguingly, the modified HSCAS alleviated the DON-induced changes on serum antibody titer, and thymic histopathology, apoptosis, redox status, inflammation and apoptosis signaling. In conclusion, these findings help to explain the toxic effects and mechanisms of DON and demonstrated the modified HSCAS adsorbent could be used to reduce the toxicity of DON in weaning piglets.


Assuntos
Imunidade Adaptativa , Silicatos de Alumínio/química , Tricotecenos/toxicidade , Ração Animal/análise , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Catalase/metabolismo , Circovirus/imunologia , Citocinas/sangue , Dieta/veterinária , Contaminação de Alimentos/análise , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Proteínas Proto-Oncogênicas c-hck/genética , Proteínas Proto-Oncogênicas c-hck/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Superóxido Dismutase/metabolismo , Suínos , Timo/efeitos dos fármacos , Timo/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Virais/imunologia , Desmame
17.
Virology ; 540: 23-29, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31734380

RESUMO

Porcine circovirus type 2 (PCV2) is an economically important cause of post-weaning multisystemic wasting syndrome (PMWS) in weanling piglets. Current commercial vaccines against PCV2 are highly effective. Yet, a recurring emergence of new genotypes in vaccinated herds necessitates a better understanding of protective immunity. The study objectives were to identify previously unrecognized decoy epitopes in the PCV2 capsid and test the hypothesis that early antibody responses would map to decoy epitopes and vice versa. Using a peptide library spanning the PCV2a capsid and weekly sera collections from PCV2a infected animals, three major immunodominant regions mapping the early responses to decoy epitopes were identified. Regions with potential decoy activity were mapped using peptide blocking fluorescent focus inhibition assays to residues 55 YTVKATTVRTPSWAVDMM 72, 106 WPCSPITQGDRGVGSTAV 123 and 124 ILDDNFVTKATALTYDPY 141. Post-vaccination responses largely recognized these same three identified regions and dominated the antibody responses to PCV2 in both infection and vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Epitopos/imunologia , Doenças dos Suínos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/química , Infecções por Circoviridae/veterinária , Mapeamento de Epitopos , Epitopos/química , Imunização , Modelos Moleculares , Testes de Neutralização , Peptídeos/química , Peptídeos/imunologia , Relação Estrutura-Atividade , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas Virais/imunologia
18.
J Vet Sci ; 20(4): e35, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31364320

RESUMO

The major immunogenic protein capsid (Cap) of porcine circovirus type 2 (PCV2) is critical to induce neutralizing antibodies and protective immune response against PCV2 infection. This study was conducted to investigate the immune response of recombinant adenovirus expressing PCV2b Cap and C-terminal domain of Yersinia pseudotuberculosis invasin (Cap-InvC) fusion protein in pigs. The recombinant adenovirus rAd-Cap-InvC, rAd-Cap and rAd were generated and used to immunize pigs. The phosphate-buffered saline was used as negative control. The specific antibodies levels in rAd-Cap-InvC and ZJ/C-strain vaccine groups were higher than that of rAd-Cap group (p < 0.05), and the neutralization antibody titer in rAd-Cap-InvC group was significantly higher than those of other groups during 21-42 days post-immunization (DPI). Moreover, lymphocyte proliferative level, interferon-γ and interleukin-13 levels in rAd-Cap-InvC group were increased compared to rAd-Cap group (p < 0.05). After virulent challenge, viruses were not detected from the blood samples in rAd-Cap-InvC and ZJ/C-strain vaccine groups after 49 DPI. And the respiratory symptom, rectal temperature, lung lesion and lymph node lesion were minimal and similar in the ZJ/C-strain and rAd-Cap-InVC groups. In conclusion, our results demonstrated that rAd-Cap-InvC was more efficiently to stimulate the production of antibody and protect pigs from PCV2 infection. We inferred that InvC is a good candidate gene for further development and application of PCV2 genetic engineering vaccine.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Imunização/veterinária , Doenças dos Suínos/prevenção & controle , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Feminino , Proteínas Recombinantes/imunologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Vacinas Sintéticas/administração & dosagem , Yersinia pseudotuberculosis/genética
19.
J Appl Microbiol ; 127(3): 658-669, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183947

RESUMO

AIMS: Purification of porcine circovirus type 2 (PCV2) using Gram-positive enhancer matrix (GEM) surface display technology and immunogenicity evaluation of the purified antigen. METHODS AND RESULTS: A recombinant bifunctional protein containing a protein anchor domain and a 'virus anchor' domain was designed as a protein linker (PL) between PCV2 and GEM particles. By incubating with PL and GEM particles sequentially, PCV2 could be purified and enriched through a simple centrifugation process with GEM surface display technology. Our data showed that one unit (2·5 × 109 particles) of GEM particles with 80 µg PL could purify 100 ml of PCV2-containing culture supernatant (viral titre: 106·5 TCID50 per ml-1 ) with a recovery rate up to 99·6%. The impurity removal efficiency of this method, calculated according to decreased total protein content during purification, was approximately 98%. Furthermore, in vivo experimentation showed that piglets immunized with purified PCV2 could elicit strong immune responses to prevent against PCV2 infection. CONCLUSION: Porcine circovirus type 2 could be efficiently purified and enriched with GEM display technology via a crucial PL, and the purified PCV2 could elicit effective immune responses against PCV2 infection. SIGNIFICANCE AND IMPACT OF THE STUDY: The GEM-based purification method established here is cost-efficient and high-throughput, and may represent a promising large-scale purification method for PCV2 vaccine production.


Assuntos
Circovirus/imunologia , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Animais , Técnicas de Visualização da Superfície Celular , Infecções por Circoviridae/prevenção & controle , Proteínas Recombinantes , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
20.
Viruses ; 11(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212640

RESUMO

Porcine circovirus type 2 (PCV2) is the etiological agent of porcine circovirus diseases and porcine circovirus-associated diseases (PCVDs/PCVADs). However, the pathogenesis of PCV2 is not fully understood. We previously found that 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is negatively associated with PCV2 infection in vitro and in vivo. HMGCR inhibits the early stages of PCV2 infection, while PCV2 infection induces the phosphorylation of HMGCR to inactivate the protein. In this study, we investigated the possibility that adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and protein phosphatase 2 (PP2A) participate in HMGCR-mediated inhibition of PCV2 infection and the interaction of porcine HMGCR with PCV2 proteins. The results showed that AMPK activity fluctuated in cells during the early stage of PCV2 infection, while PP2A had little effect on PCV2 infection and HMGCR activity. Furthermore, PCV2 infection may enhance or maintain the level of phosphorylated HMGCR by directly interacting with the protein in PK-15 cells. These findings may provide a better understanding of PCV2 pathogenesis, and HMGCR may be a novel PCV2 antiviral target.


Assuntos
Circovirus/crescimento & desenvolvimento , Circovirus/imunologia , Interações Hospedeiro-Patógeno , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Ligação Proteica , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA