Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.350
Filtrar
1.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750021

RESUMO

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Núcleo Celular , Cromatina , Células-Tronco Mesenquimais , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Citocalasina D/farmacologia , Histonas/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Camundongos , Montagem e Desmontagem da Cromatina
2.
Microb Pathog ; 190: 106636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556103

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Assuntos
Citocalasina D , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacologia , Actinas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Morfolinas/farmacologia , Transdução de Sinais , Androstadienos/farmacologia , Wortmanina/farmacologia , Endocitose , Cromonas/farmacologia , Plasmídeos/genética
3.
J Nutr Biochem ; 126: 109587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262562

RESUMO

Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1ß were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismo por Reperfusão , Camundongos , Animais , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Eferocitose , Restrição Calórica , Citocalasina D/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Isquemia
4.
Lipids Health Dis ; 21(1): 107, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284323

RESUMO

BACKGROUND: It has been determined through extensive studies that autophagy, the Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and apoptotic responses in macrophages jointly contribute to atherogenesis and its development in the presence of lipid abnormalities. Few studies have investigated in full-scale if the intervention time for lipids abnormality or NLRP3 activation have a significant effect on autophagy, NLRP3 or the apoptotic status in macrophages. METHODS: Human THP-1 monocyte-derived macrophages were established by challenging THP-1 monocytes with 80 µg/ml oxidized low-density lipoprotein (ox-LDL) for specific durations. Foam cell formation was observed by Oil Red O (ORO) staining. Western blots were employed to determine protein expression. Transmission electron microscope (TEM) and immunofluorescence microscopy were applied to observe the autophagic status of cells. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). RESULTS: The cells were treated with ox-LDL for 12 h and 36 h, which were considered to represent early and advanced stages of atherogenesis for this study. The results showed that inhibition of ox-LDL phagocytosis by cytochalasin D in the early stage improved autophagic status, reduced NLRP3 activation and the apoptotic response significantly. In contrast, cytochalasin D had little effect on blocking the detrimental effect of ox-LDL at the advanced stage. Moreover, the changes in autophagy, apoptosis and NLRP3 expression after treatment with small interfering (si) RNA targeting NLRP3 in the early and advanced stages of atherogenesis were consistent with the above data. CONCLUSIONS: Interventions against lipid disorders or inflammatory reactions in the early or advanced stages of atherogenesis may have different results depending on when they are applied during the process of atherosclerotic pathogenesis. These results may help improve therapeutic strategies for atherosclerosis prevention. Furthermore, a healthy lifestyle should still be recommended as the most important and inexpensive measure to prevent atherogenesis.


Assuntos
Aterosclerose , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citocalasina D/metabolismo , Citocalasina D/farmacologia , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Macrófagos , Autofagia , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , RNA/metabolismo
5.
Sci Rep ; 12(1): 16884, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207347

RESUMO

When studying physical cellular response observed by light microscopy, variations in cell behavior are difficult to quantitatively measure and are often only discussed on a subjective level. Hence, cell properties are described qualitatively based on a researcher's impressions. In this study, we aim to define a comprehensive approach to estimate the physical cell activity based on migration and morphology based on statistical analysis of a cell population within a predefined field of view and timespan. We present quantitative measurements of the influence of drugs such as cytochalasin D and taxol on human neuroblastoma, SH-SY5Y cell populations. Both chemicals are well known to interact with the cytoskeleton and affect the cell morphology and motility. Being able to compute the physical properties of each cell for a given observation time, requires precise localization of each cell even when in an adhesive state, where cells are not visually differentiable. Also, the risk of confusion through contaminants is desired to be minimized. In relation to the cell detection process, we have developed a customized encoder-decoder based deep learning cell detection and tracking procedure. Further, we discuss the accuracy of our approach to quantify cell activity and its viability in regard to the cell detection accuracy.


Assuntos
Microscopia , Neuroblastoma , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Citoesqueleto , Humanos , Microscopia/métodos , Paclitaxel/farmacologia
6.
Life Sci ; 308: 120971, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130617

RESUMO

Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.


Assuntos
Nefropatias , NF-kappa B , Acetilcisteína/uso terapêutico , Cádmio/toxicidade , Citocalasina D/uso terapêutico , Citocinas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/uso terapêutico , Citrato de Sildenafila/uso terapêutico , Telmisartan/uso terapêutico
7.
Front Cell Infect Microbiol ; 12: 890839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909961

RESUMO

Although it is widely recognized that disruption of ALS3 reduces the invasion of Candida albicans germ tubes into mammalian oral epithelial cells, the mechanism of this interaction was unexplored. C. albicans strains with structurally informed mutations to remove adhesive activity of the peptide-binding cavity (PBC) or aggregative activity mediated by the amyloid-forming region (AFR) were assessed for their ability to invade cultured human oropharyngeal epithelial cells. Initial assays utilized untreated fungal and epithelial cells. Subsequent work used epithelial cells treated with cytochalasin D and C. albicans cells treated with thimerosal to investigate invasion mediated by active penetration of germ tubes and epithelial cell induced endocytosis, respectively. Results demonstrated the importance of the PBC for the invasion process: loss of PBC function resulted in the same reduced-invasion phenotype as a C. albicans strain that did not produce Als3 on its surface. Invasion via active penetration was particularly compromised without PBC function. Loss of AFR function produced a wild-type phenotype in the untreated and thimerosal-treated invasion assays but increased invasion in cytochalasin D-treated epithelial cells. In previous work, reduced AFR-mediated Als3 aggregation increased C. albicans adhesion to cultured epithelial cell monolayers, presumably via increased PBC accessibility for ligand binding. Collectively, results presented here demonstrate that Als3 PBC-mediated adhesion is integral to its invasive function. These new data add to the mechanistic understanding of the role of Als3 in C. albicans invasion into mammalian oral epithelial cells.


Assuntos
Candida albicans , Proteínas Fúngicas , Animais , Candida albicans/genética , Citocalasina D/metabolismo , Citocalasina D/farmacologia , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Humanos , Mamíferos/metabolismo , Peptídeos/metabolismo , Timerosal/metabolismo
8.
Adipocyte ; 11(1): 487-500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35941833

RESUMO

White adipose tissue wasting plays a critical role in the development and progression of cancer cachexia. However, the mechanism behind the loss of adipose tissue remains ill-defined. In this study, we found that cancer cell-derived exosomes highly expressed miR-425-3p. Administration of cancer cell-derived exosomes significantly inhibited proliferation and differentiation of human preadipocytes-viscereal (HPA-v) cells. In mature adipocytes, cancer cell-derived exosomes activated cAMP/PKA signalling and lipophagy, leading to adipocyte lipolysis and browning of white adipocytes. These exosomes-induced alterations were almost abolished by endocytosis inhibitor cytochalasin D (CytoD) and antagomiR-425-3p, or reproduced by miR-425-3p mimics. In addition, bioinformatics analysis and luciferase reporter assay revealed that miR-425-3p directly targeted proliferation-related genes such as GATA2, IGFBP4, MMP15, differentiation-related gene CEBPA, and phosphodiesterase 4B gene (PDE4B). Depletion of PDE4B enhanced cAMP/PKA signalling and lipophagy, but had no effects on HPA-v proliferation and differentiation. Taken together, these results suggested that cancer cell-derived exosomal miR-425-3p inhibited preadipocyte proliferation and differentiation, increased adipocyte lipolysis, and promoted browning of white adipocytes, all of which might contribute to adipocyte atrophy and ultimately the loss of adipose tissue in cancer cachexia.Abbreviations: ADPN: adiponectin; aP2: adipocyte protein 2 or fatty acid binding protein 4 (FABP4); BCA: bicinchoninic acid assay; BFA: bafilomycin A1; BMI: body mass index; C/EBP: CCAAT/enhancer binding protein; CEBPA: CCAAT/enhancer-binding protein-alpha; C-Exo: cancer cell-derived exosomes; CNTL: control; CREB: cAMP-response element binding protein; CytoD: cytochalasin D; ECL: chemiluminescence; GATA2: GATA Binding Protein 2; HFD: high fat diet; HSL: hormone-sensitive lipase; IGFBP4: insulin like growth factor binding protein 4; IRS-1: insulin receptor substrate-1; ISO: isoproterenol hydrochloride; KD: knockdown; KO: knock out; LC3: microtubule-associated protein 1A/1B-light chain 3; LMF: lipid mobilizing factor; LPL: lipoprotein lipase; MMP15: matrix metallopeptidase 15; Mir-Inh-C-Exo: cancer cell-derived exosomes with miR-425-3p inhibition; mTOR: mammalian target of rapamycin; Mut: mutant; N-Exo: normal cell-derived exosomes; NSCLC: non-small cell lung cancer; PBS, phosphate buffered saline; PGC-1: peroxisome proliferator-activated receptor-gamma coactivator-1; PDEs: phosphodiesterases; PKI: PKA inhibitor; PKA: cAMP-dependent protein kinase; PLIN1: Perilipin 1; PTHRP: parathyroid hormone-related protein; PVDF: polyvinylidene difluoride; shRNA: short hairpin RNA; UCP1: uncoupling protein 1; WT: wild type.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Adipócitos Brancos/metabolismo , Atrofia , Caquexia , Citocalasina D , Humanos , Metaloproteinase 15 da Matriz , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Biophys J ; 121(9): 1632-1642, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35390297

RESUMO

Cell viscoelastic properties are affected by the cell cycle, differentiation, and pathological processes such as malignant transformation. Therefore, evaluation of the mechanical properties of the cells proved to be an approach to obtaining information on the functional state of the cells. Most of the currently used methods for cell mechanophenotyping are limited by low robustness or the need for highly expert operation. In this paper, the system and method for viscoelasticity measurement using shear stress induction by fluid flow is described and tested. Quantitative phase imaging (QPI) is used for image acquisition because this technique enables one to quantify optical path length delays introduced by the sample, thus providing a label-free objective measure of morphology and dynamics. Viscosity and elasticity determination were refined using a new approach based on the linear system model and parametric deconvolution. The proposed method allows high-throughput measurements during live-cell experiments and even through a time lapse, whereby we demonstrated the possibility of simultaneous extraction of shear modulus, viscosity, cell morphology, and QPI-derived cell parameters such as circularity or cell mass. Additionally, the proposed method provides a simple approach to measure cell refractive index with the same setup, which is required for reliable cell height measurement with QPI, an essential parameter for viscoelasticity calculation. Reliability of the proposed viscoelasticity measurement system was tested in several experiments including cell types of different Young/shear modulus and treatment with cytochalasin D or docetaxel, and an agreement with atomic force microscopy was observed. The applicability of the proposed approach was also confirmed by a time-lapse experiment with cytochalasin D washout, whereby an increase of stiffness corresponded to actin repolymerization in time.


Assuntos
Neoplasias , Citocalasina D , Módulo de Elasticidade , Elasticidade , Reprodutibilidade dos Testes , Viscosidade
10.
Liver Transpl ; 28(10): 1628-1639, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35352459

RESUMO

There is a paucity of evidence about the coagulation profile regarding the complexity of children undergoing liver transplantation (LT). This study aimed to investigate intraoperative hemostatic changes during pediatric LT according to the etiology for LT and examine the ability of rotational thromboelastometry (ROTEM® , TEM International GmbH, Munich, Germany) as a point-of-care monitoring method. We evaluated 106 patients aged 3 months to 17 years undergoing LT for acute liver failure (ALF) and chronic liver disease, which consists of patients with cholestatic disease, metabolic/genetic disease, and cancer. A total of 731 ROTEM® measurements, including 301 ellagic acid to initiate clotting via the intrinsic pathway, 172 tissue factor to initiate the extrinsic clotting cascade (EXTEM), and 258 cytochalasin D to inhibit platelet activity reflecting fibrinogen (FIBTEM), were analyzed at predetermined time points (the preanhepatic, anhepatic, and postreperfusion phases). We simultaneously conducted conventional coagulation tests. In children with ALF, preanhepatic measurements of conventional coagulation tests and ROTEM® showed a more hypocoagulable state than other diseases. During LT, the coagulation profile was deranged, with a prolonged clotting time and reduced clot firmness, changes that were more profound in the cholestatic disease group. Maximum clot firmness (MCF) on EXTEM and FIBTEM were well correlated with the platelet count and fibrinogen concentration (r = 0.830, p < 0.001 and r = 0.739, p < 0.001, respectively). On the EXTEM, MCF with 30 mm predicted a platelet count <30,000/mm3 (area under the curve, 0.985), and 6 mm predicted a fibrinogen concentration <100 mg/dl on the FIBTEM (area under the curve, 0.876). However, the activated partial thromboplastin time and prothrombin time were significant but only weakly correlated with the clotting time on the ROTEM® . In children undergoing LT, coagulation profiles depend on the etiology for LT. During LT, ROTEM® parameters could help detect thrombocytopenia and hypofibrinogenemia and guide transfusion therapy as a point-of-care monitoring method.


Assuntos
Hemostáticos , Transplante de Fígado , Testes de Coagulação Sanguínea/métodos , Criança , Citocalasina D , Ácido Elágico , Fibrinogênio , Humanos , Transplante de Fígado/efeitos adversos , Tromboelastografia/métodos , Tromboplastina
11.
J Membr Biol ; 255(4-5): 623-632, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35166859

RESUMO

Macrophages are the primary hosts for Mycobacterium tuberculosis (M. tb), an intracellular pathogen, and the causative organism of tuberculosis (TB) in humans. While M. tb has the ability to enter and survive in host macrophages, the precise mechanism of its internalization, and factors that control this essential process are poorly defined. We have previously demonstrated that perturbations in levels of cholesterol and sphingolipids in macrophages lead to significant reduction in the entry of Mycobacterium smegmatis (M. smegmatis), a surrogate model for mycobacterial internalization, signifying a role for these plasma membrane lipids in interactions at the host-pathogen interface. In this work, we investigated the role of the host actin cytoskeleton, a critical protein framework underlying the plasma membrane, in the entry of M. smegmatis into human macrophages. Our results show that cytochalasin D mediated destabilization of the actin cytoskeleton of host macrophages results in a dose-dependent reduction in the entry of mycobacteria. Notably, the internalization of Escherichia coli remained invariant upon actin destabilization of host cells, implying a specific involvement of the actin cytoskeleton in mycobacterial infection. By monitoring the F-actin content of macrophages utilizing a quantitative confocal microscopy-based technique, we observed a close correlation between the entry of mycobacteria into host macrophages with cellular F-actin content. Our results constitute the first quantitative analysis of the role of the actin cytoskeleton of human macrophages in the entry of mycobacteria, and highlight actin-mediated mycobacterial entry as a potential target for future anti-TB therapeutics.


Assuntos
Actinas , Mycobacterium tuberculosis , Humanos , Actinas/metabolismo , Citocalasina D/farmacologia , Citocalasina D/metabolismo , Citoesqueleto de Actina/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Colesterol/metabolismo , Esfingolipídeos
12.
J Pept Sci ; 28(9): e3408, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35128758

RESUMO

Cell-penetrating peptides (CPPs) can aid in intracellular and in vivo drug delivery. However, the mechanisms of CPP-mediated penetration remain unclear, limiting the development and further application of CPPs. Flow cytometry and laser confocal fluorescence microscopy were performed to detect the effects of different endocytosis inhibitors on the internalization of CC12 and penetratin in ARPE-19 cells. The co-localization of CPPs with the lysosome and macropinosome was detected via an endocytosis tracing experiment. The flow cytometry results showed that chlorpromazine, wortmannin, cytochalasin D, and the ATP inhibitor oligomycin had dose-dependent endocytosis-inhibitory effects on CC12. The laser confocal fluorescence results showed that oligomycin had the most significant inhibitory effect on CC12 uptake; CC12 was co-located with the lysosome, but not with the macropinosome. For penetratin, cytochalasin D and oligomycin had obvious inhibitory effects. The laser confocal fluorescence results indicated that oligomycin had the most significant inhibitory effect on penetratin uptake; the co-localization of penetratin with the lysosome was higher than that with the macropinosome. Cation-independent CC12 and cationic penetratin may be internalized into cells primarily through caveolae and clathrin-mediated endocytosis, and they are typically dependent on ATP. The transport of penetratin could be partly achieved through the direct transmembrane pathway, as the positive charge of penetratin interacts with the negative charge of the cell membrane, and partly through the endocytic pathway.


Assuntos
Peptídeos Penetradores de Células , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Cátions/farmacologia , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Citocalasina D/metabolismo , Citocalasina D/farmacologia , Endocitose , Oligomicinas/farmacologia , Transcitose
13.
Sci Rep ; 11(1): 23855, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903829

RESUMO

ATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia of the mouse. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. In many cases, vanadate (Vi) traps nucleotides at the active site of myosin isoforms and presents nucleotide dissociation. Co-application with Vi enhanced the tip labeling, which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced-but did not disappear altogether-in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Células Ciliadas Auditivas/metabolismo , Indóis/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Citocalasina D/farmacologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miosinas/metabolismo , Estereocílios/metabolismo , Estereocílios/ultraestrutura , Tiazolidinas/farmacologia , Vanadatos/farmacologia
14.
Am J Physiol Cell Physiol ; 321(3): C607-C614, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378992

RESUMO

Bovine milk exosomes (BMEs) are being explored in drug delivery despite their rapid elimination by macrophages. We aimed at identifying the BME transporter in murine bone marrow-derived macrophages (BMDMs). Fluorophore-labeled BMEs were used in transport studies in BMDMs from C57BL/6J and class A scavenger receptor type 1/2 (CASR-1/2) knockout mice and tissue accumulation in macrophage-depleted C57BL/6J mice. Parametric and nonparametric statistics tests for pairwise and multiple comparisons were used. Chemical inhibitors of phagocytosis by cytochalasin D led to a 69 ± 18% decrease in BME uptake compared with controls (P < 0.05), whereas inhibitors of endocytic pathways other than phagocytosis had a modest effect on uptake (P > 0.05). Inhibitors of class A scavenger receptors (CASRs) including CASR-1/2 caused a 70% decrease in BME uptake (P < 0.05). The uptake of BMEs by BMDMs from CASR-1/2 knockout mice was smaller by 58 ± 23% compared with wild-type controls (P < 0.05). Macrophage depletion by clodronate caused a more than 44% decrease in BME uptake in the spleen and lungs (P < 0.05), whereas the decrease observed in liver was not statistically significant. In conclusion, CASR-1/2 facilitates the uptake of BMEs in BMDMs and C57BL/6J mice.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Leite/química , Receptores Depuradores Classe A/genética , Animais , Bovinos , Ácido Clodrônico/farmacologia , Citocalasina D/farmacologia , Endocitose/efeitos dos fármacos , Exossomos/química , Feminino , Corantes Fluorescentes/química , Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Receptores Depuradores Classe A/deficiência , Baço/efeitos dos fármacos , Baço/metabolismo , Coloração e Rotulagem/métodos
15.
Hum Cell ; 34(6): 1709-1716, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312810

RESUMO

Mechanical stiffness is closely related to cell adhesion and rounding in some cells. In leukocytes, dephosphorylation of ezrin/radixin/moesin (ERM) proteins is linked to cell adhesion events. To elucidate the relationship between surface stiffness, cell adhesion, and ERM dephosphorylation in leukocytes, we examined the relationship in the myelogenous leukemia line, KG-1, by treatment with modulation drugs. KG-1 cells have ring-shaped cortical actin with microvilli as the only F-actin cytoskeleton, and the actin structure constructs the mechanical stiffness of the cells. Phorbol 12-myristate 13-acetate and staurosporine, which induced cell adhesion to fibronectin surface and ERM dephosphorylation, caused a decrease in surface stiffness in KG-1 cells. Calyculin A, which inhibited ERM dephosphorylation and had no effect on cell adhesion, did not affect surface stiffness. To clarify whether decreasing cell surface stiffness and inducing cell adhesion are equivalent, we examined KG-1 cell adhesion by treatment with actin-attenuated cell softening reagents. Cytochalasin D clearly diminished cell adhesion, and high concentrations of Y27632 slightly induced cell adhesion. Only Y27632 slightly decreased ERM phosphorylation in KG-1 cells. Thus, decreasing cell surface stiffness and inducing cell adhesion are not equivalent, but these phenomena are coordinately regulated by ERM dephosphorylation in KG-1 cells.


Assuntos
Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Elasticidade/fisiologia , Leucemia Mieloide/patologia , Leucócitos/metabolismo , Leucócitos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Amidas/farmacologia , Adesão Celular/genética , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Elasticidade/efeitos dos fármacos , Fibronectinas/metabolismo , Humanos , Leucemia Mieloide/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Estaurosporina/farmacologia
16.
Biochem Biophys Res Commun ; 541: 95-101, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33493685

RESUMO

The tumor microenvironment is a complex microenvironment that combines the biochemical and biophysical factors. When the cells are exposed to the microenvironment, the direct biophysical factor is the matrix hardness. As an auxiliary indicator of clinical disease diagnosis, it is still not clear how the matrix hardness induces cell malignant changes and the regulation mechanisms. In this study, we identified that hard matrix significantly promoted cancer cell migratory behaviors. Cell shape was closely associated with cancer cell malignancy, the high malignant cells were associated with high ratios of length/width and low circularity. F-actin networks were also linked with extracellular matrix, it was not regularly distributed when cells were in non-malignant tumor phases or under F-actin inhibition. F-actin might play the key role that transmitted the signal from extracellular matrix to the intracellular organelles. Further study confirmed that active YAP was translocated to nucleus on hard matrix. Cells on hard matrix with cytochalasin D reversed the cancer cell malignancy, meanwhile F-actin re-distributed to the membrane and YAP nucleus translocations were hindered. This work confirmed that F-actin and YAP were upstream-downstream cascade for the cellular and nucleus outside-in signal transductions. The above results demonstrated that hard matrix promoted breast cancer cell malignant behaviors through F-actin network and YAP activation. These results not only described the signal transductions from extracellular to intracellular that was initiated by the biophysical tumor microenvironment, but provided clinical intervention ideas for cancer treatments.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Forma Celular , Citoesqueleto/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Dureza , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citocalasina D/farmacologia , Humanos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Proteínas de Sinalização YAP
17.
Physiol Rep ; 8(16): e14561, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812390

RESUMO

During isometric activation of airway smooth muscle (ASM), cross-bridge cycling and ATP hydrolysis rates decline across time even though isometric force is sustained. Thus, tension cost (i.e., ATP hydrolysis rate per unit of force during activation) decreases with time. The "latch-state" hypothesis attributes the dynamic change in cross-bridge cycling and ATP hydrolysis rates to changes in phosphorylation of the regulatory myosin light chain (rMLC20 ). However, we previously showed that in ASM, the extent of rMLC20 phosphorylation remains unchanged during sustained isometric force. As an alternative, we hypothesized that cytoskeletal remodeling within ASM cells results in increased internal loading of contractile proteins that slows cross-bridge cycling and ATP hydrolysis rates. To test this hypothesis, we simultaneously measured isometric force and ATP hydrolysis rate in permeabilized porcine ASM strips activated by Ca2+ (pCa 4.0). The extent of rMLC20 phosphorylation remained unchanged during isometric activation, even though ATP hydrolysis rate (tension cost) declined with time. The effect of cytoskeletal remodeling was assessed by inhibiting actin polymerization using Cytochalasin D (Cyto-D). In Cyto-D treated ASM, isometric force was reduced while ATP hydrolysis rate increased compared to untreated ASM strips. These results indicate that external transmission of force, cross-bridge cycling and ATP hydrolysis rates are affected by internal loading of contractile proteins.


Assuntos
Citoesqueleto de Actina/metabolismo , Trifosfato de Adenosina/metabolismo , Músculo Liso/metabolismo , Traqueia/citologia , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Cálcio/metabolismo , Citocalasina D/farmacologia , Hidrólise , Contração Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Cadeias Leves de Miosina/metabolismo , Fosforilação , Suínos
18.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118804, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738252

RESUMO

The movement of cell-bound membrane vesicles (CBMVs) on migrating cells is poorly understood. We hypothesized that the movement of CBMVs on migrating cells is different from that on non-migrating cells and can be interfered by external stimuli. To test it, single-vesicle tracking was performed to analyze motion type, speed, displacement, and direction of CBMVs on migrating cells treated with different reagents (Ang-1, TNF-α, LPS, VEGFα, endostatin, Cytochalasin D, and nocodazole) among which the former four promoted cell migration whereas the others inhibited cell migration. We found that cell migration changed CBMVs from non-directed to directed motion and that most CBMVs on untreated migrating cells moved along the migration axis. Interestingly, the migration-promoting reagents played positive roles in CBMV movement (improving directed motion, speed and/or maximal displacement, upregulating the amount of vesicles moving in migration direction) whereas the migration-inhibiting reagents played negative roles (impairing/abolishing directed motion, speed and/or maximal displacement, downregulating the vesicles moving forward or causing an even distribution of motion direction). The cytoskeleton (particularly microtubules) probably played vital roles in CBMV movement on migrating cells and mediated the effects of stimuli on vesicle movement. The data may provide important information for understanding the properties, behaviors, and functions of CBMVs.


Assuntos
Membrana Celular/genética , Movimento Celular/genética , Citoesqueleto/efeitos dos fármacos , Microtúbulos/genética , Angiotensina I/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Citoesqueleto/genética , Endostatinas/farmacologia , Humanos , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética
19.
J Cell Physiol ; 235(10): 7604-7619, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32437028

RESUMO

Our previous study demonstrated mechanical stretch (MS) could induce the apoptosis of retinal pigment epithelial (RPE) cells, but the related mechanisms remained unclear. This study was to characterize the protein expression profile in RPE cell line ARPE-19 exposed to MS, cytochalasin D (CD; an inhibitor of actin polymerization) or CD + MS at 2-time points (6, 24 hr; n = 3, at each time point) by using proteomics technique. Our data highlighted that compared with control, ECE1 was continuously downregulated in ARPE-19 cells treated by MS or CD + MS from 6 to 24 hr. Function and protein-protein interaction network analyses showed ATAD2 was downregulated in all three treatment groups compared with control, but successive upregulation of RPS13 and RPL7 and downregulation of AHSG were specifically induced by MS. ATAD2 was enriched in cell cycle; AHSG was associated with membrane organization; RPS13 and RPL7 participated in ribosome biogenesis. Furthermore, transcription factor CREB1 that was upregulated in MS group at 24 hr after treatment, may negatively regulate ATAD2. The expressions of all crucial proteins in ARPE-19 cells were confirmed by western blot analysis. Overexpression of ATAD2 and AHSG were also shown to reverse the apoptosis of ARPE-19 cells induced by MS or CD + MS, with significantly decreased apoptotic rates and caspase-3 activities. Accordingly, our findings suggest downregulation of ATAD2 and AHSG may be potential contributors to the apoptosis of RPE cells induced by MS. Overexpression of them may represent underlying preventive and therapeutic strategies for MS-induced retinal disorders.


Assuntos
Apoptose/fisiologia , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocalasina D/metabolismo , Regulação para Baixo/fisiologia , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Epitélio Pigmentado da Retina/fisiologia , Estresse Mecânico , Regulação para Cima/fisiologia , alfa-2-Glicoproteína-HS/metabolismo
20.
J Cell Mol Med ; 24(13): 7609-7624, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441055

RESUMO

Long-term abuse of ketamine causes ketamine-induced cystitis. The functional alterations of bladder epithelial cells in microenvironment during cystitis remain poorly understood. Here, we explored extracellular vesicles (EV) alteration in ketamine-induced toxicity. To simulate the high-concentration ketamine environment in vivo, we established an in vitro model of high ketamine using human uroepithelial cells (SV-HUC-1). Cell viability and proliferation were assessed to evaluate the effects of various concentrations (0, 0.25, 0.5, 1, 2, 4 and 8 mmol/L) of ketamine on SV-HUC-1 cells. The cell supernatant cultured at a concentration (0, 1, 2, 4 mmol/L) of ketamine was selected for EV extraction and identified. Subsequently, we assessed different groups (ketamine, ketamine plus EV blocker, EV, EV plus extracellular vesicles blocker) of oxidative stress and expression of inflammation. Last, luciferase reporter assay was performed to study the transcriptional regulation of EV on the NF-kB and P38 pathway. The results of our study suggested that treatment with 0, 1, 2 or 4 mmol/L ketamine altered the morphology and secretion capacity of extracellular vesicles. As the concentration of ketamine increased, the average particle size of EV decreased, but the crest size, particle concentration and EV protein increased. Moreover, after the addition of EV blocker, EV secreted at different concentrations were blocked outside the cell membrane, and the degree of oxidative stress decreased. Our study provided evidence that ketamine alters the secretion of EV by directly stimulating cells in inflammation microenvironment and EV play significant roles in intercellular signal communication and the formation of KIC.EV.


Assuntos
Cistite/induzido quimicamente , Cistite/complicações , Vesículas Extracelulares/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Úlcera/complicações , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cistite/patologia , Citocalasina D/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Ketamina , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Úlcera/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA