Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Parasit Vectors ; 17(1): 232, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769548

RESUMO

BACKGROUND: Schistosoma japonicum eggs lodge in the liver and induce a fibrotic granulomatous immune response in the liver of host. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. However, the pathology and molecular mechanisms promoting hepatic granuloma formation remain poorly understood. METHODS: To investigate the effect of blocking galectin-receptor interactions by α-lactose on liver immunopathology in mice with S. japonicum infection, C57BL/6 mice were infected with S. japonicum and alpha (α)-lactose was intraperitoneally injected to block the interactions of galectins and their receptors. RESULTS: Compared with S. japonicum-infected mice, there were significantly decreased Gal-3 mRNA and protein expression levels, decreased intensity of Gal-3 fluorescence in the liver, decreased serum ALT and AST levels, decreased egg numbers of S. japonicum in the liver section, attenuated hepatic and spleen pathology, and alleviated liver fibrosis accompanied with decreased protein expression levels of fibrosis markers [α-smooth muscle actin (α-SMA), collagen I, and collagen IV] in the liver of S. japonicum-infected mice blocked galectin-receptor interactions with hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry, or Western blot analysis. Compared with S. japonicum-infected mice, blocking galectin-receptor interactions led to increased eosinophil infiltration and higher eosinophil cationic protein (ECP) expression in the liver, accompanied by increased mRNA levels of eosinophil granule proteins [ECP and eosinophil peroxidase (EPO)], IL-5, CCL11, and CCR3 in the liver and decreased mRNA levels of Gal-3 and M2 macrophage cytokines (TGF-ß, IL-10, and IL-4) in the liver and spleen by using quantitative real-time reverse transcription-polymerase chain reaction. In addition, there were increased Beclin1 protein expression and protein expression ratio of LC3B-II/LC3B-I and decreased p62 protein expression and protein expression ratios of phospho-mTOR/mTOR and phospho-AKT/AKT by Western blot; increased double-labeled F4/80+/LC3B+ cells by immunofluorescence staining; increased M1 macrophage polarization in the liver of S. japonicum-infected mice blocked galectin-receptor interactions by flow cytometric analysis and immunofluorescence staining. CONCLUSIONS: Our data found that blockage of galectin-receptor interactions downregulated Gal-3, which in turn led to reduced liver functional damage, elevated liver eosinophil recruitment, promoted macrophage autophagy through the Akt/mTOR signaling pathway, and alleviated liver pathology and fibrosis. Therefore, Gal-3 plays a pivotal role during S. japonicum infection and could be a target of pharmacologic potential for liver fibrosis induced by S. japonicum infection.


Assuntos
Galectina 3 , Cirrose Hepática , Camundongos Endogâmicos C57BL , Schistosoma japonicum , Esquistossomose Japônica , Animais , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/complicações , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Galectina 3/metabolismo , Galectina 3/genética , Fígado/parasitologia , Fígado/patologia , Fígado/metabolismo , Feminino , Lactose/farmacologia , Lactose/análogos & derivados , Galectinas/metabolismo , Galectinas/genética
2.
Front Med ; 18(3): 538-557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769281

RESUMO

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.


Assuntos
Autofagia , Exossomos , Cirrose Hepática , MicroRNAs , Células-Tronco , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Camundongos , Humanos , Exossomos/metabolismo , Células-Tronco/metabolismo , Células Estreladas do Fígado/metabolismo , Esquistossomose Japônica/metabolismo , Masculino , Schistosoma japonicum/genética , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esquistossomose/complicações , Fígado/patologia , Fígado/metabolismo , Fígado/parasitologia
3.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598555

RESUMO

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Assuntos
Vesículas Extracelulares , Cirrose Hepática , Schistosoma japonicum , Esquistossomose Japônica , Animais , Vesículas Extracelulares/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/patologia , Camundongos , Interações Hospedeiro-Parasita/fisiologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/parasitologia , Células Estreladas do Fígado/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais , Humanos , Proteínas de Helminto/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL
4.
Parasitology ; 151(3): 260-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105713

RESUMO

Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Humanos , Camundongos , Animais , Esquistossomose Japônica/complicações , Esquistossomose Japônica/parasitologia , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Células Endoteliais , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Fígado/patologia , Inflamação/patologia
5.
PLoS Negl Trop Dis ; 17(5): e0011325, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167198

RESUMO

Clonorchis sinensis is a zoonotic parasite associated with liver fibrosis and cholangiocarcinoma development. The role of toll-like receptors (TLRs) in C. sinensis infection has not yet been fully elucidated. Here, the TLR3 signaling pathway, cytokine expression and liver fibrosis were examined in C. sinensis-infected wildtype (WT) and TLR3-/- mice. Polyinosinic-polycytidylic acid (Poly (I:C)) was used to treat C. sinensis infections. The results showed that TLR3 deficiency caused severe clonorchiasis with increased parasite burden, exacerbated proinflammatory cytokine expression and liver lesions, promoted the TGF-ß1/Smad2/3 pathway and myofibroblast activation, exacerbated liver fibrosis (compared to WT mice). Poly (I:C) intervention increased the body weight, decreased mouse mortality and parasite burden, reduced liver inflammation, and alleviated C. sinensis-induced liver fibrosis. Furthermore, C. sinensis extracellular vesicles (CsEVs) promote the production of IL-6, TNF in WT biliary epithelial cells (BECs) via p38/ERK pathway, compared with control group, while TLR3 deletion induced much higher levels of IL-6 and TNF in TLR3-/- BECs than that in WT BECs. Taken together, TLR3 inhibit IL-6 and TNF production via p38/ERK signaling pathway, a phenomenon that resulted in the alleviation of C. sinensis-induced liver fibrosis. Poly (I:C) is a potential treatment for clonorchiasis.


Assuntos
Clonorquíase , Cirrose Hepática , Receptor 3 Toll-Like , Animais , Camundongos , Clonorquíase/complicações , Clonorchis sinensis , Citocinas/metabolismo , Interleucina-6/metabolismo , Fígado/parasitologia , Cirrose Hepática/parasitologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
6.
Mol Biochem Parasitol ; 252: 111523, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195241

RESUMO

Schistosomiasis is a common parasitic disease. Hepatosplenic schistosomiasis, caused by Schistosoma japonicum and Schistosoma mansoni, involves pathological changes, including worm egg-induced hepatic granuloma and fibrosis, which can markedly affect the liver's physiological functions. Although the drug praziquantel (PZQ) is used to treat schistosomiasis, drugs against schistosomiasis-induced liver fibrosis are rare in the clinical setting. Therefore, developing effective strategies to prevent and treat schistosomiasis-induced liver fibrosis is crucial. Previous studies have shown that miRNAs are involved in various liver diseases. In this study, we found a gradual increase in miR-181b expression in the murine liver as S. japonicum infection progressed, while the expression of Smad7 decreased. Down-regulating miR-181b significantly alleviated S. japonicum-induced hepatic granuloma and liver fibrosis. In vitro experiments showed that treatment with TGF-ß1 upregulated miR-181b levels in the hepatic stellate cell (HSC) line LX2 in a concentration- and time-dependent manner. Downregulation of miR-181b significantly decreased collagen type I alpha 1 chain (COL1A1) expression in TGF-ß1-stimulated LX2 cells. These findings indicate that miR-181b promotes HSC activation by down-regulating Smad7 expression, activating the TGF-ß1/Smad signaling pathway, and leading to excess collagen expression and deposition. Our findings suggest that miR-181b might be a potentially novel therapeutic target for schistosomiasis-induced liver fibrosis.


Assuntos
Cirrose Hepática , MicroRNAs , Esquistossomose , Proteína Smad7 , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado , Cirrose Hepática/genética , Cirrose Hepática/parasitologia , MicroRNAs/genética , Esquistossomose/complicações , Esquistossomose/patologia , Fator de Crescimento Transformador beta1/farmacologia , Proteína Smad7/genética , Proteína Smad7/metabolismo
7.
Parasit Vectors ; 14(1): 593, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857049

RESUMO

BACKGROUND: Echinococcus multilocularis is the causative agent of human hepatic alveolar echinococcosis (AE). AE can cause damage to several organs, primarily the liver, and have severe outcomes, such as hepatic failure and encephalopathy. The main purpose of this study was to explore the interactions between hepatic stellate cells (HSCs) and E. multilocularis protoscoleces (PSCs). The results of this study provide an experimental basis for further examination of the pathogenesis of hepatic fibrosis due to AE infection. METHODS: We investigated the role of Echinococcus multilocularis (Echinococcus genus) PSCs in hepatic fibrosis by examining structural changes and measuring hepatic fibrosis-related protein levels in cocultures of PSCs and human HSCs. Structural changes were detected by transmission electron microscopy (TEM), and levels of the hepatic fibrosis-related proteins collagen I (Col-I), alpha-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured by western blotting and enzyme-linked immunosorbent assay (ELISA). RESULTS: Under coculture (1) both PSCs and HSCs exhibited morphological changes, as observed by TEM; (2) Col-I, α-SMA, and OPN expression levels, which were determined by western blotting and ELISA, significantly increased after 3 days of incubation. CONCLUSIONS: The results of this study provide insights into the molecular mechanisms of AE-induced hepatic fibrosis.


Assuntos
Actinas/análise , Colágeno/análise , Equinococose Hepática/parasitologia , Echinococcus multilocularis/ultraestrutura , Cirrose Hepática/parasitologia , Osteopontina/análise , Animais , Técnicas de Cocultura , Equinococose Hepática/complicações , Echinococcus multilocularis/metabolismo , Gerbillinae , Células Estreladas do Fígado/parasitologia , Células Estreladas do Fígado/ultraestrutura , Humanos , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Microscopia Eletrônica de Transmissão
8.
Front Immunol ; 12: 754208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733286

RESUMO

The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that ß2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, ß2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the ß2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.


Assuntos
Clonorquíase/complicações , Cirrose Hepática Biliar/imunologia , Cirrose Hepática/imunologia , Ativação de Macrófagos , Neuroimunomodulação/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Ductos Biliares/parasitologia , Ductos Biliares/patologia , Células Cultivadas , Clonorquíase/imunologia , Clonorquíase/fisiopatologia , Citocinas/sangue , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/parasitologia , Cirrose Hepática Biliar/patologia , Sistema de Sinalização das MAP Quinases , Macrófagos/classificação , Macrófagos/imunologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos Knockout , Receptores Adrenérgicos beta 2/deficiência , Organismos Livres de Patógenos Específicos
9.
Exp Parasitol ; 231: 108171, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736899

RESUMO

Schistosomiasis is a prevalent zoonotic parasitic disease caused by schistosomes. Its main threat to human health is hepatic granuloma and fibrosis due to worm eggs. Praziquantel remains the first choice for the treatment of schistosomiasis but has limited benefit in treating liver fibrosis. Therefore, the need to develop effective drugs for treating schistosomiasis-induced hepatic fibrosis is urgent. High-mobility group box 1 protein (HMGB1) is a potential immune mediator that is highly associated with the development of some fibrotic diseases and may be involved in the liver pathology of schistosomiasis. We speculated that HMGB1 inhibitors could have an anti-fibrotic effect. Sodium butyrate (SB), a potent inhibitor of HMGB1, has shown anti-inflammatory activity in some animal disease models. In this study, we evaluated the effects of SB on a murine schistosomiasis model. Mice were percutaneously infected with 20 ± 2 cercariae of Schistosoma japonicum. SB (500 mg/kg/day) was administered every 3 days for the entire experiment period. The activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology, HMGB1 expression, and the levels of interferon gamma (IFN-γ), transforming growth factor-ß1 (TGF-ß1), and interleukin-6 (IL-6) in serum were analyzed. SB reduced hepatic granuloma and fibrosis of schistosomiasis, reflected by the decreased levels of ALT and AST in serum and the reduced expression of pro-inflammatory and fibrogenic cytokines (IFN-γ, TGF-ß1, and IL-6). The protective effect could be attributable to the inhibition of the expression of HMGB1 and release by SB.


Assuntos
Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Cirrose Hepática/tratamento farmacológico , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Alanina Transaminase/análise , Animais , Aspartato Aminotransferases/análise , Western Blotting , Citocinas/sangue , Modelos Animais de Doenças , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Proteína HMGB1/genética , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/parasitologia , Cirrose Hepática/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Esquistossomose Japônica/complicações , Esquistossomose Japônica/imunologia , Organismos Livres de Patógenos Específicos , Zoonoses/parasitologia
10.
Stem Cell Res Ther ; 12(1): 546, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674752

RESUMO

BACKGROUND: Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent or quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remains unknown. METHODS: In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in the mice model of S. japonicum infection at different infectious stages. For validating the role of HPCs in hepatic injury, tumor necrosis factor-like-weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs in wild-type and IL-33-/- mice infected with S. japonicum. RESULTS: We found that the proliferation of HPCs was accompanied by inflammatory granulomas and fibrosis formation. HPCs expansion promoted liver regeneration and inhibited inflammatory egg granulomas, as well as the deposition of fibrotic collagen. Interestingly, the expression of IL-33 was negatively associated with HPCs' expansion. There were no obvious differences of liver injury caused by infection between wild-type and IL-33-/- mice with HPCs' expansion. However, liver injury was more attenuated in IL-33-/- mice than wild-type mice when the proliferation of HPCs was inhibited by anti-TWEAK. CONCLUSIONS: Our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33-dependent manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis.


Assuntos
Interleucina-33 , Cirrose Hepática/parasitologia , Esquistossomose Japônica , Células-Tronco , Animais , Interleucina-33/genética , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Schistosoma japonicum , Esquistossomose Japônica/patologia
11.
Biomed Pharmacother ; 144: 112281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624676

RESUMO

Schistosomiasis is a serious parasitic infection caused by Schistosoma. The parasite deposits eggs in the host liver, causing inflammation that activates hepatic stellate cells (HSCs), which leads to liver fibrosis. Currently, there is no effective therapy for liver fibrosis; thus, treatments are urgently needed. Therefore, in the present study, mice infected with Schistosoma japonicum were treated with JQ-1, a small-molecule bromodomain inhibitor with reliable anti-tumor and anti-inflammatory activities. The fibrotic area of the liver measured by computer-assisted morphometric analysis and the expression levels of the cytoskeletal protein alpha smooth muscle actin (α-SMA) and of collagen assessed by quantitative PCR, Western blot and immunohistochemistry were significantly decreased in the liver following JQ-1 treatment compared with vehicle-treated controls. Total RNA was extracted from the liver of JQ-1-treated Schistosoma-infected mice for RNA-sequencing analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that JQ-1 affected biological processes and the expression of cellular components known to play key roles in the transdifferentiation of HSCs to myofibroblasts. In vitro treatment with JQ-1 of JS-1 cells, a mouse HSC line, indicated that JQ-1 significantly inhibited JS-1 proliferation but had no effect on JS-1 activity, senescence, or apoptosis. Western blot results showed that JQ-1 inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3 without altering expression levels of these non-phosphorylated proteins. Taken together, these findings suggested that JQ-1 treatment ameliorated S. japonicum egg-induced liver fibrosis, at least in part, by suppressing HSC activation and proliferation through the inhibition of JAK2/STAT3 signaling. These results lay a foundation for the development of novel approaches to treat and control liver fibrosis caused by S. japonicum.


Assuntos
Antifibróticos/farmacologia , Azepinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Janus Quinase 2/metabolismo , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Schistosoma japonicum/patogenicidade , Esquistossomose/tratamento farmacológico , Triazóis/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/parasitologia , Células Estreladas do Fígado/patologia , Interações Hospedeiro-Patógeno , Fígado/enzimologia , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Esquistossomose/enzimologia , Esquistossomose/parasitologia , Esquistossomose/patologia , Transdução de Sinais
12.
Parasit Vectors ; 14(1): 472, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521449

RESUMO

BACKGROUND: Various stimuli, including Clonorchis sinensis infection, can cause liver fibrosis. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) with massive production of extracellular matrix (ECM). Our previous study showed that the TGF-ß1-induced Smad signaling pathway played a critical role in the activation of HSCs during liver fibrosis induced by worm infection; however, the mechanisms that modulate the TGF-ß/Smad signaling pathway are still poorly understood. Accumulating evidence demonstrates that miRNAs act as an important regulator of activation of HSCs during liver fibrosis. METHODS: The target of miR-497 was determined by bioinformatics analysis combined with a dual-luciferase activity assay. LX-2 cells were transfected with miR-497 inhibitor and then stimulated with TGF-ß1 or excretory/secretory products of C. sinensis (CsESPs), and activation of LX-2 was assessed using qPCR or western blot. In vivo, the mice treated with CCl4 were intravenously injected with a single dose of adeno-associated virus serotype 8 (AAV8) that overexpressed anti-miR-497 sequences or their scramble control for 6 weeks. Liver fibrosis and damage were assessed by hematoxylin and eosin (H&E) staining, Masson staining, and qPCR; the activation of the TGF-ß/Smad signaling pathway was detected by qPCR or western blot. RESULTS: In the present study, the expression of miR-497 was increased in HSCs activated by TGF-ß1 or ESPs of C. sinensis. We identified that Smad7 was the target of miR-497 using combined bioinformatics analysis with luciferase activity assays. Transfection of anti-miR-497 into HSCs upregulated the expression of Smad7, leading to a decrease in the level of p-Smad2/3 and subsequent suppression of the activation of HSCs induced by TGF-ß1 or CsESPs. Furthermore, miR-497 inhibitor delivered by highly-hepatotropic (rAAV8) inhibited TGF-ß/smads signaling pathway by targeting at Smad7 to ameliorate CCL4-induced liver fibrosis. CONCLUSIONS: The present study demonstrates that miR-497 promotes liver fibrogenesis by targeting Smad7 to promote TGF-ß/Smad signaling pathway transduction both in vivo and in vitro, which provides a promising therapeutic strategy using anti-miR-497 against liver fibrosis.


Assuntos
Clonorquíase/parasitologia , Clonorchis sinensis/fisiologia , Cirrose Hepática/parasitologia , MicroRNAs/genética , Transdução de Sinais , Animais , Células Estreladas do Fígado , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
13.
Front Immunol ; 12: 696069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421906

RESUMO

Emerging evidences have highlighted the crucial role of microRNAs (miRNAs) in the liver cirrhosis, but the relationship between miR-130a-3p and liver cirrhosis is not entirely clear. As we all know, schistosomiasis, as one of the zoonoses, can lead to liver cirrhosis when it advances. In this study, we investigated the biological functions of miR-130a-3p on the liver fibrosis of schistosomiasis in vivo and in vitro. The mice infected with Schistosoma japonicum (S. japonicum) were treated with lentivirus vector (LV)-miR-130a-3p by hydrodynamic injection through the tail vein. Our findings showed significantly decreased expression of miR-130a-3p both in the serum of patients with cirrhosis and in the liver of mice infected with S. japonicum. The results showed that LV-miR-130a-3p could effectively enter into the liver and alleviate liver granulomatous inflammation and collagen deposition. Simultaneously, LV-miR-130a-3p-promoted macrophages presented the Ly6Clo phenotype, concomitant with the decreased expression of the tissue inhibitor of metalloproteinases (TIMP) 1, and increased the expression of matrix metalloproteinase (MMP) 2, which contributed to the dissolution of collagen. Furthermore, overexpression of miR-130a-3p not only inhibited the activation and proliferation of hepatic stellate cells (HSCs) but also induced the apoptosis of HSCs. In addition, we also confirmed that miR-130a-3p enables to bind with mitogen-activated protein kinase (MAPK) 1 and transforming growth factor-beta receptors (TGFBR) 1 and TGFBR2 genes and inhibit the expressions of these genes. Our findings suggested that miR-130a-3p might represent as the potential candidate biomarker and therapeutic target for the prognosis identification and treatment of schistosomiasis liver fibrosis.


Assuntos
Antígenos Ly/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/prevenção & controle , Fígado/parasitologia , Macrófagos/metabolismo , MicroRNAs/administração & dosagem , Schistosoma japonicum/patogenicidade , Esquistossomose Japônica/prevenção & controle , Animais , Apoptose , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/parasitologia , Interações Hospedeiro-Parasita , Humanos , Fígado/imunologia , Fígado/metabolismo , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia , Transdução de Sinais
14.
Acta Trop ; 221: 106029, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216561

RESUMO

Human cystic echinococcosis (CE) is characterized by lesion microenvironment formation through gathering various immune cells, including macrophages. However, immune cell subsets and heterogeneous macrophages in CE lesion microenvironment are poorly defined. Massive infiltrating immune cells formed lesion microenvironment, among which CD4+T cells and CD19+B cells were predominant and CD68+ macrophages were more evident in patients with active cysts. Different degrees of liver fibrosis was observed in Peri-Lesion (PL) liver samples, which was more evident in patients with active cysts. Expression of both M1 and M2 macrophage markers was significantly increased in PL liver samples. Importantly, elevation of M1 macrophage markers was more obvious in patients with inactive cysts, whereas M2 macrophage markers represented dominant macrophage phenotype in patients with active cysts. Additionally, macrophage-derived MIF, TGF-ß1 and ECM1 were also expressed at higher level in CE lesion microenvironment of patients with active cysts. Moreover, MIF was evidently enhanced in the serum of hepatic CE patients, which was also predominant in patients with active cysts. Correlation analysis demonstrated positive correlation between expression of macrophage-derived cytokines and liver fibrosis degree. Heterogeneous macrophages may play significant roles in liver fibrosis of CE lesion microenvironment through producing pro-fibrogenic cytokines.


Assuntos
Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Equinococose Hepática/imunologia , Macrófagos/citologia , Cistos , Proteínas da Matriz Extracelular , Humanos , Cirrose Hepática/parasitologia
15.
PLoS Negl Trop Dis ; 15(6): e0009554, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161342

RESUMO

Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.


Assuntos
Anti-Inflamatórios/farmacologia , Lignanas/farmacologia , Cirrose Hepática/tratamento farmacológico , Compostos Policíclicos/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Inflamassomos/efeitos dos fármacos , Cirrose Hepática/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Schistosoma mansoni/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/parasitologia
16.
Parasit Vectors ; 14(1): 232, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933138

RESUMO

BACKGROUND: Schistosoma japonicum is a parasitic flatworm that is the aetiological agent of human schistosomiasis, an important cause of hepatic fibrosis. Schistosomiasis-induced hepatic fibrosis is a consequence of the highly fibrogenic nature of egg-induced granulomatous lesions, which are the main pathogenic features of schistosomiasis. Although global awareness of the association between schistosomiasis-induced hepatic fibrosis and S. japonicum infection is increasing, little is known about the molecular differences associated with rapid progression to schistosomiasis in cirrhotic patients. METHODS: We systematically used data-independent acquisition (DIA)-based liquid chromatography-mass spectrometry to identify differentially expressed proteins in serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. RESULTS: Our analysis identified 1144 proteins, among which 66 were differentially expressed between the healthy control group and the group of patients with advanced S. japonicum-induced hepatic fibrosis stage F2 (SHF-F2) and 214 were differentially expressed between the SHF-F2 and SHF-F4 groups (up- or downregulation of at least 1.5-fold in serum samples). The results also indicated that two selected proteins (C1QA and CFD) are potential biomarkers for distinguishing between patients with SHF-F2 and those with SHF-F4 due to S. japonicum infection. CONCLUSIONS: We provide here the first global proteomic profile of serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. The proteins C1QA and CFD are potential diagnostic markers for patients with SHF-F2 and SHF-F4 due to S. japonicum infection, although further large-scale studies are needed. Our DIA-based quantitative proteomic analysis revealed molecular differences among individuals at different stages of advanced S. japonicum-induced hepatic fibrosis and may provide fundamental information for further detailed investigations.


Assuntos
Biomarcadores/sangue , Cirrose Hepática , Esquistossomose Japônica , Idoso , Idoso de 80 Anos ou mais , Animais , Cromatografia Líquida , Complemento C1q/metabolismo , Fator D do Complemento/metabolismo , Feminino , Humanos , Fatores Imunológicos/metabolismo , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Masculino , Espectrometria de Massas , Proteômica , Schistosoma japonicum
17.
Trop Biomed ; 38(1): 22-27, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797519

RESUMO

This work was carried out to investigate the effect of silymarin combination in the therapeutic plane of schistosomiasis with praziquantel or mirazid to enhance the liver and reduce fibrosis. Mice were divided into 2 main groups, the 1st uninfected group served as control and the 2nd group infected subcutaneously with 60 cercaria of S. mansoni per each. The infected group was subdivided into 5 subgroups, the 1st kept untreated, the 2nd and 3rd treated at the 7th week of infection with (600 mg/kg) of PZQ orally for 3 consecutive days, while the 3rd treated also orally with (150 mg/kg) of silymarin daily for 11 weeks. The 4th and 5th groups treated orally at the 7th week of infection with 600 mg/kg of MZ for 3 consecutive days, while the 5th group treated orally also with 150 mg/kg of silymarin daily for 11weeks. IgG determination showed high level in the untreated infected group. Furthermore, the infected groups treated with PZQ and PZQ with silymarin displayed the lower levels than treated with MZ. Additionally, the untreated infected group showed severe pathological changes as hyaline degeneration, inflammation, presence of worm burdens in dilated portal veins, granulomas as well as depositions of collagenous and reticular fibers indicated intense fibrosis. Treatment with PZQ alone resulted in reduction of pathological signs and decreasing of granulomas. Combination with silymarin to PZQ therapy revealed more improvement for liver besides to lowering of granulomas areas and volumes and decreasing of fibrosis. Whereas, treatment with MZ was less effective than PZQ to reduce granulomas areas, volumes and fibrosis. Although, combination of silymarin to MZ treatment resulted in more curative signs and reduction of granulomas areas, volumes and fibrosis. Furthermore, the present study concluded that PZQ still the more effective drug of schistosomiasis treatment than MZ. The silymarin is very useful in schistosomiasis treatment when combined with PZQ or MZ due to its anti-fibrotic effect.


Assuntos
Praziquantel/farmacologia , Resinas Vegetais/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/farmacologia , Silimarina/farmacologia , Animais , Commiphora , Quimioterapia Combinada , Granuloma/tratamento farmacológico , Granuloma/parasitologia , Fígado/parasitologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/parasitologia , Masculino , Camundongos
18.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257536

RESUMO

Schistosomiasis is a parasitic helminth disease that can cause organ lesions leading to health damage. During a schistosome infection, schistosome eggs can flow into the liver along the portal vein. Numerous inflammatory cells gather around the eggs, causing granulomas and fibrosis in the liver. In this process, many molecules are involved in the initiation and regulation of the fibrous scar formation. However, the precise molecular mechanisms responsible for the progression of granuloma formation and fibrosis initiation caused by schistosome infection have not been extensively studied. In this study, C57BL/6 wild-type mice and Stat3flox/flox Alb-Cre mice were infected with cercariae of Schistosoma japonicum Liver injury, effector molecule levels, and RNA transcriptome resequencing of liver tissue were detected at 4, 5, and 6 weeks postinfection. We investigated the role of STAT3 (signal transducer and activator of transcription 3) in Schistosoma-induced liver injury in mice. After 6 weeks postinfection, there was obvious liver fibrosis. A sustained pathological process (inflammation, oxidative stress, proliferation, and apoptosis) occurred in S. japonicum-induced liver fibrosis initiation. Meanwhile, we observed activation of the STAT3 pathway in hepatic injury during S. japonicum infection by RNA transcriptome resequencing. Liver deficiency of phospho-STAT3 alleviated infection-induced liver dysfunction, hepatic granuloma formation, and fibrosis initiation. It also promoted STAT3-dependent apoptosis and reduced liver inflammation, oxidative stress, and proliferation. Our results suggest that STAT3 signal pathway and its mediating inflammation, oxidative stress, proliferation, and apoptosis are involved in S. japonicum-induced liver injury and may be a new potential guideline for the treatment of schistosomiasis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Inflamação/genética , Cirrose Hepática/genética , Estresse Oxidativo/genética , Fator de Transcrição STAT3/genética , Esquistossomose Japônica/genética , Animais , Inflamação/parasitologia , Cirrose Hepática/parasitologia , Schistosoma japonicum/genética , Esquistossomose Japônica/patologia
19.
Sci Rep ; 10(1): 15724, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973293

RESUMO

Cachexia is a progressive muscle wasting disease that contributes to death in a wide range of chronic diseases. Currently, the cachexia field lacks animal models that recapitulate the long-term kinetics of clinical disease, which would provide insight into the pathophysiology of chronic cachexia and a tool to test therapeutics for disease reversal. Toxoplasma gondii (T. gondii) is a protozoan parasite that uses conserved mechanisms to infect rodents and human hosts. Infection is lifelong and has been associated with chronic weight loss and muscle atrophy in mice. We have recently shown that T. gondii-induced muscle atrophy meets the clinical definition of cachexia. Here, the longevity of the T. gondii-induced chronic cachexia model revealed that cachectic mice develop perivascular fibrosis in major metabolic organs, including the adipose tissue, skeletal muscle, and liver by 9 weeks post-infection. Development of cachexia, as well as liver and skeletal muscle fibrosis, is dependent on intact signaling through the type I IL-1R receptor. IL-1α is sufficient to activate cultured fibroblasts and primary hepatic stellate cells (myofibroblast precursors in the liver) in vitro, and IL-1α is elevated in the sera and liver of cachectic, suggesting a mechanism by which chronic IL-1R signaling could be leading to cachexia-associated fibrosis.


Assuntos
Caquexia/parasitologia , Cirrose Hepática/parasitologia , Músculo Esquelético/parasitologia , Receptores de Interleucina-1/metabolismo , Toxoplasmose/complicações , Animais , Caquexia/metabolismo , Caquexia/patologia , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Interleucina-1alfa/farmacologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/parasitologia , Atrofia Muscular/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/fisiologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
20.
Parasite Immunol ; 42(12): e12785, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786078

RESUMO

AIMS: The Schistosoma japonicum (S japonicum)-infected ApoE gene deficiency (ApoE-/- ) mice were used to determine effect of ApoE on hepatic immunopathology. METHODS: Murine activities and appetite, body weight, and ratio of liver weight to its body weight (Hepatic mass index, HMI) were observed. Worm load and liver egg burden were evaluated as the infection intensity. Number and size of liver egg granulomas and serum levels of alanine aminotransferase (ALT) were investigated. We analysed hepatic fibrosis by markers of fibrosis in tissue, detected hepatic Th17 and Treg frequency by flow cytometry, and measured hepatic expressions of RORγt, Foxp3, IL-17A and TGF-ß1 via qPCR. Lipid metabolism was determined by serum levels of cholesterol (TC) and triglyceride (TG) as well as hepatic Oil red O staining. RESULTS: In the infected ApoE-/- mice, the increased infection intensity aggravated the hepatic immunopathology (evidenced by increased HMI, elevated egg granulomas and increased ALT levels) and fibrosis (increased hepatic collagen deposition). ApoE deficiency resulted in significantly elevated ratio of hepatic Th17/Treg and higher serum levels of TC and TG, along with higher level of hepatic Oil red O staining. CONCLUSIONS: ApoE deficiency promotes hepatic pathology and fibrosis by exacerbating Th17/Treg imbalance and altering lipid metabolism in murine schistosomiasis japonica.


Assuntos
Apolipoproteínas E/deficiência , Esquistossomose Japônica/imunologia , Esquistossomose Japônica/patologia , Linfócitos T Reguladores/patologia , Células Th17/patologia , Animais , Apolipoproteínas E/genética , Feminino , Metabolismo dos Lipídeos , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Camundongos , Carga Parasitária , Schistosoma japonicum/patogenicidade , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA