Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772653

RESUMO

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Assuntos
Citocromos c , Tecnologia de Fibra Óptica , Interferometria , Titânio , Citocromos c/análise , Citocromos c/metabolismo , Titânio/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Fibras Ópticas , Corrosão
2.
J Am Soc Mass Spectrom ; 35(6): 1076-1088, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38660944

RESUMO

A recently developed proteolytic reactor, designed for protein structural investigation, was coupled to ion mobility mass spectrometry to monitor collisional cross section (CCS) evolution of model proteins undergoing trypsin-mediated mono enzymatic digestion. As peptides are released during digestion, the CCS of the remaining protein structure may deviate from the classical 2/3 power of the CCS-mass relationship for spherical structures. The classical relationship between CCS and mass (CCS = A × M2/3) for spherical structures, assuming a globular shape in the gas phase, may deviate as stabilizing elements are lost during digestion. In addition, collision-induced unfolding (CIU) experiments on partially digested proteins provided insights into the CCS resilience in the gas phase to ion activation, potentially due to the presence of stabilizing elements. The study initially investigated a model peptide ModBea (3 kDa), assessing the impact of disulfide bridges on CCS resilience in both reduced and oxidized forms. Subsequently, ß-lactoglobulin (2 disulfide bridges), calmodulin (Ca2+ coordination cation), and cytochrome c (heme) were selected to investigate the influence of common structuring elements on CCS resilience. CIU experiments probed the unfolding process, evaluating the effect of losing specific peptides on the energy landscapes of partially digested proteins. Comparisons of the TWCCSN2→He to trend curves describing the CCS/mass relationship revealed that proteins with structure-stabilizing elements consistently exhibit TWCCSN2→He and greater resilience toward CIU compared to proteins lacking these elements. The integration of online digestion, ion mobility, and CIU provides a valuable tool for identifying structuring elements in biopolymers in the gas phase.


Assuntos
Calmodulina , Espectrometria de Mobilidade Iônica , Desdobramento de Proteína , Proteínas , Espectrometria de Mobilidade Iônica/métodos , Proteínas/química , Calmodulina/química , Calmodulina/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Citocromos c/química , Citocromos c/análise , Espectrometria de Massas/métodos , Peptídeos/química , Peptídeos/análise , Tripsina/química , Tripsina/metabolismo , Animais , Conformação Proteica
3.
J Am Chem Soc ; 144(6): 2716-2725, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35120294

RESUMO

The implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin. Specifically, three different water-soluble proteins treated with the same protease, trypsin, produce different polypeptide fragments defined by the degree by which the latter reduce the nanopore's ionic current. The fragments identified with the aerolysin nanopore are consistent with the predicted fragments that trypsin could produce.


Assuntos
Toxinas Bacterianas/química , Citocromos c/análise , Muramidase/análise , Mioglobina/análise , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , Aeromonas hydrophila/química , Citocromos c/química , Proteínas Hemolisinas/química , Muramidase/química , Mioglobina/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteólise , Proteômica , Tripsina/química
4.
Mol Biol Rep ; 47(8): 5985-5996, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32780254

RESUMO

The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.


Assuntos
Apoptose/efeitos dos fármacos , Clorpirifos/toxicidade , Eugenol/uso terapêutico , Terapia por Exercício , Hipocampo/efeitos dos fármacos , Intoxicação por Organofosfatos/terapia , Condicionamento Físico Animal , Acetilcolinesterase/análise , Trifosfato de Adenosina/análise , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/análise , Caspase 3/análise , Terapia Combinada , Citocromos c/análise , Modelos Animais de Doenças , Eugenol/administração & dosagem , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Transtornos da Memória/terapia , Proteínas do Tecido Nervoso/análise , Intoxicação por Organofosfatos/tratamento farmacológico , Distribuição Aleatória , Ratos , Ratos Wistar
5.
Anal Chem ; 92(18): 12498-12508, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32790289

RESUMO

Single-cell DNA analysis technology has provided unprecedented insights into many physiological and pathological processes. In contrast, technologies that allow protein analysis in single cells have lagged behind. Herein, a method called single-cell Plasmonic ImmunoSandwich Assay (scPISA) that is capable of measuring signaling proteins and protein complexes in single living cells is described. scPISA is straightforward, comprising specific in-cell extraction and ultrasensitive plasmonic detection. It is applied to evaluate the efficacy and kinetics of cytotoxic drugs. It reveals that different drugs exhibit distinct proapoptotic properties at the single-cell level. A set of new parameters is thus proposed for comprehensive and quantitative evaluation of the efficacy of anticancer drugs. It discloses that metformin can dramatically enhance the overall anticancer efficacy when combined with actinomycin D, although it itself is significantly less effective. Furthermore, scPISA reveals that survivin interacts with cytochrome C and caspase-3 in a dynamic fashion in single cells during continuous drug treatment. As compared with conventional assays, scPISA exhibits several significant advantages, such as ultrahigh sensitivity, single-cell resolution, fast speed, and so on. Therefore, this approach may provide a powerful tool for wide, important applications from basic research to clinical applications, particularly precision medicine.


Assuntos
Antineoplásicos/farmacologia , Caspase 3/análise , Citocromos c/análise , Dactinomicina/farmacologia , Imunoensaio , Metformina/farmacologia , Análise de Célula Única , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Dactinomicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinética , Metformina/química , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 12(31): 35385-35392, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32639722

RESUMO

Designing a stable and sensitive luminol-based electrochemiluminescence (ECL) analytical platform in the neutral condition has attracted a lot of attention. Here, gold-nanoparticle-functionalized cobalt-nickel phosphate three-dimensional nanoice creams (Au@Co3Ni3(PO4)4 NICs) are successfully prepared via electrostatic interaction. Generally, cobalt-nickel phosphate nanoice creams (Co3Ni3(PO4)4 NICs) are synthesized via a mild hydrothermal method and functionalized via polyethylenimine (PEI). Then, Au NPs are adsorbed on the surface of Co3Ni3(PO4)4 NICs via Au-N weak interaction to fabricate Au@Co3Ni3(PO4)4 NICs. Owing to the important roles of Au@Co3Ni3(PO4)4 in exhibiting excellent electrocatalytic activity, as well as preventing the deposition of negatively charged oxidation product induced electrode passivation, luminol in the nanohybrids (LH-Au@Co3Ni3(PO4)4) gives strong and stable ECL intensity in the neutral conditions. Moreover, the ECL emission of luminol is obviously quenched based on the resonance energy transfer (RET) between luminol as donor and cytochrome c (Cyt c) as acceptor. Hence, a sensitive ECL biosensor is successfully fabricated for the quantitative determination of Cyt c in cell lysates and exhibits wide linear ranges of 1.0 × 10-4-0.5 × 10-5 and 0.5 × 10-5-1.0 × 10-8 M as well as a low detection limit of 2.48 nM. This novel sensing strategy will broaden the application of transition metal (Co, Ni) phosphates in bioassays.


Assuntos
Técnicas Biossensoriais , Cobalto/química , Citocromos c/análise , Nanopartículas Metálicas/química , Níquel/química , Fosfatos/química , Ouro/química , Estrutura Molecular
7.
Medicine (Baltimore) ; 99(26): e20922, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590803

RESUMO

Traumatic brain injury (TBI), due to its high mortality and morbidity, is an important research topic. Apoptosis plays a pathogenic role in a series of neurological disorders, from neurodegenerative diseases to acute neurological lesions.In this study, we analyzed the association between apoptosis and the Glasgow Outcome Scale (GOS), to examine the potential of apoptosis as a biomarker for a TBI outcome. Patients with severe TBI were recruited at the Department of Neurosurgery, Wujin Hospital Affiliated with Jiangsu University, between January 2018 and December 2019. As a control group, healthy subjects were recruited. The concentrations of caspase-3, cytochrome c, sFas, and caspase-9 in the cerebrospinal fluid (CSF) were analyzed by enzyme-linked immunosorbent assay (ELISA). The association between the GOS and the clinical variables age, sex, initial Glasgow Coma Scale (GCS) score, intracranial pressure (ICP), cerebral perfusion pressure (CPP), initial computed tomography (CT) findings, and apoptotic factors was determined using logistic regression. The area under the receiver operator characteristic (ROC) curve (AUC), and thus the sensitivity and specificity of each risk factor, were obtained.The levels of caspase-3, cytochrome c, sFas, and caspase-9 in the TBI group were significantly higher than those in the control group (P < .05). The logistic regression results showed that ICP and caspase-3 were significant predictors of outcome at 6 months post-TBI (P < .05). The AUC was 0.925 and 0.888 for ICP and caspase-3, respectively. However, the AUC for their combined prediction was 0.978, with a specificity and sensitivity of 96.0% and 95.2%, respectively, showing that the combined prediction was more reliable than that of the 2 separate factors.We demonstrated that caspase-3, cytochrome C, sFas, and caspase-9 were significantly increased in the CSF of patients following severe TBI. Furthermore, we found that ICP and caspase-3 were more reliable for outcome prediction in combination, rather than separately.


Assuntos
Apoptose/fisiologia , Biomarcadores/análise , Lesões Encefálicas Traumáticas/complicações , Líquido Cefalorraquidiano/microbiologia , Adulto , Área Sob a Curva , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/mortalidade , Caspase 3/análise , Caspase 3/líquido cefalorraquidiano , Caspase 9/análise , Caspase 9/líquido cefalorraquidiano , Líquido Cefalorraquidiano/metabolismo , Citocromos c/análise , Citocromos c/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Receptor fas/análise
8.
Mikrochim Acta ; 187(4): 221, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166378

RESUMO

A luminescent metal organic framework was prepared by encapsulating Zn-Ag-In-S quantum dots into "French fries"-like MIL-68(In) metal organic frameworks (ZAISQDs@MIL-68(In)). The ZAISQDs@MIL-68(In) had a maximum excitation wavelength at 370 nm and maximum emission wavelength at 620 nm. It was found that the ZAISQDs@MIL-68(In) was efficiently quenched by cytochrome c (Cyt c), which is an important biomarker of early cell apoptosis. The quenching mechanism was ascribed to be an inner filter effect and dynamic quenching of Cyt c towards the ZAISQDs@MIL-68(In), and the enrichment effect of MIL-68(In). Benefiting from the multiple advantages, ZAISQDs@MIL-68(In) was developed as an assay strategy of Cyt c with logarithmic relation between signal quenching and concentration in the range 0.02 to 3.5 µM. The linear equation was (F0-F)/F0 = 0.5043 + 0.2678 × logcCyt c with a detection limit of 8 nM. Cyt c released by drug induced apoptotic cells was determined by ZAISQDs@MIL-68(In), and this strategy has been utilized for the screening of anticancer drug activity. Graphical abstract Schematic representation of the synthesis of ZAISQDs@MIL-68(In) and its application for Cyt c and screening anticancer drug activity.


Assuntos
Antineoplásicos/química , Apoptose , Citocromos c/análise , Fluorescência , Substâncias Luminescentes/química , Estruturas Metalorgânicas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Estrutura Molecular , Células Tumorais Cultivadas
9.
Mikrochim Acta ; 186(12): 845, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31768654

RESUMO

An enzyme-free aptameric nanosensor is presented for apoptosis assay. The method exploits the peroxidase-mimicking property of silver/platinum alloy nanoclusters (Ag/Pt NCs) and uses a Cyt c binding ssDNA aptamer. An extra-strand polycytosine (C14) aptamer was designed as a template for synthesis of the Ag/Pt NCs. If cell lysate or purified Cyt c is placed in a polystyrene microplate, Cyt c will bind to the surface of the wells of a microtiterplate. On addition of Apt@Ag/PtNCs, it will associate with Cyt c and then catalytically oxidize colorless tetramethylbenzidine (TMB) in the presence of H2O2 to give a blue colored oxidation product (TMBox) due to the peroxidase-mimicking property of the Ag/Pt NCs. Under optimal conditions, the absorbance of TMB at 660 nm is linearly enhanced as the concentration of Cyt c increases from 50.0 fM to 500 nM, and the detection limit is ~10 pM. The assay is simple, sensitive and cost effective in that it is enzyme-free, antibody-free and label-free. Graphical abstractSchematic diagram of the apoptosis assay on the basis of microplate well-coated mitochondrial cytochrome c releasing by using Aptamer@Ag/Pt NCs.


Assuntos
Apoptose , Aptâmeros de Nucleotídeos/química , Colorimetria , Citocromos c/metabolismo , Mitocôndrias/química , Peroxidases/química , Ligas/química , Citocromos c/análise , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Mitocôndrias/metabolismo , Tamanho da Partícula , Peroxidases/metabolismo , Platina/química , Prata/química , Propriedades de Superfície
10.
Chem Commun (Camb) ; 55(67): 9979-9982, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31367719

RESUMO

A chemical tag enhances peptide detection by multiple orders in mass spectrometry. The substantial improvement in the peptide mapping along with simplified and enhanced fragmentation pattern enables the unambiguous sequencing of a protein and antibody. The chemoselective sensitivity booster provides a tool for remarkably improved analysis of protein bioconjugates.


Assuntos
Peptídeos/análise , Proteínas/análise , Citocromos c/análise , Lisina/química , Mapeamento de Peptídeos , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Biosens Bioelectron ; 141: 111337, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220724

RESUMO

We report on facile synthesis and characterization of phosphate-functionalized polymer dots (PDs) by doping tributyl phosphate (TBP) in a semiconducting polymer poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,10-3}-thiadiazole)] (PFBT). Then, the prepared TBP@PFBT PDs were used to develop a very high sensitive probe for detection Fe3+, Cu2+ ions and Cytochrome c based on aggregation induced fluorescence off mechanism. The PDs exhibited a linear dynamic range for Fe3+ from 0.1 to 2 nM with a detection limit of 30 pM and for Cu2+ from 2.0 to 50.0 nM with a detection limit of 0.35 nM. Meanwhile, this probe showed a linear dynamic range for Cyt c from 175 to 1750 pM with a detection limit of 32.7 pM. The TBP@PFBT PDs is a simple, one-step, fast, non-invasive, label-free, and inexpensive probe that is capable of online apoptosis monitoring response to drugs with an ever-present opportunity to contribute in a variety of in-vitro and in-vivo biological applications. We also obtained sharp, specific 2D and 3D imaging results for early stage apoptosis in breast cancer cells. Moreover, this technique possesses the advantage of rapid determination of Fe3+ ion in biological or environmental samples. Importantly, this label-free assay provides short determination time of only a few min, easy operation and very low LOD allowing 100-4000 times increased in sensitivity over previously reported probes, together with high selectivity without need to using biorecognition elements like enzymes, antibodys and/or aptamers. Such excellent features make the TBP@PFBT PDs an excellent probe for successful apoptosis imaging in live cells.


Assuntos
Apoptose , Técnicas Biossensoriais/métodos , Citocromos c/análise , Fluorenos/química , Corantes Fluorescentes/química , Ferro/análise , Polímeros/química , Cátions/análise , Linhagem Celular , Cobre/análise , Humanos , Limite de Detecção , Células MCF-7 , Imagem Óptica/métodos , Organofosfatos/química , Semicondutores
12.
Anal Chem ; 91(10): 6600-6607, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31026147

RESUMO

During apoptosis process, the release of cytochrome c (Cyt c) is considered to be a key factor in the intrinsic pathway and is often defined as no regression point. Quantitative detection of intracellular Cyt c remains a challenge. Herein, we have developed surface-enhanced Raman scattering (SERS)-fluorescence dual-mode nanosensors for the quantitative assay of Cyt c in living cells. Dual signal detection was achieved by constructing gold nanotriangles (AuNTs) nanosensors capable of specifically recognizing Cyt c. The nanosensors were prepared by modifying the aptamer of Cyt c on AuNTs and connecting the complementary strands modified with Cy5. The AuNTs provided both enhanced SERS signals and fluorescence quenching effects. Once cells were induced by external stimulus (such as toxins) to release Cyt c, Cyt c would specifically bind to its aptamer, and the complementary strands modified with Cy5 would detach which would result in weakened SERS signal and recovery of fluorescence signal. The experimental results showed that the nanosensors not only had excellent selectivity and sensitivity but also realized real-time monitoring of Cyt c translocation event from mitochondria to cytoplasm. The SERS and fluorescence intensity showed good linear relationship with Cyt c concentration ranging from 0.044 to 9.95 µM and achieved a minimum limit of detection (LOD) of 0.02 µM in living cells. The accuracy of intracellular Cyt c quantitative results was more than 90% compared with the ELISA results.


Assuntos
Aptâmeros de Nucleotídeos/química , Carbocianinas/química , Citocromos c/análise , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Aflatoxina B1/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/química , DNA Complementar/química , Transferência Ressonante de Energia de Fluorescência/métodos , Ouro/química , Humanos , Limite de Detecção , Análise Espectral Raman/métodos
13.
Anal Chem ; 91(2): 1213-1216, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30565909

RESUMO

Intrinsic properties of nickel have enabled its wide applications as an effective catalyst. In this study, nickel nanowires (Ni NWs) as electron donors for oxidized cytochrome c (Cyt c) are investigated, which are NW diameter, temperature, and pH value-dependent. The reductive and magnetic properties facilitate the Ni NWs to rapidly and conveniently reduce Cyt c in complicated biological samples. Moreover, we find that the Ni NWs combined with resonance Raman spectroscopy have specificity toward Cyt c detection in real biological samples, which is successfully used to distinguish the redox state of the released Cyt c from isolated mitochondria in apoptotic Hela cells. Moreover, rapid label-free Cyt c quantification can be achieved by surface-enhanced Raman spectroscopy with a limit of detection of 1 nM and long concentration linear range (1 nM-1 µM). The proposed Ni NWs-based reduction approach will significantly simplify the traditional biological methods and has great potential in the application of Cyt c-related apoptotic studies.


Assuntos
Apoptose/fisiologia , Citocromos c/análise , Nanofios/química , Níquel/química , Citocromos c/química , Citocromos c/metabolismo , Células HeLa , Humanos , Limite de Detecção , Mitocôndrias/metabolismo , Oxirredução , Análise Espectral Raman/métodos
14.
J Am Soc Mass Spectrom ; 30(1): 45-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460642

RESUMO

Gas-phase hydrogen/deuterium exchange measured by mass spectrometry (gas-phase HDX-MS) is a fast method to probe the conformation of protein ions. The use of gas-phase HDX-MS to investigate the structure and interactions of protein complexes is however mostly unharnessed. Ionizing proteins under conditions that maximize preservation of their native structure (native MS) enables the study of solution-like conformation for milliseconds after electrospray ionization (ESI), which enables the use of ND3-gas inside the mass spectrometer to rapidly deuterate heteroatom-bound non-amide hydrogens. Here, we explored the utility of gas-phase HDX-MS to examine protein-protein complexes and inform on their binding surface and the structural consequences of gas-phase dissociation. Protein complexes ranging from 24 kDa dimers to 395 kDa 24mers were analyzed by gas-phase HDX-MS with subsequent collision-induced dissociation (CID). The number of exchangeable sites involved in complex formation could, therefore, be estimated. For instance, dimers of cytochrome c or α-lactalbumin incorporated less deuterium/subunit than their unbound monomer counterparts, providing a measure of the number of heteroatom-bound side-chain hydrogens involved in complex formation. We furthermore studied if asymmetric charge-partitioning upon dissociation of protein complexes caused intermolecular H/D migration. In larger multimeric protein complexes, the dissociated monomer showed a significant increase in deuterium. This indicates that intermolecular H/D migration occurs as part of the asymmetric partitioning of charge during CID. We discuss several models that may explain this increase deuterium content and find that a model where only deuterium involved in migrating charge can account for most of the deuterium enrichment observed on the ejected monomer. In summary, the deuterium content of the ejected subunit can be used to estimate that of the intact complex with deviations observed for large complexes accounted for by charge migration. Graphical abstract ᅟ.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Animais , Bovinos , Citocromos c/análise , Citocromos c/química , Citocromos c/metabolismo , Medição da Troca de Deutério/instrumentação , Gases/química , Humanos , Lactalbumina/análise , Lactalbumina/química , Lactalbumina/metabolismo , Espectrometria de Massas/instrumentação , Complexos Multiproteicos/metabolismo , Pré-Albumina/análise , Pré-Albumina/química , Pré-Albumina/metabolismo , Multimerização Proteica
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(11): 1306-1311, 2018 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-30514677

RESUMO

OBJECTIVE: To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes. METHODS: H9c2 cardiac myocytes were treated with H2O2, gastrodin, gastrodin+H2O2, cyclosporin A (CsA), or CsA+gas+H2O2 group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells. RESULTS: Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in H2O2-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in H2O2-exposed cells. CONCLUSIONS: Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Trifosfato de Adenosina/análise , Álcoois Benzílicos/antagonistas & inibidores , Caspase 3/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Citocromos c/análise , Glucosídeos/antagonistas & inibidores , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/análise
16.
Anticancer Res ; 38(5): 2643-2648, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715084

RESUMO

BACKGROUND/AIM: One mechanism of the anticancer action of anthracyclines is believed to be oxidative DNA damage. Previously, we reported that doxorubicin induced oxidative DNA damage in the presence of Cu(II). However, the mechanism of pirarubicin-induced oxidative DNA damage has not been well clarified. MATERIALS AND METHODS: DNA damage by pirarubicin in the presence of Cu(II) was analyzed using pBR322 plasmid DNA. O2•- derived from pirarubicin in the presence of Cu(II) was detected by cytochrome c reduction. RESULTS: Pirarubicin induced DNA damage in the presence of Cu(II). Scavenger experiments suggest that reactive species are generated from H2O2 and Cu(I). Pirarubicin induced O2•- production in the presence of Cu(II). CONCLUSION: These findings suggest that pirarubicin plus Cu(II) induces oxidative DNA damage in a similar manner to doxorubicin, and Cu(II)-mediated oxidative DNA damage may serve as a common mechanism for antitumor effects of anthracyclines.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Cobre/farmacologia , Dano ao DNA , Doxorrubicina/análogos & derivados , Cátions Bivalentes/farmacologia , Citocromos c/análise , DNA Circular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Eletroforese em Gel de Ágar , Humanos , Estrutura Molecular , Oxirredução , Fenantrolinas/farmacologia , Plasmídeos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
17.
Anal Chem ; 90(9): 5865-5872, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29595257

RESUMO

Hypoxia-induced cell apoptosis is closely related to degenerative diseases, autoimmune disorders, and tumor disease. In the process of apoptosis, the release of cytochrome c (Cyt c) is deemed to be a critical factor of the intrinsic pathway. Strategies for tracking Cyt c release in living cells based on the subcellular localization have been proposed recently. However, they are inherently lack of specificity for distinguishing the release of Cyt c in apoptotic process induced by hypoxia from other stimulus. In this paper, an azoreductase and target simultaneously activated fluorescent aptameric nanosensor integrating gold nanoparticles (AuNPs) and Cyt c-targeted aptamer-consisted double-stranded DNA hybridization complex (DSDHC) was proposed. It is worth noting that the employment of azobenzene moiety labeled on the DSDHC first ensured the aptameric nanosensor could be conjugated to the surface of AuNPs and then specifically reduced by hypoxia-related azoreductase. Upon Cyt c released from mitochondrion under hypoxia, the competitive displacement of Cyt c subsequently activated the fluorescence of the aptameric nanosensor and the fluorescence enhancement depended principally on the content of Cyt c release. Inspired by this, a new strategy for quantitative analysis and in situ imaging of Cyt c under hypoxic condition was proposed. The high spatial resolution monitoring of the dynamics of Cyt c release under hypoxia will offer a potentially rich opportunity to understand the apoptotic mechanism under hypoxic conditions, thus further facilitating risk assessment and risk reduction for hypoxic environments.


Assuntos
Citocromos c/análise , Corantes Fluorescentes/química , Hipóxia , NADH NADPH Oxirredutases/metabolismo , Citocromos c/metabolismo , Citometria de Fluxo , Ouro/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Microscopia Confocal , Nitrorredutases , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície , Células Tumorais Cultivadas
18.
Nanoscale ; 10(11): 5342-5349, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29509193

RESUMO

As an important biomarker for the early stage of apoptosis, cytochrome c (Cyt c) has been recognized as a key component of the intrinsic apoptotic pathway. Fluorescence imaging tools enabling detection of Cyt c in apoptotic signaling have been rarely explored, though they are critical for cell biology and clinical theranostics. Here, we designed a novel label-free N-doped carbon dot (N-doped CD)-based nanosensor that enables fluorescence activation imaging of Cyt c release in cell apoptosis. The inner filter effect of Cyt c towards N-doped CDs enabled quantitative Cyt c measurement. The nanosensor exhibited high sensitivity and selectivity, rapid response, good cell-membrane permeability and low cytotoxicity. All these features are favorable for in situ visualization of Cyt c for apoptosis research. Notably, the developed nanosensor was successfully applied to monitor intracellular release of Cyt c, and to visualize Cyt c in living zebrafish for the first time. Moreover, it also provided a viable platform for cell-based screening of apoptosis-inducing compounds. In virtue of these advantages and potential, the developed assay not only holds great significance for the better understanding of certain diseases at the cellular level, but also provides an invaluable platform for apoptotic studies and screening of anti-cancer drugs toward drug development.


Assuntos
Antineoplásicos/análise , Carbono , Citocromos c/análise , Nitrogênio , Pontos Quânticos , Animais , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Fluorescência , Células Hep G2 , Humanos , Peixe-Zebra
19.
Analyst ; 143(1): 208-214, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29188239

RESUMO

Cytochrome c (Cyt c) and caspase-3 are the key mediators in apoptotic signaling. As is known to all, the release of Cyt c from mitochondria is a vital caspase activation pathway and defines the point of no-return in cell apoptosis. However, it has not been reported that any fluorescence imaging tools could allow simultaneous visualization of Cyt c translocation and caspase-3 activation in apoptotic cells. Here, we develop a sensitive nanosensor that holds the capability of imaging of the released Cyt c from the mitochondria and a caspase-3 activation cascade reaction in apoptotic signaling. The nanosensor is constructed by the assembly of a fluorophore (Cy5)-tagged DNA aptamer on graphene nanosheets that have been covalently immobilized with a FAM-labeled peptide. After a spatially selective delivery into the cytoplasm, the Cy5-tagged DNA aptamer assembled on the nanosensor can bind with Cyt c released from the mitochondria to the cytoplasm and dissociate from graphene, triggering a red fluorescence signal. In addition, the caspase-3 activated by the Cyt c released to the cytoplasm can cleave the FAM-labeled peptide and result in a green fluorescence output. The nanosensor exhibits rapid response, high sensitivity and selectivity for in vitro assays, and high contrast imaging of Cyt c and caspase-3 in living cells. It also provides the method for the study of the kinetic relationship between the Cyt c translocation and caspase-3 activation through simultaneous imaging of Cyt c and caspase-3. The developed nanosensor described here will be an efficient and potential platform for apoptosis research.


Assuntos
Apoptose , Aptâmeros de Nucleotídeos/química , Grafite , Peptídeos/química , Caspase 3/análise , Citocromos c/análise , Fluorescência , Células HeLa , Humanos , Mitocôndrias , Nanotecnologia , Óxidos , Transdução de Sinais
20.
Analyst ; 143(1): 258-269, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29214243

RESUMO

The past decades have seen significant interest in the study of polyphenolic compounds as potential therapeutic agents in medicine because they display a vast array of cellular effects beneficial to treat or manage a plethora of chronic diseases including inflammatory diseases, cardiovascular abnormalities and several types of cancer. These compounds act at different stages of carcinogenesis but deciphering their mode of action is a complex task. Live MCF-7 breast cancer cells were investigated using Raman imaging to evaluate the perturbations induced after incubating cells with four different polyphenols: EGCG, gallic acid, resveratrol and tannic acid. First, clear spectral changes could be observed between the spectra of the cytoplasm and the nucleus of live MCF-7 cancer cells demonstrating a difference in their respective global chemical composition. The treatments induced significant modifications in the cells but no clear common pattern of modifications from the 4 drugs could be observed in the cell spectra in the 1800-600 cm-1 region. The high spatial resolution of Raman confocal microscopy enabled both the nucleus and cytoplasm to be independently targeted to study the impact of the polyphenols on the cell line. Positive spectral variations at 2851 cm-1 and 2920 cm-1 as well as in the 1460-1420 cm-1 and 1660-1650 cm-1 spectral regions inside cell cytoplasm reflected an increase of the lipid content after exposure to polyphenols. Lipid accumulation appears to be an early biomarker of drug-induced cell stress and subsequent apoptosis. Interestingly an increase of cytochrome c into the cytosol was also induced by EGCG. These multiple events are possibly associated with cell apoptosis. In conclusion, Raman micro-spectroscopy provides a complementary spectroscopic method to realize biological investigations on live cancer cells and to evaluate the effects of polyphenols at the subcellular level.


Assuntos
Citoplasma/efeitos dos fármacos , Polifenóis/farmacologia , Apoptose , Neoplasias da Mama , Catequina/análogos & derivados , Catequina/farmacologia , Citocromos c/análise , Citosol/química , Ácido Gálico/farmacologia , Humanos , Metabolismo dos Lipídeos , Células MCF-7 , Resveratrol/farmacologia , Taninos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA