Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.065
Filtrar
1.
Stem Cell Res Ther ; 14(1): 104, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101277

RESUMO

BACKGROUND: Although mesenchymal stem cells (MSCs) have been effective in tendinopathy, the mechanisms by which MSCs promote tendon healing have not been fully elucidated. In this study, we tested the hypothesis that MSCs transfer mitochondria to injured tenocytes in vitro and in vivo to protect against Achilles tendinopathy (AT). METHODS: Bone marrow MSCs and H2O2-injured tenocytes were co-cultured, and mitochondrial transfer was visualized by MitoTracker dye staining. Mitochondrial function, including mitochondrial membrane potential, oxygen consumption rate, and adenosine triphosphate content, was quantified in sorted tenocytes. Tenocyte proliferation, apoptosis, oxidative stress, and inflammation were analyzed. Furthermore, a collagenase type I-induced rat AT model was used to detect mitochondrial transfer in tissues and evaluate Achilles tendon healing. RESULTS: MSCs successfully donated healthy mitochondria to in vitro and in vivo damaged tenocytes. Interestingly, mitochondrial transfer was almost completely blocked by co-treatment with cytochalasin B. Transfer of MSC-derived mitochondria decreased apoptosis, promoted proliferation, and restored mitochondrial function in H2O2-induced tenocytes. A decrease in reactive oxygen species and pro-inflammatory cytokine levels (interleukin-6 and -1ß) was observed. In vivo, mitochondrial transfer from MSCs improved the expression of tendon-specific markers (scleraxis, tenascin C, and tenomodulin) and decreased the infiltration of inflammatory cells into the tendon. In addition, the fibers of the tendon tissue were neatly arranged and the structure of the tendon was remodeled. Inhibition of mitochondrial transfer by cytochalasin B abrogated the therapeutic efficacy of MSCs in tenocytes and tendon tissues. CONCLUSIONS: MSCs rescued distressed tenocytes from apoptosis by transferring mitochondria. This provides evidence that mitochondrial transfer is one mechanism by which MSCs exert their therapeutic effects on damaged tenocytes.


Assuntos
Tendão do Calcâneo , Células-Tronco Mesenquimais , Tendinopatia , Ratos , Animais , Tendinopatia/terapia , Peróxido de Hidrogênio/farmacologia , Citocalasina B , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
2.
Tissue Cell ; 73: 101664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678531

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are of interest as a new vector for the delivery of therapeutic agents into the tumor microenvironment. Cell-free EV-based therapy has a number of advantages over cell-based therapy, since the use of EVs allows avoiding potential undesirable transformation associated with MSCs. MSC-derived EVs can transfer natural proteins with immunomodulatory or antitumor properties. The aim of this study was to produce vesicles from mesenchymal stem cells with simultaneous overexpression of TRAIL, PTEN and IFN-ß1 and analyze its antitumor and immunomodulatory properties. In this work, a stable line of human adipose tissue-derived mesenchymal stem cells (hADSCs) with simultaneous overexpression of TRAIL, PTEN and IFN-ß1 was produced. To obtain this cell line hADSCs were genetically modified with a genetic multicistronic cassette encoding TRAIL, PTEN, and IFN-ß1 genes separated with a self-cleaving P2A peptide nucleotide sequence. Membrane vesicles (CIMVs) were obtained from genetically modified hADSCs using cytochalasin B treatment. Antitumor and immunomodulatory properties of the CIMVs were analyzed in vitro. It was shown that CIMVs isolated from genetically modified hADSCs overexpressing TRAIL, PTEN and IFN-ß1 genes are able to activate human immune cells and induce apoptosis in various types of carcinomas in vitro. Thus, the immunomodulatory and antitumor properties of CIMVs were shown. However, further studies on animal models in vivo are required.


Assuntos
Citocalasina B/farmacologia , Vesículas Extracelulares/metabolismo , Interferon beta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Interferon beta/genética , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/genética
3.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445265

RESUMO

Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.


Assuntos
Citocinese/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Linhagem Celular Tumoral , Citocalasina B/farmacologia , Relação Dose-Resposta a Droga , Humanos , Titânio/farmacologia
4.
J Biosci Bioeng ; 132(3): 310-320, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175199

RESUMO

Owing to their self-renewal and multi-lineage differentiation capability, mesenchymal stem cells (MSCs) hold enormous potential in regenerative medicine. A prerequisite for a successful MSC therapy is the rigorous investigation of their function after in vitro cultivation. Damages introduced to mitochondria during cultivation adversely affect MSCs function and can determine their fate. While it has been shown that microtubules and vimentin intermediate filaments are important for mitochondrial dynamics and active mitochondrial transport within the cytoplasm of MSCs, the role of filamentous actin in this process has not been fully understood yet. To gain a deeper understanding of the interdependence between mitochondrial function and the cytoskeleton, we applied cytochalasin B to disturb the filamentous actin-based cytoskeleton of MSCs. In this study we combined conventional functional assays with a state-of-the-art oxygen sensor-integrated microfluidic device to investigate mitochondrial function. We demonstrated that cytochalasin B treatment at a dose of 16 µM led to a decrease in cell viability with high mitochondrial membrane potential, increased oxygen consumption rate, disturbed fusion and fission balance, nuclear extrusion and perinuclear accumulation of mitochondria. Treatment of MSCs for 48 h ultimately led to nuclear fragmentation, and activation of the intrinsic pathway of apoptotic cell death. Importantly, we could show that mitochondrial function of MSCs can efficiently recover from the damage to the filamentous actin-based cytoskeleton over a period of 24 h. As a result of our study, a causative connection between the filamentous actin-based cytoskeleton and mitochondrial dynamics was demonstrated.


Assuntos
Células-Tronco Mesenquimais , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cultivadas , Citocalasina B/metabolismo , Citocalasina B/farmacologia , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microtúbulos/metabolismo , Mitocôndrias
5.
Mar Drugs ; 19(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062855

RESUMO

Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were further isolated from a Formosan soft coral Sarcophyton cherbonnieri. The planar structure and relative configuration of both compounds were established by the detailed analysis of the IR, MS, and 1D and 2D NMR data. Further, the absolute configuration of both compounds was determined by the comparison of CD spectra with that of isosarcophine (3). Notably, cherbonolide N (2) possesses the unique cembranoidal scaffold of tetrahydrooxepane with the 12,17-ether linkage fusing with a γ-lactone. In addition, the assay for cytotoxicity of both new compounds revealed that they showed to be noncytotoxic toward the proliferation of A549, DLD-1, and HuCCT-1 cell lines. Moreover, the anti-inflammatory activities of both metabolites were carried out by measuring the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced generation of superoxide anion and elastase release in the primary human neutrophils. Cherbonolide N (2) was found to reduce the generation of superoxide anion (20.6 ± 6.8%) and the elastase release (30.1 ± 3.3%) in the fMLF/CB-induced human neutrophils at a concentration of 30 µM.


Assuntos
Antozoários/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Citocalasina B/farmacologia , Diterpenos/isolamento & purificação , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Elastase Pancreática/metabolismo , Superóxidos/metabolismo , Taiwan
6.
Hum Cell ; 34(2): 634-643, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454890

RESUMO

Mammalian cells take in D-glucose as an essential fuel as well as a carbon source. In contrast, L-glucose, the mirror image isomer of D-glucose, has been considered merely as a non-transportable/non-metabolizable control for D-glucose. We have shown that 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a D-glucose analogue combining a fluorophore NBD at the C-2 position, is useful as a tracer for monitoring D-glucose uptake through glucose transporters (GLUTs) into mammalian cells. To more precisely evaluate the stereoselectivity of 2-NBDG uptake, we developed an L-glucose analogue 2-NBDLG, the mirror-image isomer of 2-NBDG. Interestingly, 2-NBDLG was taken up into mouse insulinoma MIN6 cells showing nuclear heterogeneity, a cytological feature of malignancy, while remaining MIN6 cells only exhibited a trace amount of 2-NBDLG uptake. The 2-NBDLG uptake into MIN6 cells was abolished by phloretin, but persisted under blockade of major mammalian glucose transporters. Unfortunately, however, no such uptake could be detected in other tumor cell lines. Here we demonstrate that human osteosarcoma U2OS cells take in 2-NBDLG in a phloretin-inhibitable manner. The uptake of 2-NBDG, and not that of 2-NBDLG, into U2OS cells was significantly inhibited by cytochalasin B, a potent GLUT inhibitor. Phloretin, but neither phlorizin, an inhibitor of sodium-glucose cotransporter (SGLT), nor a large amount of D/L-glucose, blocked the 2-NBDLG uptake. These results suggest that a phloretin-inhibitable, non-GLUT/non-SGLT, possibly non-transporter-mediated yet unidentified mechanism participates in the uptake of the fluorescent L-glucose analogue in two very different tumor cells, the mouse insulinoma and the human osteosarcoma cells.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Neoplasias Ósseas/metabolismo , Desoxiglucose/análogos & derivados , Glucose/metabolismo , Osteossarcoma/metabolismo , Floretina/farmacologia , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Citocalasina B/farmacologia , Desoxiglucose/metabolismo , Depressão Química , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Insulinoma/metabolismo , Isomerismo , Camundongos , Neoplasias Pancreáticas/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Células Tumorais Cultivadas
7.
Viruses ; 14(1)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35062217

RESUMO

Human adenoviruses (HAdV) cause a variety of infections in human hosts, from self-limited upper respiratory tract infections in otherwise healthy people to fulminant pneumonia and death in immunocompromised patients. Many HAdV enter polarized epithelial cells by using the primary receptor, the Coxsackievirus and adenovirus receptor (CAR). Recently published data demonstrate that a potent neutrophil (PMN) chemoattractant, interleukin-8 (IL-8), stimulates airway epithelial cells to increase expression of the apical isoform of CAR (CAREx8), which results in increased epithelial HAdV type 5 (HAdV5) infection. However, the mechanism for PMN-enhanced epithelial HAdV5 transduction remains unclear. In this manuscript, the molecular mechanisms behind PMN mediated enhancement of epithelial HAdV5 transduction are characterized using an MDCK cell line that stably expresses human CAREx8 under a doxycycline inducible promoter (MDCK-CAREx8 cells). Contrary to our hypothesis, PMN exposure does not enhance HAdV5 entry by increasing CAREx8 expression nor through activation of non-specific epithelial endocytic pathways. Instead, PMN serine proteases are responsible for PMN-mediated enhancement of HAdV5 transduction in MDCK-CAREx8 cells. This is evidenced by reduced transduction upon inhibition of PMN serine proteases and increased transduction upon exposure to exogenous human neutrophil elastase (HNE). Furthermore, HNE exposure activates epithelial autophagic flux, which, even when triggered through other mechanisms, results in a similar enhancement of epithelial HAdV5 transduction. Inhibition of F-actin with cytochalasin D partially attenuates PMN mediated enhancement of HAdV transduction. Taken together, these findings suggest that HAdV5 can leverage innate immune responses to establish infections.


Assuntos
Adenovírus Humanos/patogenicidade , Células Epiteliais/virologia , Elastase de Leucócito/metabolismo , Neutrófilos/imunologia , Internalização do Vírus , Adenovírus Humanos/imunologia , Adenovírus Humanos/fisiologia , Animais , Autofagia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Citocalasina B/farmacologia , Cães , Endocitose , Humanos , Imunidade Inata , Macrolídeos/farmacologia , Células Madin Darby de Rim Canino , Receptores Virais/metabolismo
8.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327368

RESUMO

Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), and 3'',4''-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4-26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), 3'',4''-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 µg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 µM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Fraxinus/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Casca de Planta/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/classificação , Anti-Inflamatórios/isolamento & purificação , Citocalasina B/antagonistas & inibidores , Citocalasina B/farmacologia , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Glucosídeos Iridoides/química , Glucosídeos Iridoides/classificação , Glucosídeos Iridoides/isolamento & purificação , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/imunologia , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Camundongos , Estrutura Molecular , N-Formilmetionina Leucil-Fenilalanina/antagonistas & inibidores , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Cultura Primária de Células , Células RAW 264.7 , Relação Estrutura-Atividade , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
9.
Virology ; 549: 32-38, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818730

RESUMO

Human papillomavirus (HPV) is a family of viruses divided into five genera: alpha, beta, gamma, mu, and nu. There is an ongoing discussion about whether beta genus HPVs (ß-HPVs) contribute to cutaneous squamous cell carcinoma (cSCC). The data presented here add to this conversation by determining how a ß-HPV E6 protein (ß-HPV 8E6) alters the cellular response to cytokinesis failure. Specifically, cells were observed after cytokinesis failure was induced by dihydrocytochalasin B (H2CB). ß-HPV 8E6 attenuated the immediate toxicity associated with H2CB but did not promote long-term proliferation after H2CB. Immortalization by telomerase reverse transcriptase (TERT) activation also rarely allowed cells to sustain proliferation after H2CB exposure. In contrast, TERT expression combined with ß-HPV 8E6 expression allowed cells to proliferate for months following cytokinesis failure. However, this continued proliferation comes with genome destabilizing consequences. Cells that survived H2CB-induced cytokinesis failure suffered from changes in ploidy.


Assuntos
Betapapillomavirus/genética , Citocinese/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Oncogênicas Virais/genética , Ploidias , Telomerase/genética , Betapapillomavirus/efeitos dos fármacos , Betapapillomavirus/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocalasina B/análogos & derivados , Citocalasina B/farmacologia , Citocinese/efeitos dos fármacos , Prepúcio do Pênis , Regulação da Expressão Gênica , Genoma Humano , Instabilidade Genômica , Humanos , Cariotipagem , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/virologia , Masculino , Proteínas Oncogênicas Virais/metabolismo , Transdução de Sinais , Telomerase/metabolismo
10.
Sci Rep ; 10(1): 10740, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612100

RESUMO

Extracellular vesicles derived from mesenchymal stem cells (MSCs) represent a novel approach for regenerative and immunosuppressive therapy. Recently, cytochalasin B-induced microvesicles (CIMVs) were shown to be effective drug delivery mediators. However, little is known about their immunological properties. We propose that the immunophenotype and molecular composition of these vesicles could contribute to the therapeutic efficacy of CIMVs. To address this issue, CIMVs were generated from murine MSC (CIMVs-MSCs) and their cytokine content and surface marker expression determined. For the first time, we show that CIMVs-MSCs retain parental MSCs phenotype (Sca-1+, CD49e+, CD44+, CD45-). Also, CIMVs-MSCs contained a cytokine repertoire reflective of the parental MSCs, including IL-1ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-13, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, G-CSF, GM-CSF and TNF-α. Next, we evaluated the immune-modulating properties of CIMVs-MSCs in vivo using standard preclinical tests. MSCs and CIMVs-MSCs reduced serum levels of anti-sheep red blood cell antibody and have limited effects on neutrophil and peritoneal macrophage activity. We compared the immunomodulatory effect of MSCs, CIMVs and EVs. We observed no immunosuppression in mice pretreated with natural EVs, whereas MSCs and CIMVs-MSCs suppressed antibody production in vivo. Additionally, we have investigated the biodistribution of CIMVs-MSCs in vivo and demonstrated that CIMVs-MSCs localized in liver, lung, brain, heart, spleen and kidneys 48 h after intravenous injection and can be detected 14 days after subcutaneous and intramuscular injection. Collectively our data demonstrates immunomodulatory efficacy of CIMVs and supports their further preclinical testing as an effective therapeutic delivery modality.


Assuntos
Micropartículas Derivadas de Células/imunologia , Citocalasina B/farmacologia , Citocinas/imunologia , Vesículas Extracelulares/imunologia , Imunossupressores/farmacologia , Macrófagos Peritoneais/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Cultivadas , Vesículas Extracelulares/efeitos dos fármacos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118388, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361318

RESUMO

Glucose transport is key for cellular metabolism as well as physiological function and is maintained via passive facilitated and active sodium-glucose linked transport routes. Here, we present for the first time Fourier-transform infrared spectroscopy as a novel approach for quantification of apical-to-basolateral glucose transport of in vitro cell barrier models using liver, lung, intestinal and placental cancer cell lines. Results of our comparative study revealed that distinct differences could be observed upon subjection to transport inhibitors.


Assuntos
Glucose/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células CACO-2 , Citocalasina B/farmacologia , Impedância Elétrica , Feminino , Glucose/análise , Células HT29 , Células Hep G2 , Humanos , Floretina/farmacologia , Gravidez , Estudo de Prova de Conceito , Trofoblastos/metabolismo , Trofoblastos/patologia , Células Tumorais Cultivadas
12.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238586

RESUMO

Beta genus human papillomaviruses (ß-HPVs) cause cutaneous squamous cell carcinomas (cSCCs) in a subset of immunocompromised patients. However, ß-HPVs are not necessary for tumor maintenance in the general population. Instead, they may destabilize the genome in the early stages of cancer development. Supporting this idea, ß-HPV's 8E6 protein attenuates p53 accumulation after failed cytokinesis. This paper offers mechanistic insight into how ß-HPV E6 causes this change in cell signaling. An in silico screen and characterization of HCT 116 cells lacking p300 suggested that the histone acetyltransferase is a negative regulator of Hippo pathway (HP) gene expression. HP activation restricts growth in response to stimuli, including failed cytokinesis. Loss of p300 resulted in increased HP gene expression, including proproliferative genes associated with HP inactivation. ß-HPV 8E6 expression recapitulates some of these phenotypes. We used a chemical inhibitor of cytokinesis (dihydrocytochalasin B [H2CB]) to induce failed cytokinesis. This system allowed us to show that ß-HPV 8E6 reduced activation of large tumor suppressor kinase (LATS), an HP kinase. LATS is required for p53 accumulation following failed cytokinesis. These phenotypes were dependent on ß-HPV 8E6 destabilizing p300 and did not completely attenuate the HP. It did not alter H2CB-induced nuclear exclusion of the transcription factor YAP. ß-HPV 8E6 also did not decrease HP activation in cells grown to a high density. Although our group and others have previously described inhibition of DNA repair, to the best of our knowledge, this marks the first time that a ß-HPV E6 protein has been shown to hinder HP signaling.IMPORTANCE ß-HPVs contribute to cSCC development in immunocompromised populations. However, it is unclear if these common cutaneous viruses are tumorigenic in the general population. Thus, a more thorough investigation of ß-HPV biology is warranted. If ß-HPV infections do promote cSCCs, they are hypothesized to destabilize the cellular genome. In vitro data support this idea by demonstrating the ability of the ß-HPV E6 protein to disrupt DNA repair signaling events following UV exposure. We show that ß-HPV E6 more broadly impairs cellular signaling, indicating that the viral protein dysregulates the HP. The HP protects genome fidelity by regulating cell growth and apoptosis in response to a myriad of deleterious stimuli, including failed cytokinesis. After failed cytokinesis, ß-HPV 8E6 attenuates phosphorylation of the HP kinase (LATS). This decreases some, but not all, HP signaling events. Notably, ß-HPV 8E6 does not limit senescence associated with failed cytokinesis.


Assuntos
Citocinese/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocalasina B/análogos & derivados , Citocalasina B/farmacologia , Citocinese/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína p300 Associada a E1A/deficiência , Proteína p300 Associada a E1A/genética , Regulação da Expressão Gênica , Células HCT116 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/virologia , Papillomaviridae/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Mar Drugs ; 17(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394844

RESUMO

Two new capnosane-based diterpenoids, flaccidenol A (1) and 7-epi-pavidolide D (2), two new cembranoids, flaccidodioxide (3) and flaccidodiol (4), and three known compounds 5 to 7 were characterized from the marine soft coral Klyxum flaccidum, collected off the coast of the island of Pratas. The structures of the new compounds were determined by extensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and spectroscopic data comparison with related structures. The rare capnosane diterpenoids were isolated herein from the genus Klyxum for the first time. The cytotoxicity of compounds 1 to 7 against the proliferation of a limited panel of cancer cell lines was assayed. The isolated diterpenoids also exhibited anti-inflammatory activity through suppression of superoxide anion generation and elastase release in the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-stimulated human neutrophils. Furthermore, 1 and 7 also exhibited cytotoxicity toward the tested cancer cells, and 7 could effectively inhibit elastase release. It is worth noting that the biological activities of 7 are reported for the first time in this paper.


Assuntos
Antozoários/química , Fatores Biológicos/farmacologia , Diterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocalasina B/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Elastase Pancreática/metabolismo , Superóxidos/metabolismo
14.
Stem Cell Res Ther ; 10(1): 218, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358047

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are attracting increasing interest for cell-based therapies, making use of both their immuno-modulating and regenerative potential. For such therapeutic applications, a massive in vitro expansion of donor cells is usually necessary to furnish sufficient material for transplantation. It is not established to what extent the long-term genomic stability and potency of MSCs can be compromised as a result of this rapid ex vivo expansion. In this study, we investigated the DNA damage response and chromosomal stability (indicated by micronuclei induction) after sub-lethal doses of gamma irradiation in murine MSCs at different stages of their in vitro expansion. METHODS: Bone-marrow-derived tri-potent MSCs were explanted from 3-month-old female FVB/N mice and expanded in vitro for up to 12 weeks. DNA damage response and repair kinetics after gamma irradiation were quantified by the induction of γH2AX/53BP1 DSB repair foci. Micronuclei were counted in post-mitotic, binucleated cells using an automated image analyzer Metafer4. Involvement of DNA damage response pathways was tested using chemical ATM and DNA-PK inhibitors. RESULTS: Murine bone-marrow-derived MSCs in long-term expansion culture gradually lose their ability to recognize endogenous and radiation-induced DNA double-strand breaks. This impaired DNA damage response, indicated by a decrease in the number of γH2AX/53BP1 DSB repair foci, was associated with reduced ATM dependency of foci formation, a slower DNA repair kinetics, and an increased number of residual DNA double-strand breaks 7 h post irradiation. In parallel with this impaired efficiency of DNA break recognition and repair in older MSCs, chromosomal instability after mitosis increased significantly as shown by a higher number of micronuclei, both spontaneously and induced by γ-irradiation. Multifactorial regression analysis demonstrates that in vitro aging reduced DNA damage recognition in MSCs after irradiation by a multiplicative interaction with dose (p < 0.0001), whereas the increased frequency of micronuclei was caused by an additive interaction between in vitro aging and radiation dose. CONCLUSION: The detrimental impact of long-term in vitro expansion on DNA damage response of MSCs warrants a regular monitoring of this process during the ex vivo growth of these cells to improve therapeutic safety and efficiency.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos da radiação , Células Cultivadas , Citocalasina B/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Feminino , Raios gama , Histonas/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fatores de Tempo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
15.
Mol Biol Cell ; 30(17): 2254-2267, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242090

RESUMO

Macrophage fusion resulting in the formation of multinucleated giant cells occurs in a variety of chronic inflammatory diseases, yet the mechanism responsible for initiating this process is unknown. Here, we used live cell imaging to show that actin-based protrusions at the leading edge initiate macrophage fusion. Phase-contrast video microscopy demonstrated that in the majority of events, short protrusions (∼3 µm) between two closely apposed cells initiated fusion, but occasionally we observed long protrusions (∼12 µm). Using macrophages isolated from LifeAct mice and imaging with lattice light sheet microscopy, we further found that fusion-competent protrusions formed at sites enriched in podosomes. Inducing fusion in mixed populations of GFP- and mRFP-LifeAct macrophages showed rapid spatial overlap between GFP and RFP signal at the site of fusion. Cytochalasin B strongly reduced fusion and when rare fusion events occurred, protrusions were not observed. Fusion of macrophages deficient in Wiskott-Aldrich syndrome protein and Cdc42, key molecules involved in the formation of actin-based protrusions and podosomes, was also impaired both in vitro and in vivo. Finally, inhibiting the activity of the Arp2/3 complex decreased fusion and podosome formation. Together these data suggest that an actin-based protrusion formed at the leading edge initiates macrophage fusion.


Assuntos
Actinas/metabolismo , Macrófagos/metabolismo , Podossomos/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Comunicação Celular , Movimento Celular , Citocalasina B/metabolismo , Feminino , Masculino , Fusão de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Biosens Bioelectron ; 133: 16-23, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903937

RESUMO

Precise measurement of mechanical and electrical properties of single cells can yield useful information on the physiological and pathological state of cells. In this work, we develop a differential multiconstriction microfluidic device with self-aligned 3D electrodes to simultaneously characterize the deformability, electrical impedance and relaxation index of single cells at a high throughput manner (>430 cell/min). Cells are pressure-driven to flow through a series of sequential microfluidic constrictions, during which deformability, electrical impedance and relaxation index of single cells are extracted simultaneously from impedance spectroscopy measurements. Mechanical and electrical phenotyping of untreated, Cytochalasin B treated and N-Ethylmaleimide treated MCF-7 breast cancer cells demonstrate the ability of our system to distinguish different cell populations purely based on these biophysical properties. In addition, we quantify the classification of different cell types using a back propagation neural network. The trained neural network yields the classification accuracy of 87.8% (electrical impedance), 70.1% (deformability), 42.7% (relaxation index) and 93.3% (combination of electrical impedance, deformability and relaxation index) with high sensitivity (93.3%) and specificity (93.3%) for the test group. Furthermore, we have demonstrated the cell classification of a cell mixture using the presented biophysical phenotyping technique with the trained neural network, which is in quantitative agreement with the flow cytometric analysis using fluorescent labels. The developed concurrent electrical and mechanical phenotyping provide great potential for high-throughput and label-free single cell analysis.


Assuntos
Fenômenos Biofísicos , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Citocalasina B/química , Espectroscopia Dielétrica , Eletrodos , Etilmaleimida/química , Citometria de Fluxo , Humanos , Células MCF-7 , Microfluídica
17.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 793-805, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742930

RESUMO

Phosphatidylinositol-3-phosphate (PI3P) is a lipid that accumulates in the early endosomal membrane, and acts as a scaffold to recruit proteins that contain a PI3P-binding domain, such as the FYVE domain. In this study, we examined the effect of PI3P depletion on the insulin response in rat hepatoma-derived H4IIEC3 cells. We found that insulin treatment induced the transient formation of an actin domain structure, a mesh-like tangled network of actin filaments where phosphorylated Akt, endosomal proteins, and PI3P accumulated. Actin domain formation was repressed by the depletion of PI3P by SAR405, an inhibitor of the class III PI3 kinase, Vps34, by the inhibition of PI3P function by the competitive binding of an excess amount of GST-fused 2xFYVE protein to intracellular PI3P, and by the use of diabetic model cells, in which PI3P was depleted. SAR405 did not affect the phosphorylation level of Akt, and the transcriptional regulation of gluconeogenic and cholesterol synthetic genes after insulin treatment. Interestingly, insulin-induced DNA synthesis was specifically inhibited by SAR405, cytochalasin B, and also in diabetic model cells. These results suggest that PI3P is required for the formation of actin domains, which affected a signaling pathway downstream of Akt associated with DNA synthesis in H4IIEC3 cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , DNA de Neoplasias/biossíntese , Insulina/farmacologia , Neoplasias Hepáticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Citocalasina B/farmacologia , DNA de Neoplasias/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fosfatos de Fosfatidilinositol/genética , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Pirimidinonas/farmacologia , Ratos
18.
Eur J Pharmacol ; 846: 86-99, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30641059

RESUMO

Many ent-kaurane diterpenoids exhibit notable antitumor activity in vitro and in vivo, and some have been used as cancer therapeutic agents in China. In this study, we identified a novel molecular target of leukamenin E, an ent-kaurane diterpenoid, using an available whole-cell model in combination with immunofluorescence imaging and mass spectrometry (MS). The cytoskeleton-disrupting drugs cytochalasin B and colchicine caused the depolymerization of microfilaments and the collapse of microtubules and vimentin filaments, respectively, but had little effects on HepG2 and NCI-H1299 cells spreading as well as keratin filament (KF) reassembly, indicating that KFs are involved in cell spreading. Leukamenin E blocked HepG2 and NCI-H1299 cells adhesion/spreading and KF reassembly at subtoxic concentrations, indicating that leukamenin E may target KFs. Moreover, leukamenin E, at 3 µM for 24 h or 10 µM for 3 h, induced massive KF depolymerization in well-spread HepG2 and NCI-H1299 cells treated with/without cytochalasin B and colchicine. MS analysis indicated that leukamenin E could covalently modify amino acid residue(s) in a synthetic peptide based on keratin 1 and keratin 10 sequences, suggesting that covalent modification of the synthetic peptide by leukamenin E caused assembly inhibition or disrupted KF polymerization in HepG2 and NCI-H1299 cells. In addition, acridine orange/ethidium bromide staining and western blotting confirmed that there was no correlation between the KF-disrupting effects and apoptosis or keratin expression. Thus, we propose that leukamenin E is a novel inhibitor of KF assembly, and as such, can serve as a chemical probe of KF functions and a potential molecular target for ent-kaurane diterpenoid-based therapeutics.


Assuntos
Citoesqueleto de Actina/metabolismo , Adesão Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Queratinas/metabolismo , Fatores de Despolimerização de Actina , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colchicina/farmacologia , Citocalasina B/farmacologia , Células Hep G2 , Humanos , Espectrometria de Massas/métodos , Microscopia de Fluorescência/métodos , Microtúbulos/efeitos dos fármacos , Vimentina/metabolismo
19.
Cells ; 9(1)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906012

RESUMO

: The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. OBJECTIVES: The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs. METHODS: The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix. RESULTS: Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-α, TNF-ß, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90+, CD29+, CD44+, CD73+). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats. CONCLUSIONS: Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases.


Assuntos
Citocalasina B/farmacologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Quimiocina CCL2 , Quimiocinas , Citocalasina B/metabolismo , Humanos , Interleucina-10 , Interleucina-1alfa , Interleucina-1beta , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Proteômica , Ratos , Vesículas Transportadoras/fisiologia , Fator de Necrose Tumoral alfa
20.
Toxicon ; 157: 93-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471382

RESUMO

Lectins are carbohydrate-binding proteins that play important roles in the immune system. Under specific conditions, lectins can form amyloids, proteinaceous aggregates rich in cross ß-strand structures. A Ca++-dependent lectin, isolated from Bothrops leucurus snake venom (BLL) has demonstrated relevant biological activities such as antibacterial and antitumor activity. In this work, we aimed to study the interaction of BLL with macrophages. The formation of amyloid structures by BLL in a cell culture medium, the effects of the lectin on macrophage morphology and cytokine production were investigated. BLL amyloid-like fibrils in RMPI medium, pH 7.2, at 37 °C was confirmed by binding of Congo Red, Thioflavin T and electron microscopy. Neither binding of amyloid markers nor fibrillar structures were found when the lectin was incubated in RPMI plus galactose, the specific BLL-binding carbohydrate. Several phagocytic compartments containing fibrillar structures were observed in BLL-treated macrophages in RPMI medium for 24 h; these compartments showed an apple-green birefringence after Congo Red staining and were positive for thioflavin S and anti-amyloid antibody, indicating the presence of amyloid-like fibrils. No fibrillar material and no labeling were observed when the macrophages were treated with BLL plus galactose or cytochalasin B, an inhibitor of phagocytosis. BLL did not affect the viability of the cells. A significant release of proinflammatory (TNF-α, IL-6, INF-ϒ and IL-1ß) and regulatory (IL-10) cytokines was observed in BLL-treated macrophages. Taken together, our results shed light on the structural organization of BLL, improving knowledge about the interaction of lectin with macrophages. The phagocytosis of amyloid-like aggregates together with the proinflammatory response induced by BLL may open new perspectives for the use of this lectin as an interesting model to study cytokines and the production of other mediators as well as understand the mechanisms occurring in human immune cells during amyloid protein deposition.


Assuntos
Bothrops , Venenos de Crotalídeos/farmacologia , Lectinas Tipo C/química , Macrófagos Peritoneais/citologia , Amiloide/química , Amiloide/metabolismo , Animais , Venenos de Crotalídeos/química , Citocalasina B , Citocinas/metabolismo , Galactose/química , Lectinas Tipo C/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/ultraestrutura , Camundongos Endogâmicos BALB C , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA