Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Antiviral Res ; 229: 105977, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089332

RESUMO

Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog ß-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 µM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.


Assuntos
Amidas , Antivirais , Citidina , Vírus da Raiva , Raiva , Carga Viral , Animais , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Vírus da Raiva/efeitos dos fármacos , Camundongos , Raiva/tratamento farmacológico , Raiva/virologia , Amidas/farmacologia , Carga Viral/efeitos dos fármacos , Pirazinas/farmacologia , Ribavirina/farmacologia , Hidroxilaminas/farmacologia , Linhagem Celular Tumoral , Linhagem Celular
2.
Clin Transl Med ; 14(7): e1747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961519

RESUMO

BACKGROUND: Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS: GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS: Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION: Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Acetiltransferases N-Terminal , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Commun Biol ; 7(1): 587, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755254

RESUMO

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Assuntos
Apresentação de Antígeno , Citidina , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751873

RESUMO

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina , Hidroxilaminas , RNA Polimerase Dependente de RNA , Humanos , Hidroxilaminas/uso terapêutico , Hidroxilaminas/farmacologia , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Antivirais/farmacologia , Administração Oral , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Adenosina/análogos & derivados
5.
Int Immunopharmacol ; 135: 112317, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38796965

RESUMO

Colorectal cancer (CRC) is a significant global health challenge, with increasing rates of incidence and mortality. Despite advancements in immunotherapy, resistance, particularly due to T cell exhaustion, remains a major hurdle. This study explores the role of YWHAH, mediated by N4-acetylcytidine (ac4C) modification, in CRC progression and its impact on CD8+ T cell exhaustion. Analysis of five paired CRC patient tissue samples using acetylated RNA immunoprecipitation and sequencing (acRIP-seq)identified ac4C-modified mRNAs. Functional assays, including cell culture, transfection, qRT-PCR, and immune assays, investigated the influence of YWHAH expression on CRC advancement. Bioinformatics analysis of TCGA data assessed the correlation between YWHAH and immune responses, as well as checkpoint inhibitors. Flow cytometry and Immunohistochemistry validated these findings, complemented by a co-culture experiment involving CD8+ T cells and CRC cell lines (LOVO and HCT116). acRIP-seq revealed YWHAH as a potential driver of CRC progression, exhibiting ac4C modification-mediated stability and upregulation. High YWHAH levels correlated with adverse outcomes and immune evasion in CRC patients, showing strong associations with immune checkpoint proteins and modest correlations with CD8+ T cell infiltration. Co-culture experiments demonstrated YWHAH-induced CD8+ T cell exhaustion, characterized by decreased proliferation and increased exhaustion markers. NAT10-mediated ac4C modification enhanced YWHAH stability in CRC. The involvement of YWHAH in CD8 + T cell exhaustion suggests its potential as a therapeutic target and prognostic marker in CRC immunotherapy, highlighting the intricate interplay between epitranscriptomic modifications, the tumor microenvironment, and immune responses in CRC progression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos/imunologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Exaustão das Células T
6.
J Med Virol ; 96(5): e29642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708812

RESUMO

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Citidina/uso terapêutico , Citidina/farmacologia , Idoso , Adulto , Sequenciamento Completo do Genoma , Variação Genética , Uridina/farmacologia , COVID-19/virologia , Mutação
7.
PLoS One ; 18(11): e0294696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032917

RESUMO

Gene-directed enzyme prodrug therapy is an emerging strategy for cancer treatment based on the delivery of a gene that encodes an enzyme that is able to convert a prodrug into a potent cytotoxin exclusively in target cancer cells. However, it is limited by the lack of suitable enzyme variants and a scarce choice of chemical bonds that could be activated. Therefore, this study is aimed to determine the capability of bacterial amidohydrolases YqfB and D8_RL to activate novel prodrugs and the effect such system has on the viability of eukaryotic cancer cells. We have established cancer cell lines that stably express the bacterial amidohydrolase genes and selected several N4-acylated cytidine derivatives as potential prodrugs. A significant decrease in the viability of HCT116 human colon cancer cell lines expressing either the YqfB or the D8_RL was observed after exposure to the novel prodrugs. The data we acquired suggests that bacterial YqfB and D8_RL amidohydrolases, together with the modified cytidine-based prodrugs, may serve as a promising enzyme-prodrug system for gene-directed enzyme prodrug therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo , Pró-Fármacos , Humanos , Pró-Fármacos/metabolismo , Amidoidrolases/genética , Citidina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Antineoplásicos/uso terapêutico
8.
Nucleic Acids Res ; 51(22): 12031-12042, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953355

RESUMO

Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.


Assuntos
Citidina , Mutagênicos , Uridina Quinase , Animais , Camundongos , Antivirais/toxicidade , Citidina/análogos & derivados , Citidina/farmacologia , Mutagênese , Mutagênicos/farmacologia , RNA Viral , Uridina Quinase/genética , Uridina Quinase/metabolismo
9.
Pestic Biochem Physiol ; 194: 105494, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532353

RESUMO

The Tobamovirus helicase plays an important role in virus proliferation and host interaction. They can also be targets for antiviral drugs. Tobacco mosaic virus (TMV) is well controlled by ningnanmycin (NNM), but whether it acts on other virus helicases of Tobamovirus virus is not clear. In this study, we expressed and purified several Tobamovirus virus helicase proteins and analyzed the three-dimensional structures of several Tobamovirus virus helicases. In addition, the binding of Tobamovirus helicase to NNM was also studied. The docking study reveals the interaction between NNM and Tobamovirus virus helicase. Microscale Thermophoresis (MST) experiments have shown that NNM binds to Tobamovirus helicase with a dissociation constant of 4.64-12.63 µM. Therefore, these data are of great significance for the design and synthesis of new effective anti-plant virus drugs.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Citidina/farmacologia , Proteínas Virais , Nicotiana
10.
Biochem J ; 479(11): 1149-1164, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35583288

RESUMO

Uridine-cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein with high sequence similarity to other uridine-cytidine kinases (UCKs). UCKs play an important role in the pyrimidine salvage pathway, catalyzing the phosphorylation of uridine and cytidine to UMP and CMP, respectively. Only two human UCKs have been identified, UCK1 and UCK2. Previous studies have shown both enzymes phosphorylate uridine and cytidine using ATP as the phosphate donor. No studies have evaluated the kinase potential of UCKL-1. We cloned and purified UCKL-1 and found that it successfully phosphorylated uridine and cytidine using ATP as the phosphate donor. The catalytic efficiency (calculated as kcat/KM) was 1.2 × 104 s-1, M-1 for uridine and 0.7 × 104 s-1, M-1 for cytidine. Our lab has previously shown that UCKL-1 is up-regulated in tumor cells, providing protection against natural killer (NK) cell killing activity. We utilized small interfering RNA (siRNA) to down-regulate UCKL-1 in vitro and in vivo to determine the effect of UCKL-1 on tumor growth and metastasis. The down-regulation of UCKL-1 in YAC-1 lymphoma cells in vitro resulted in decreased cell counts and increased apoptotic activity. Down-regulation of UCKL-1 in K562 leukemia cells in vivo led to decreased primary tumor growth and less tumor cell dissemination and metastasis. These results identify UCKL-1 as a bona fide pyrimidine kinase with the therapeutic potential to be a target for tumor growth inhibition and for diminishing or preventing metastasis.


Assuntos
Citidina , Uridina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Citidina/genética , Citidina/metabolismo , Citidina/farmacologia , Humanos , Fosfatos , Fosforilação , Fosfotransferases , Pirimidinas/metabolismo , RNA Interferente Pequeno/metabolismo , Uridina/metabolismo , Uridina Quinase/genética
11.
J Pharm Sci ; 111(8): 2201-2209, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526576

RESUMO

Methoxy trityl groups are acid-responsive protecting groups that are routinely used in the process of nucleoside analog synthesis. This study investigated the potential of methoxy trityl groups, monomethoxy trityl (MMT), dimethoxy trityl (DMT), and trimethoxy trityl (TMT), as acid-responsive substituents for designing anti-cancer cytidine analog prodrugs. For this purpose, we synthesized six gemcitabine (GEM) derivatives, which were modified either 4-(N)- or 5'-(O)-sites with MMT, DMT, and TMT, as candidates for anti-cancer cytidine analog prodrugs. In vitro dissociation test of methoxy trityl groups clearly showed that the acid responsivity of the methoxy trityl moieties was in the order TMT>DMT>MMT. Furthermore, the rate of 5'-(O)-methoxy tritylation was higher than that of 4-(N)-methoxy tritylation. Along with high acid-responsivity, trimethoxy trityl-O-GEM (TMT-O-GEM) showed superior cytotoxicity against 2D cultured human breast cancer cells (MCF-7 and MDA-MB-231) and human pancreatic cancer cells (AsPC-1) compared to other methoxy-tritylated GEM derivatives. Moreover, TMT-O-GEM suppressed the growth of MCF-7 spheroids compared with trimethoxy trityl-N-GEM (TMT-N-GEM). Both TMT-O-GEM and TMT-N-GEM were negligibly deprotected and metabolized in mouse or human serum after 72 h, indicating that trimethoxy tritylation inhibits deamination by cytidine deaminase. These results indicate that 5'-(O)-trimethoxy tritylation is a potent approach for the development of anti-cancer cytidine analog prodrugs.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citidina/farmacologia , Citidina/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
12.
Bioengineered ; 13(2): 4441-4454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112992

RESUMO

Blood-brain-barrier (BBB) disruption is an important pathological characteristic of ischemic stroke (IS) and mainly results from dysfunction of brain vascular endothelial cells and tight junctions. Zebularine is a novel inhibitor of DNA methyltransferase (DNMT). Here, we assessed its effects on BBB disruption in IS. Firstly, we reported that Zebularine maintained BBB integrity in middle cerebral artery occlusion (MCAO) mice by increasing the expressions of zona occludens-1 (ZO-1) and vascular endothelial (VE)-cadherin. Importantly, we found that Zebularine reduced the production of pro-inflammatory cytokines, attenuated brain edema, and improved neurological deficits. In in vitro experiments, the bEnd.3 brain endothelial cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R), and the protective effects of Zebularine were assessed. Our findings demonstrated that Zebularine prevented OGD/R-induced cytotoxicity by reducing the release of lactate dehydrogenase (LDH). Additionally, Zebularine protected bEnd.3 cells against OGD/R-induced hyper-permeability and reduction of trans-endothelial electrical resistance (TEER). Notably, we found that treatment with Zebularine activated the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway by increasing the phosphorylation of adenosine monophosphate-activated protein kinase α (AMPKα). Blockage of AMPKα using its specific inhibitor compound C abolished the beneficial effects of Zebularine in mitigating endothelial hyper-permeability by reducing the expressions of ZO-1 and VE-cadherin. These findings suggest that the protective effects of Zebularine against OGD/R-induced endothelial hyper-permeability are mediated by the activation of AMPKα. In conclusion, our study sheds light on the potential application of Zebularine in the treatment of IS.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Caderinas/genética , Citidina/análogos & derivados , Substâncias Protetoras , Proteína da Zônula de Oclusão-1/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Barreira Hematoencefálica/fisiopatologia , Caderinas/metabolismo , Citidina/química , Citidina/farmacologia , Endotélio Vascular/citologia , Inflamação/metabolismo , Camundongos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Acidente Vascular Cerebral/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
13.
Nature ; 601(7894): 496, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064230

Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Desenvolvimento de Medicamentos/tendências , Farmacorresistência Viral , Pesquisadores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Administração Oral , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/provisão & distribuição , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19/provisão & distribuição , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Aprovação de Drogas , Combinação de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Quimioterapia Combinada , Hospitalização/estatística & dados numéricos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Lactamas/administração & dosagem , Lactamas/farmacologia , Lactamas/uso terapêutico , Leucina/administração & dosagem , Leucina/farmacologia , Leucina/uso terapêutico , Adesão à Medicação , Terapia de Alvo Molecular , Mutagênese , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Prolina/administração & dosagem , Prolina/farmacologia , Prolina/uso terapêutico , Parcerias Público-Privadas/economia , Ritonavir/administração & dosagem , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
14.
Invest New Drugs ; 40(1): 81-90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34417914

RESUMO

Background RX-3117 is an oral small molecule antimetabolite, cyclopentyl pyrimidyl nucleoside that is activated by cancer cells over-expressing uridine cytidine kinase 2 (UCK2). Single agent RX-3117 demonstrated efficacy in a phase I trial in patients with metastatic (met) pancreatic adenocarcinoma (PC). RX-3117 plus nab-paclitaxel (nab-Pac) was evaluated as a first line treatment in met-PC cancer. Methods This was a multicenter open label phase I/II 2-stage study investigating the combination of RX3117 plus nab-Pac in the frontline treatment of patients with met-PC. The phase I portion comprised a dose de-escalation design with primary objectives of determining the safety, tolerability and recommended phase 2 dose (RP2D) of RX-3117 (orally 700, 600, or 500 mg/day for 5 consecutive days with 2 days off/week) plus nab-Pac (intravenous (IV) 125 mg/m2 once weekly) for 3 weeks with 1 week off per a 4-week cycle. The primary objective was to determine the antitumor efficacy. Results 46 patients were enrolled (22 male/24 female; median age 67; 91% Caucasian). The RP2D of RX-3117 plus nab-Pac was 700 mg/day. No dose-limiting toxicities were observed (DLTs). The overall response rate (ORR) was 23.1% and disease control rate (DCR) 74.4%. RX-3117 pharmacokinetics (PK) results were similar to previously reported monotherapy phase 1 trial. All patients experienced a treatment emergent adverse event (TEAE) with the most common diarrhea, nausea, and fatigue.10.9% of patients experienced a serious adverse event (SAE) related to the combination. Conclusion RX-3117 plus nab-Pac in newly diagnosed met-PC patients demonstrated tolerability, safety, and early treatment efficacy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Albuminas/farmacocinética , Albuminas/uso terapêutico , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Área Sob a Curva , Citidina/análogos & derivados , Citidina/farmacocinética , Citidina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Meia-Vida , Humanos , Masculino , Dose Máxima Tolerável , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
15.
Nat Commun ; 12(1): 6742, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795289

RESUMO

Immunotherapy has become a powerful cancer treatment, but only a small fraction of patients have achieved durable benefits due to the immune escape mechanism. In this study, epigenetic regulation is combined with gene therapy-mediated immune checkpoint blockade to relieve this immune escape mechanism. PPD (i.e., mPEG-b-PLG/PEI-RT3/DNA) is developed to mediate plasmid-encoding shPD-L1 delivery by introducing multiple interactions (i.e., electrostatic, hydrogen bonding, and hydrophobic interactions) and polyproline II (PPII)-helix conformation, which downregulates PD-L1 expression on tumour cells to relieve the immunosuppression of T cells. Zebularine (abbreviated as Zeb), a DNA methyltransferase inhibitor (DNMTi), is used for the epigenetic regulation of the tumour immune microenvironment, thus inducing DC maturation and MHC I molecule expression to enhance antigen presentation. PPD plus Zeb combination therapy initiates a systemic anti-tumour immune response and effectively prevents tumour relapse and metastasis by generating durable immune memory. This strategy provides a scheme for tumour treatment and the inhibition of relapse and metastasis.


Assuntos
Epigênese Genética/efeitos dos fármacos , Terapia Genética , Imunoterapia , Neoplasias/terapia , Evasão Tumoral/efeitos dos fármacos , Animais , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Citidina/análogos & derivados , Citidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico , Imunidade/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metástase Neoplásica/terapia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
16.
Exp Cell Res ; 405(2): 112660, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048785

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with an extremely poor prognosis. Gemcitabine (Gem) is still the mainstay drug for the treatment of PDAC. However, rapid inactivation by cytidine deaminase (CDA) present in pancreatic cancer cells severely limits anticancer efficacy of Gem. In this study, we investigated the effect of a CDA inhibitor - Zebularine (Zeb) on anticancer activity of Gem in pancreatic cancer cell lines MiaPaCa-2, BxPC-3, and Panc-1. Zeb treatment synergistically increased Gem-induced cytotoxicity in all three pancreatic cancer cell lines. The strongest synergistic activity was found at 1:10 M ratio of Gem/Zeb (combination index 0.04-0.4). Additionally, Gem + Zeb treated cells showed marked decreased in the expressions of anti-apoptotic protein including Bcl-2 and survivin while significantly increased the cleaved caspase-3, and loss of mitochondrial membrane potential was observed. Multicellular 3D spheroids of MiaPaCa-2 cells treated with combination showed significant reduction (25-60%) in spheroid size, weight compared to single drug and control group. Live/dead cell imaging showed that Gem + Zeb treated spheroids exhibited a highly distorted surface with significantly higher number of dead cells (red). The results of the present study confirm that this synergistic combination is worthy of future investigations as a potential approach for the treatment of PDAC.


Assuntos
Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Citidina/farmacologia , Citidina Desaminase/efeitos dos fármacos , Citidina Desaminase/metabolismo , Desoxicitidina/farmacologia , Humanos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Gencitabina , Neoplasias Pancreáticas
17.
Mol Cancer Ther ; 20(4): 625-631, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811149

RESUMO

In this article, 5-aza-4'-thio-2'-ß-fluoro-2'-deoxycytidine (F-aza-T-dCyd, NSC801845), a novel cytidine analog, is first disclosed and compared with T-dCyd, F-T-dCyd, and aza-T-dCyd in cell culture and mouse xenograft studies in HCT-116 human colon carcinoma, OVCAR3 human ovarian carcinoma, NCI-H23 human NSCLC carcinoma, HL-60 human leukemia, and the PDX BL0382 bladder carcinoma. In three of five xenograft lines (HCT-116, HL-60, and BL-0382), F-aza-T-dCyd was more efficacious than aza-T-dCyd. Comparable activity was observed for these two agents against the NCI-H23 and OVCAR3 xenografts. In the HCT-116 study, F-aza-T-dCyd [10 mg/kg intraperitoneal (i.p.), QDx5 for four cycles], produced complete regression of the tumors in all mice with a response that proved durable beyond postimplant day 150 (129 days after the last dose). Similarly, complete tumor regression was observed in the HL-60 leukemia xenograft when mice were dosed with F-aza-T-dCyd (10 mg/kg i.p., QDx5 for three cycles). In the PDX BL-0382 bladder study, both oral and i.p. dosing of F-aza-T-dCyd (8 mg/kg QDx5 for three cycles) produced regressions that showed tumor regrowth beginning 13 days after dosing. These findings indicate that further development of F-aza-T-dCyd (NSC801845) is warranted. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/20/4/625/F1.large.jpg.


Assuntos
Citidina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Técnicas de Cultura de Células , Citidina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Virol Sin ; 36(5): 997-1005, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33751399

RESUMO

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is widespread in the world. In recent years, the increased virulence of the virus due to viral variations, has caused great economic losses to the pig industry in many countries. It is always worthy to find effective therapeutic methods for PED. As an important class of antivirals, nucleoside drugs which target viral polymerases have been applied in treating human viral infections for half a century. Herein, we evaluated the anti-PEDV potential of three broad-spectrum antiviral nucleoside analogs, remdesivir (RDV), its parent nucleoside (RDV-N) and ß-D-N4-hydroxycytidine (NHC). Among them, RDV-N was the most active agent in Vero E6 cells with EC50 of 0.31 µmol/L, and more potent than RDV (EC50 = 0.74 µmol/L) and NHC (EC50 = 1.17 µmol/L). The activity of RDV-N was further confirmed using an indirect immuno-fluorescence assay. Moreover, RDV-N exhibited a good safety profile in cells and in mice. The high sequence similarity of the polymerase functional domains of PEDV with other five porcine coronaviruses indicated a broader antiviral spectrum for the three compounds. Generally, RDV-N is a promising broad-spectrum antiviral nucleoside, and it would be worthy to make some structural modifications to increase its oral bioavailability.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Infecções por Coronavirus , Citidina/farmacologia , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Chlorocebus aethiops , Citidina/análogos & derivados , Camundongos , Nucleosídeos/farmacologia , Pais , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Suínos , Células Vero
19.
Mol Ther ; 29(5): 1758-1771, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571681

RESUMO

DNA methylation abnormality is closely related to tumor occurrence and development. Chemical inhibitors targeting DNA methyltransferase (DNMTis) have been used in treating cancer. However, the impact of DNMTis on antitumor immunity has not been well elucidated. In this study, we show that zebularine (a demethylating agent) treatment of cancer cells led to increased levels of interferon response in a cyclic guanosine monophosphate-AMP (cGAMP) synthase (cGAS)- and stimulator of interferon genes (STING)-dependent manner. This treatment also specifically sensitized the cGAS-STING pathway in response to DNA stimulation. Incorporation of zebularine into genomic DNA caused demethylation and elevated expression of a group of genes, including STING. Without causing DNA damage, zebularine led to accumulation of DNA species in the cytoplasm of treated cells. In syngeneic tumor models, administration of zebularine alone reduced tumor burden and extended mice survival. This effect synergized with cGAMP and immune checkpoint blockade therapy. The efficacy of zebularine was abolished in nude mice and in cGAS-/- or STING-/- mice, indicating its dependency on host immunity. Analysis of tumor cells indicates upregulation of interferon-stimulated genes (ISGs) following zebularine administration. Zebularine promoted infiltration of CD8 T cells and natural killer (NK) cells into tumor and therefore suppressed tumor growth. This study unveils the role of zebularine in sensitizing the cGAS-STING pathway to promote anti-tumor immunity and provides the foundation for further therapeutic development.


Assuntos
Citidina/análogos & derivados , Melanoma Experimental/tratamento farmacológico , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/administração & dosagem , Nucleotidiltransferases/genética , Administração Oral , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citidina/administração & dosagem , Citidina/farmacologia , Sinergismo Farmacológico , Humanos , Células Matadoras Naturais/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Nus , Nucleotídeos Cíclicos/farmacologia , Regiões Promotoras Genéticas , Células THP-1 , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Expert Opin Ther Pat ; 31(4): 325-337, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33475441

RESUMO

Introduction: The current SARS-CoV-2 pandemic urgently demands for both prevention and treatment strategies. RNA-dependent RNA-polymerase (RdRp), which has no counterpart in human cells, is an excellent target for drug development. Given the time-consuming process of drug development, repurposing drugs approved for other indications or at least successfully tested in terms of safety and tolerability, is an attractive strategy to rapidly provide an effective medication for severe COVID-19 cases.Areas covered: The currently available data and upcominSg studies on RdRp which can be repurposed to halt SARS-CoV-2 replication, are reviewed.Expert opinion: Drug repurposing and design of novel compounds are proceeding in parallel to provide a quick response and new specific drugs, respectively. Notably, the proofreading SARS-CoV-2 exonuclease activity could limit the potential for drugs designed as immediate chain terminators and favor the development of compounds acting through delayed termination. While vaccination is awaited to curb the SARS-CoV-2 epidemic, even partially effective drugs from repurposing strategies can be of help to treat severe cases of disease. Considering the high conservation of RdRp among coronaviruses, an improved knowledge of its activity in vitro can provide useful information for drug development or drug repurposing to combat SARS-CoV-2 as well as future pandemics.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Amidas/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Humanos , Hidroxilaminas/farmacologia , Pirazinas/farmacologia , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA