Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Antiviral Res ; 229: 105977, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089332

RESUMO

Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog ß-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 µM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.


Assuntos
Amidas , Antivirais , Citidina , Vírus da Raiva , Raiva , Carga Viral , Animais , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Vírus da Raiva/efeitos dos fármacos , Camundongos , Raiva/tratamento farmacológico , Raiva/virologia , Amidas/farmacologia , Carga Viral/efeitos dos fármacos , Pirazinas/farmacologia , Ribavirina/farmacologia , Hidroxilaminas/farmacologia , Linhagem Celular Tumoral , Linhagem Celular
2.
Clin Transl Med ; 14(7): e1747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961519

RESUMO

BACKGROUND: Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS: GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS: Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION: Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Acetiltransferases N-Terminal , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Support Care Cancer ; 32(8): 496, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980433

RESUMO

PURPOSE: Immunocompromised individuals, such as those diagnosed with cancer, are at a significantly higher risk for severe illness and mortality when infected with SARS-CoV-2 (COVID-19) than the general population. Two oral antiviral treatments are approved for COVID-19: Paxlovid® (nirmatrelvir/ritonavir) and Lagevrio® (molnupiravir). There is a paucity of data regarding the benefit from these antivirals among immunocompromised patients with cancer, and recent studies have questioned their efficacy among vaccinated patients, even those with risk factors for severe COVID-19. METHODS: We evaluated the efficacy and safety of nirmatrelvir/ritonavir and molnupiravir in preventing severe illness and death using our database of 457 patients with cancer and COVID-19 from Brown University-affiliated hospitals. RESULTS: Sixty-seven patients received nirmatrelvir/ritonavir or molnupiravir and were compared to 45 concurrent controls who received no antiviral treatment despite being eligible to receive it. Administration of nirmatrelvir/ritonavir or molnupiravir was associated with improved survival and lower 90-day all-cause and COVID-19-attributed mortality (p < 0.05) and with lower peak O2 requirements (ordinal odds ratio [OR] 1.52, 95% confidence interval [CI] 0.92-2.56). CONCLUSION: Acknowledging the small size of our sample as a limitation, we concluded that early antiviral treatment might be beneficial to immunocompromised individuals, particularly those with cancer, when infected with SARS-CoV-2. Larger-scale, well-stratified studies are needed in this patient population.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Neoplasias , Ritonavir , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/complicações , Masculino , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Feminino , Pessoa de Meia-Idade , Idoso , Ritonavir/uso terapêutico , Ritonavir/administração & dosagem , Administração Oral , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/administração & dosagem , Hidroxilaminas/uso terapêutico , Hidroxilaminas/administração & dosagem , COVID-19 , Adulto , Hospedeiro Imunocomprometido , Leucina/análogos & derivados , Leucina/uso terapêutico , Idoso de 80 Anos ou mais , SARS-CoV-2 , Estudos Retrospectivos
4.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830792

RESUMO

AIMS: Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. METHODS AND RESULTS: A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. CONCLUSIONS: ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.


Assuntos
Citidina , Escherichia coli , Engenharia Metabólica , Mutagênese , Escherichia coli/genética , Escherichia coli/metabolismo , Citidina/genética , Citidina/metabolismo , Gases em Plasma , Reatores Biológicos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Fermentação , Temperatura
5.
J Infect Public Health ; 17(8): 102465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878678

RESUMO

BACKGROUNDS: The effectiveness of oral antiviral therapy including nirmatrelvir plus ritonavir and molnupiravir in managing COVID-19 among individuals with pre-existing lung cancer was unclear. Therefore, this study was conducted to evaluate the usefulness of antiviral agents in the management of COVID-19 among patients with lung cancer. METHODS: Utilizing data from the TriNetX - a global health research network, a retrospective cohort study was conducted involving 2484 patients diagnosed with both lung cancer and COVID-19. Propensity score matching (PSM) was employed to create well-balanced cohorts. The study assessed the primary outcome of all-cause hospitalization or mortality within a 30-day follow-up. RESULTS: After PSM, the oral antiviral group exhibited a significantly lower risk of the primary composite outcome compared to the control group (6.1 % vs. 9.9 %; HR: 0.60; 95 % CI: 0.45-0.80). This association was consistent across various subgroups according to age, sex, vaccine status, type of oral antiviral agent, and lung cancer characteristics. Additionally, the oral antiviral group showed a lower risk of all-cause hospitalization (HR: 0.73; 95 % CI: 0.54-0.99) and a significantly lower risk of mortality (HR: 0.16; 95 % CI: 0.06-0.41). CONCLUSION: The study suggests a favorable impact of oral antiviral therapy on the outcomes of COVID-19 in individuals with lung cancer and support the potential utility of oral antiviral agents in improving outcomes in this vulnerable population.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Neoplasias Pulmonares , Ritonavir , SARS-CoV-2 , Humanos , Masculino , Feminino , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Ritonavir/uso terapêutico , Ritonavir/administração & dosagem , Administração Oral , Hospitalização/estatística & dados numéricos , COVID-19/mortalidade , Hidroxilaminas/uso terapêutico , Hidroxilaminas/administração & dosagem , Resultado do Tratamento , Combinação de Medicamentos , Citidina/análogos & derivados
6.
RNA ; 30(7): 938-953, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697668

RESUMO

The functional analysis of epitranscriptomic modifications in RNA is constrained by a lack of methods that accurately capture their locations and levels. We previously demonstrated that the RNA modification N4-acetylcytidine (ac4C) can be mapped at base resolution through sodium borohydride reduction to tetrahydroacetylcytidine (tetrahydro-ac4C), followed by cDNA synthesis to misincorporate adenosine opposite reduced ac4C sites, culminating in C:T mismatches at acetylated cytidines (RedaC:T). However, this process is relatively inefficient, resulting in <20% C:T mismatches at a fully modified ac4C site in 18S rRNA. Considering that ac4C locations in other substrates including mRNA are unlikely to reach full penetrance, this method is not ideal for comprehensive mapping. Here, we introduce "RetraC:T" (reduction to tetrahydro-ac4C and reverse transcription with amino-dATP to induce C:T mismatches) as a method with enhanced ability to detect ac4C in cellular RNA. In brief, RNA is reduced through NaBH4 or the closely related reagent sodium cyanoborohydride (NaCNBH3) followed by cDNA synthesis in the presence of a modified DNA nucleotide, 2-amino-dATP, that preferentially binds to tetrahydro-ac4C. Incorporation of the modified dNTP substantially improved C:T mismatch rates, reaching stoichiometric detection of ac4C in 18S rRNA. Importantly, 2-amino-dATP did not result in truncated cDNA products nor increase mismatches at other locations. Thus, modified dNTPs are introduced as a new addition to the toolbox for detecting ac4C at base resolution.


Assuntos
Citidina , DNA Complementar , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , Citidina/genética , DNA Complementar/genética , RNA/genética , RNA/química , RNA/metabolismo , Humanos , Boroidretos/química , Oxirredução , Transcrição Reversa , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo
7.
Commun Biol ; 7(1): 587, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755254

RESUMO

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Assuntos
Apresentação de Antígeno , Citidina , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Curr Opin Genet Dev ; 87: 102207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820741

RESUMO

N4-acetylcytidine (ac4C) is an RNA modification that is catalyzed by the enzyme NAT10. Constitutively found in tRNA and rRNA, ac4C displays a dynamic presence in mRNA that is shaped by developmental and induced shifts in NAT10 levels. However, deciphering ac4C functions in mRNA has been hampered by its context-dependent influences in translation and the complexity of isolating effects on specific mRNAs from other NAT10 activities. Recent advances have begun to overcome these obstacles by leveraging natural variations in mRNA acetylation in cancer, developmental transitions, and immune responses. Here, we synthesize the current literature with a focus on nuances that may fuel the perception of cellular discrepancies toward the development of a cohesive model of ac4C function in mRNA.


Assuntos
Citidina , RNA Mensageiro , Humanos , Acetilação , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferases N-Terminal , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751873

RESUMO

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina , Hidroxilaminas , RNA Polimerase Dependente de RNA , Humanos , Hidroxilaminas/uso terapêutico , Hidroxilaminas/farmacologia , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Antivirais/farmacologia , Administração Oral , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Adenosina/análogos & derivados
10.
Int Immunopharmacol ; 135: 112317, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38796965

RESUMO

Colorectal cancer (CRC) is a significant global health challenge, with increasing rates of incidence and mortality. Despite advancements in immunotherapy, resistance, particularly due to T cell exhaustion, remains a major hurdle. This study explores the role of YWHAH, mediated by N4-acetylcytidine (ac4C) modification, in CRC progression and its impact on CD8+ T cell exhaustion. Analysis of five paired CRC patient tissue samples using acetylated RNA immunoprecipitation and sequencing (acRIP-seq)identified ac4C-modified mRNAs. Functional assays, including cell culture, transfection, qRT-PCR, and immune assays, investigated the influence of YWHAH expression on CRC advancement. Bioinformatics analysis of TCGA data assessed the correlation between YWHAH and immune responses, as well as checkpoint inhibitors. Flow cytometry and Immunohistochemistry validated these findings, complemented by a co-culture experiment involving CD8+ T cells and CRC cell lines (LOVO and HCT116). acRIP-seq revealed YWHAH as a potential driver of CRC progression, exhibiting ac4C modification-mediated stability and upregulation. High YWHAH levels correlated with adverse outcomes and immune evasion in CRC patients, showing strong associations with immune checkpoint proteins and modest correlations with CD8+ T cell infiltration. Co-culture experiments demonstrated YWHAH-induced CD8+ T cell exhaustion, characterized by decreased proliferation and increased exhaustion markers. NAT10-mediated ac4C modification enhanced YWHAH stability in CRC. The involvement of YWHAH in CD8 + T cell exhaustion suggests its potential as a therapeutic target and prognostic marker in CRC immunotherapy, highlighting the intricate interplay between epitranscriptomic modifications, the tumor microenvironment, and immune responses in CRC progression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos/imunologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Exaustão das Células T
11.
J Med Virol ; 96(5): e29642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708812

RESUMO

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Citidina/uso terapêutico , Citidina/farmacologia , Idoso , Adulto , Sequenciamento Completo do Genoma , Variação Genética , Uridina/farmacologia , COVID-19/virologia , Mutação
12.
Anal Chem ; 96(18): 6870-6874, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648202

RESUMO

Accurate detection of endogenous miRNA modifications, such as N6-methyladenosine (m6A), 7-methylguanosine (m7G), and 5-methylcytidine (m5C), poses significant challenges, resulting in considerable uncertainty regarding their presence in mature miRNAs. In this study, we demonstrate for the first time that liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) nucleoside analysis method is a practical tool for quantitatively analyzing human miRNA modifications. The newly designed liquid-solid two-step hybridization (LSTH) strategy enhances specificity for miRNA purification, while LC-MS/MS offers robust capability in recognizing modifications and sufficient sensitivity with detection limits ranging from attomoles to low femtomoles. Therefore, it provides a more reliable approach compared to existing techniques for revealing modifications in endogenous miRNAs. With this approach, we characterized m6A, m7G, and m5C modifications in miR-21-5p, Let-7a/e-5p, and miR-10a-5p isolated from cultured cells and observed unexpectedly low abundance (<1% at each site) of these modifications.


Assuntos
Adenosina , Citidina , Guanosina , MicroRNAs , Humanos , Adenosina/análogos & derivados , Adenosina/análise , Citidina/análogos & derivados , Guanosina/análogos & derivados , Guanosina/análise , Espectrometria de Massa com Cromatografia Líquida , MicroRNAs/análise , Hibridização de Ácido Nucleico , Espectrometria de Massas em Tandem
13.
Front Immunol ; 15: 1340273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601149

RESUMO

The AID/APOBECs are a group of zinc-dependent cytidine deaminases that catalyse the deamination of bases in nucleic acids, resulting in a cytidine to uridine transition. Secreted novel AID/APOBEC-like deaminases (SNADs), characterized by the presence of a signal peptide are unique among all of intracellular classical AID/APOBECs, which are the central part of antibody diversity and antiviral defense. To date, there is no available knowledge on SNADs including protein characterization, biochemical characteristics and catalytic activity. We used various in silico approaches to define the phylogeny of SNADs, their common structural features, and their potential structural variations in fish species. Our analysis provides strong evidence of the universal presence of SNAD1 proteins/transcripts in fish, in which expression commences after hatching and is highest in anatomical organs linked to the immune system. Moreover, we searched published fish data and identified previously, "uncharacterized proteins" and transcripts as SNAD1 sequences. Our review into immunological research suggests SNAD1 role in immune response to infection or immunization, and interactions with the intestinal microbiota. We also noted SNAD1 association with temperature acclimation, environmental pollution and sex-based expression differences, with females showing higher level. To validate in silico predictions we performed expression studies of several SNAD1 gene variants in carp, which revealed distinct patterns of responses under different conditions. Dual sensitivity to environmental and pathogenic stress highlights its importance in the fish and potentially enhancing thermotolerance and immune defense. Revealing the biological roles of SNADs represents an exciting new area of research related to the role of DNA and/or RNA editing in fish biology.


Assuntos
Citidina Desaminase , Ácidos Nucleicos , Animais , Desaminase APOBEC-1/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Citidina
14.
Thorac Cancer ; 15(10): 820-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409918

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) serves as a critical enzyme in mediating the N4-acetylcytidine (ac4C) that ensures RNA stability and effective translation processes. The role of NAT10 in driving the advancement of breast cancer remains uninvestigated. METHODS: We observed an increase in NAT10 expression, both at mRNA level through the analysis of the Cancer Genome Atlas (TCGA) database and at the protein level of tumor tissues from breast cancer patients. We determined that a heightened expression of NAT10 served as a predictor of an unfavorable clinical outcome. By screening the Cancer Cell Line Encyclopedia (CCLE) cell bank, this expression pattern of NAT10 was consistency found across almost all the classic breast cancer cell lines. RESULTS: Functionally, interference of NAT10 expression exerts an inhibitory effect on proliferation and invasion of breast cancer cells. By using ac4C RNA immunoprecipitation (ac4c-RIP) and acRIP-qPCR assays, we identified a reduction of ac4C enrichment within the ATP binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), consequent to NAT10 suppression. Expressions of MDR1 and BCRP exhibited a positive correlation with NAT10 expression in tumor tissues, and the inhibition of NAT10 in breast cancer cells resulted in a decrease of MDR1 and BCRP expression. Therefore, the overexpressing of MDR1 and BCRP could partially rescue the adverse consequences of NAT10 depletion. In addition, we found that, remodelin, a NAT10 inhibitor, reinstated the susceptibility of capecitabine-resistant breast cancer cells to the chemotherapy, both in vitro and in vivo. CONCLUSION: The results of our study demonstrated the essential role of NAT10-mediated ac4c-modification in breast cancer progression and provide a novel strategy for overcoming chemoresistance challenges.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Citidina , Feminino , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/patologia , Citidina/análogos & derivados , Acetiltransferases N-Terminal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética
15.
Cell Mol Biol Lett ; 29(1): 25, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331765

RESUMO

BACKGROUND: Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa. METHODS: CircRNAs related to CCa progression were identified via a circRNA microarray. The relationship between circMAST1 levels and clinicopathological features of CCa was evaluated using the clinical specimens and data of 131 patients with CCa. In vivo and in vitro experiments, including xenograft animal models, cell proliferation assay, transwell assay, RNA pull-down assay, whole-transcriptome sequencing, RIP assay, and RNA-FISH, were performed to investigate the effects of circMAST1 on the malignant behavior of CCa. RESULTS: CircMAST1 was significantly downregulated in CCa tissues, and low expression of CircMAST1 was correlated with a poor prognosis. Moreover, our results demonstrated that circMAST1 inhibited tumor growth and lymph node metastasis of CCa. Mechanistically, circMAST1 competitively sequestered N-acetyltransferase 10 (NAT10) and hindered Yes-associated protein (YAP) mRNA ac4C modification to promote its degradation and inhibit tumor progression in CCa. CONCLUSIONS: CircMAST1 plays a major suppressive role in the tumor growth and metastasis of CCa. In particular, circMAST1 can serve as a potential biomarker and novel target for CCa.


Assuntos
Citidina , RNA Circular , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Linhagem Celular Tumoral , Citidina/análogos & derivados , RNA/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética
16.
Cell Mol Life Sci ; 81(1): 73, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308713

RESUMO

N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Citidina/genética , Neoplasias/genética
17.
Clin Infect Dis ; 78(6): 1531-1535, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170452

RESUMO

Within a multistate clinical cohort, SARS-CoV-2 antiviral prescribing patterns were evaluated from April 2022-June 2023 among nonhospitalized patients with SARS-CoV-2 with risk factors for severe COVID-19. Among 3247 adults, only 31.9% were prescribed an antiviral agent (87.6% nirmatrelvir/ritonavir, 11.9% molnupiravir, 0.5% remdesivir), highlighting the need to identify and address treatment barriers.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Fatores de Risco , Ritonavir/uso terapêutico , COVID-19/epidemiologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Alanina/análogos & derivados , Padrões de Prática Médica/estatística & dados numéricos , Citidina/análogos & derivados , Hidroxilaminas
18.
Blood Adv ; 8(6): 1345-1358, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38190613

RESUMO

ABSTRACT: Adult T-cell leukemia/lymphoma (ATL) is triggered by infection with human T-cell lymphotropic virus-1 (HTLV-1). Here, we describe the reprogramming of pyrimidine biosynthesis in both normal T cells and ATL cells through regulation of uridine-cytidine kinase 2 (UCK2), which supports vigorous proliferation. UCK2 catalyzes the monophosphorylation of cytidine/uridine and their analogues during pyrimidine biosynthesis and drug metabolism. We found that UCK2 was overexpressed aberrantly in HTLV-1-infected T cells but not in normal T cells. T-cell activation via T-cell receptor (TCR) signaling induced expression of UCK2 in normal T cells. Somatic alterations and epigenetic modifications in ATL cells activate TCR signaling. Therefore, we believe that expression of UCK2 in HTLV-1-infected cells is induced by dysregulated TCR signaling. Recently, we established azacitidine-resistant (AZA-R) cells showing absent expression of UCK2. AZA-R cells proliferated normally in vitro, whereas UCK2 knockdown inhibited ATL cell growth. Although uridine and cytidine accumulated in AZA-R cells, possibly because of dysfunction of pyrimidine salvage biosynthesis induced by loss of UCK2 expression, the amount of UTP and CTP was almost the same as in parental cells. Furthermore, AZA-R cells were more susceptible to an inhibitor of dihydroorotic acid dehydrogenase, which performs the rate-limiting enzyme of de novo pyrimidine nucleotide biosynthesis, and more resistant to dipyridamole, an inhibitor of pyrimidine salvage biosynthesis, suggesting that AZA-R cells adapt to UCK2 loss by increasing de novo pyrimidine nucleotide biosynthesis. Taken together, the data suggest that fine-tuning pyrimidine biosynthesis supports vigorous cell proliferation of both normal T cells and ATL cells.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Pirimidinas , Adulto , Humanos , Uridina/metabolismo , Proliferação de Células , Citidina , Nucleotídeos de Pirimidina , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo
19.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233839

RESUMO

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Assuntos
Citidina/análogos & derivados , Osteossarcoma , Fosfofrutoquinases , Humanos , Lactato Desidrogenase 5/metabolismo , Fosfofrutoquinases/metabolismo , Acetilação , RNA/metabolismo , Glicólise/genética , Osteossarcoma/patologia , Fosfofrutoquinase-1 Muscular/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetiltransferases N-Terminal/metabolismo
20.
Cell Commun Signal ; 22(1): 49, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233930

RESUMO

N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.


Assuntos
Neoplasias , RNA , Humanos , RNA/metabolismo , Citidina/genética , RNA Mensageiro/genética , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA