Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731853

RESUMO

Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.


Assuntos
Claudinas , Neoplasias , Humanos , Claudinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal , Terapia de Alvo Molecular/métodos , Junções Íntimas/metabolismo
2.
Nat Commun ; 15(1): 3771, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704377

RESUMO

Ovarian metastasis is one of the major causes of treatment failure in patients with gastric cancer (GC). However, the genomic characteristics of ovarian metastasis in GC remain poorly understood. In this study, we enroll 74 GC patients with ovarian metastasis, with 64 having matched primary and metastatic samples. Here, we show a characterization of the mutation landscape of this disease, alongside an investigation into the molecular heterogeneity and pathway mutation enrichments between synchronous and metachronous metastasis. We classify patients into distinct clonal evolution patterns based on the distribution of mutations in paired samples. Notably, the parallel evolution group exhibits the most favorable prognosis. Additionally, by analyzing the differential response to chemotherapy, we identify potential biomarkers, including SALL4, CCDC105, and CLDN18, for predicting the efficacy of paclitaxel treatment. Furthermore, we validate that CLDN18 fusion mutations improve tumor response to paclitaxel treatment in GC with ovarian metastasis in vitro and vivo.


Assuntos
Biomarcadores Tumorais , Mutação , Neoplasias Ovarianas , Paclitaxel , Neoplasias Gástricas , Paclitaxel/uso terapêutico , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Biomarcadores Tumorais/genética , Claudinas/genética , Claudinas/metabolismo , Evolução Molecular , Animais , Pessoa de Meia-Idade , Prognóstico , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Idoso , Antineoplásicos Fitogênicos/uso terapêutico
3.
Genesis ; 62(3): e23599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764323

RESUMO

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Claudinas , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , MicroRNAs , Invasividade Neoplásica , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Animais , Movimento Celular/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Camundongos , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Claudinas/genética , Claudinas/metabolismo , Camundongos Nus , Feminino , Masculino
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732086

RESUMO

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Junções Íntimas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Claudinas/metabolismo , Claudinas/genética , Membrana Celular/metabolismo
5.
Ann N Y Acad Sci ; 1535(1): 92-108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598500

RESUMO

The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.


Assuntos
Claudinas , Colo , Via de Sinalização Hippo , Receptores Notch , Transdução de Sinais , Células-Tronco , Animais , Claudinas/metabolismo , Claudinas/genética , Receptores Notch/metabolismo , Camundongos , Células-Tronco/metabolismo , Colo/metabolismo , Colo/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Knockout , Mucosa Intestinal/metabolismo , Diferenciação Celular/fisiologia , Junções Íntimas/metabolismo
6.
J Biochem Mol Toxicol ; 38(3): e23682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462752

RESUMO

Claudin-6 (CLDN6) has been extensively studied in different tumors to date. However, in the case of nonsmall cell lung cancer (NSCLC), CLDN6 has a largely unknown role and molecular mechanism. We detected the expression of CLDN6 in NSCLC tissues and cells using reverse transcription-quantitative polymerase chain reaction (PCR) and western blot assays. A gain-of-function experiment was performed to evaluate the biological effects of CLDN6 on NSCLC cell behaviors. Methylation-specific PCR was utilized to detect the DNA methylation of CLDN6 gene promoter region. The interaction of CLDN6 and receptor interacting protein 1 (RIP1) was determined by coimmunoprecipitation assay. Furthermore, the modulation of CLDN6 on RIP1/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) axis was confirmed. The results showed that in NSCLC tissues and cells, CLDN6 expression level was declined, and was associated with a high level of DNA methylation. CLDN6 overexpression suppressed the viability, invasion, migration, and promoted cell apoptosis. Besides, the enhanced expression of CLDN6 reduced the glycolysis and the dysfunction of mitochondrial respiration of NSCLC cells. Mechanistic investigation confirmed that CLDN6 interacted with RIP1 and inhibited cellular biological function of NSCLC cells via RIP1/ASK1/JNK axis. Besides, CLDN6 overexpression inhibited tumor growth in vivo. In conclusion, CLDN6 inhibited NSCLC cell proliferation through inactivating aerobic glycolysis via the RIP1/ASK1/JNK axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
7.
Cancer Immunol Immunother ; 73(5): 82, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554200

RESUMO

BACKGROUND: Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS: Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS: The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.


Assuntos
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Camundongos , Animais , Linfócitos T , Interleucina-6 , Macaca fascicularis/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/patologia , Imunoterapia , Claudinas/metabolismo
8.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517380

RESUMO

Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Actinas/genética , Actinas/metabolismo , Claudinas/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Células Madin Darby de Rim Canino , Animais , Cães
9.
Cancer Sci ; 115(5): 1622-1633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429886

RESUMO

Advanced gastric and gastroesophageal junction cancers (GC/GEJCs) harbor diverse molecular signatures, highlighting the need for intricate evaluations to identify potential therapeutic targets. Although whole-transcriptome sequencing (WTS) has emerged as a useful tool for understanding these molecular intricacies, its clinical implications have yet to be fully elucidated. This study evaluated the correlation between immunohistochemistry (IHC) and WTS, compared their clinical significance, and identified potential therapeutic targets undetectable through IHC alone. We enrolled 140 patients with advanced GC/GEJC and assessed them using IHC for six pivotal biomarkers: claudin-18 (CLDN18), human epidermal growth factor receptor 2 (HER2), multiple receptor tyrosine kinases (RTKs), and programmed death ligand 1 (PD-L1). Concurrently, WTS was employed as part of the analyses in MONSTAR-SCREEN-2, a multicenter multiomics study. IHC analysis revealed 16.4% HER2, 39.3% CLDN18 (2+/3 + ≥75%), and 15.8% PD-L1 (combined positive score ≥ 10) positivity, among other molecular markers. Significant correlations were observed between IHC and WTS for all six pivotal biomarkers. Among nineteen HER2 IHC-positive patients treated with anti-HER2 therapeutics, ERBB2 status in WTS was significantly associated with progression-free survival (ERBB2-high vs. -low: median 9.0 vs. 5.6 months, log-rank p = 0.046). IHC-based molecular profiling revealed significantly high expression of CLDN18 in RTK-negative patients, with 78.4% positive for either CLDN18 or PD-L1. Additionally, WTS revealed elevated expression of pivotal biomarkers in patients displaying negative targetable biomarkers via IHC. Our findings highlighted the significant correlation between IHC and WTS, reinforcing the clinical utility of WTS. A subset with IHC-negative but WTS-positive status may benefit from specific biomarker-targeted therapies.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Junção Esofagogástrica , Imuno-Histoquímica , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Masculino , Feminino , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Idoso , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Junção Esofagogástrica/patologia , Junção Esofagogástrica/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Claudinas/genética , Claudinas/metabolismo , Adulto , Idoso de 80 Anos ou mais , Transcriptoma , Perfilação da Expressão Gênica/métodos
10.
Nat Rev Clin Oncol ; 21(5): 354-369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503878

RESUMO

Claudin 18.2, a tight-junction molecule predominantly found in the nonmalignant gastric epithelium, becomes accessible on the tumour cell surface during malignant transformation, thereby providing an appealing target for cancer therapy. Data from two phase III trials testing the anti-claudin 18.2 antibody zolbetuximab have established claudin 18.2-positive advanced-stage gastric cancers as an independent therapeutic subset that derives benefit from the addition of this agent to chemotherapy. This development has substantially increased the percentage of patients eligible for targeted therapy. Furthermore, newer treatments, such as high-affinity monoclonal antibodies, bispecific antibodies, chimeric antigen receptor T cells and antibody-drug conjugates capable of bystander killing effects, have shown considerable promise in patients with claudin 18.2-expressing gastric cancers. This new development has resulted from drug developers moving beyond traditional targets, such as driver gene alterations or growth factors. In this Review, we highlight the biological rationale and explore the clinical activity of therapies that target claudin 18.2 in patients with advanced-stage gastric cancer and explore the potential for expansion of claudin 18.2-targeted therapies to patients with other claudin 18.2-positive solid tumours.


Assuntos
Claudinas , Terapia de Alvo Molecular , Neoplasias Gástricas , Humanos , Claudinas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Terapia de Alvo Molecular/métodos
11.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171596

RESUMO

The mouse cortical collecting duct cell line presents a tight epithelium with regulated ion and water transport. The epithelial sodium channel (ENaC) is localized in the apical membrane and constitutes the rate-limiting step for sodium entry, thereby enabling transepithelial transport of sodium ions. The membrane-bound serine protease Tmprss2 is co-expressed with the alpha subunit of ENaC. αENaC gene expression followed the Tmprss2 expression, and the absence of Tmprss2 resulted not only in down-regulation of αENaC gene and protein expression but also in abolished transepithelial sodium transport. In addition, RNA-sequencing analyses unveiled drastic down-regulation of the membrane-bound protease CAP3/St14, the epithelial adhesion molecule EpCAM, and the tight junction proteins claudin-7 and claudin-3 as also confirmed by immunohistochemistry. In summary, our data clearly demonstrate a dual role of Tmprss2 in maintaining not only ENaC-mediated transepithelial but also EpCAM/claudin-7-mediated paracellular barrier; the tight epithelium of the mouse renal mCCD cells becomes leaky. Our working model proposes that Tmprss2 acts via CAP3/St14 on EpCAM/claudin-7 tight junction complexes and through regulating transcription of αENaC on ENaC-mediated sodium transport.


Assuntos
Claudinas , Sódio , Animais , Camundongos , Transporte Biológico/fisiologia , Claudinas/genética , Claudinas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Transporte de Íons , Sódio/metabolismo
12.
Biomed Pharmacother ; 171: 116109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185042

RESUMO

Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Claudina-1/metabolismo , Neoplasias Hepáticas/patologia , Claudinas/metabolismo , Junções Íntimas/metabolismo
13.
Int J Biol Sci ; 20(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164185

RESUMO

To find new molecular targets for triple negative breast cancer (TNBC), we analyzed a large-scale drug screening dataset based on breast cancer subtypes. We discovered that BDP-9066, a specific MRCK inhibitor (MRCKi), may be an effective drug against TNBC. After confirming the efficacy and specificity of BDP-9066 against TNBC in vitro and in vivo, we further analyzed the underlying mechanism of specific activity of BDP-9066 against TNBC. Comparing the transcriptome of BDP-9066-sensitive and -resistant cells, the activation of the focal adhesion and YAP/TAZ pathway were found to play an important role in the sensitive cells. Furthermore, YAP/TAZ is indeed repressed by BDP-9066 in the sensitive cells, and active form of YAP suppresses the effects of BDP-9066. YAP/TAZ expression and activity are high in TNBC, especially the Claudin-low subtype, consistent with the expression of focal adhesion-related genes. Interestingly, NF-κB functions downstream of YAP/TAZ in TNBC cells and is suppressed by BDP-9066. Furthermore, the PI3 kinase pathway adversely affected the effects of BDP-9066 and that alpelisib, a PI3 kinase inhibitor, synergistically increased the effects of BDP-9066, in PIK3CA mutant TNBC cells. Taken together, we have shown for the first time that MRCKi can be new drugs against TNBC, particularly the Claudin-low subtype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral
14.
Pathol Res Pract ; 254: 155145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277741

RESUMO

Claudin-18.2 (CLDN18.2) is a member of the tight junction protein family and is a highly selective biomarker with frequent abnormal expression during the occurrence and development of various primary malignant tumors, including gastric cancer (GC) and esophago-gastric junction adenocarcinomas (EGJA). For these reasons, CLDN18.2 has been investigated as a therapeutic target for GC/EGJA malignancies. Recently, zolbetuximab has been proposed as a new standard of care for patients with CLDN18.2-positive, HER2-negative, locally advanced and metastatic GC/EGJA. The use of CLDN18 IHC assays to select patients who might benefit from anti-CLDN18.2 therapy is currently entering clinical practice. In this setting, pathologists play a central role in therapeutic decision-making. Accurate biomarker assessment is essential to ensure the best therapeutic option for patients. In the present review, we provide a comprehensive overview of available evidence on CLDN18.2 testing and its impact on the therapeutic management of patients with GC/EGJA, as well as some practical suggestions for CLDN18.2 staining interpretation and potential pitfalls in the real-world setting.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Prova Pericial , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Moléculas de Adesão Celular , Adenocarcinoma/patologia , Claudinas/metabolismo , Biomarcadores
15.
EMBO Rep ; 25(1): 144-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177906

RESUMO

The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.


Assuntos
Claudinas , Junções Íntimas , Junções Íntimas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Proteínas de Transporte/metabolismo , Células Epiteliais , Claudina-1/genética , Claudina-1/metabolismo
16.
Protein Expr Purif ; 215: 106392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952787

RESUMO

Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.


Assuntos
Antígenos CD20 , Escherichia coli , Antígenos CD20/genética , Antígenos CD20/metabolismo , Escherichia coli/metabolismo , Rituximab/genética , Rituximab/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Claudinas/metabolismo
17.
CNS Neurol Disord Drug Targets ; 23(4): 504-511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37218194

RESUMO

BACKGROUND: Alzheimer's disease is a degenerative disease of the central nervous system, and its characteristic pathological changes are closely associated with Aß deposition and neurofibrillary tangles. Many studies have found that malignant changes in the myelin sheath and oligodendrocyte (OL) are accompanied by the occurrence and development of AD. Therefore, any method that can resist myelin sheath and OL disorders may be a potential strategy for AD. OBJECTIVE: To investigate the effects and mechanism of Scutellaria baicalensis Georgi stem and leaf flavonoids (SSFs) on the myelin sheath degeneration induced by Aß25-35 combined with AlC13 and RHTGF-ß1 (composite Aß) in rats. METHODS: A rat AD model was established by intracerebroventricular injection of composite Aß. The Morris water maze was used to screen the memory impairment rat model. The successful model rats were divided into the model group and the 35, 70, and 140 mg/kg SSFS groups. The myelin sheath changes in the cerebral cortex were observed with an electron microscope. The expression of the oligodendrocyte- specific protein claudin 11 was detected with immunohistochemistry. The protein expression levels of myelin oligodendrocyte glycoprotein (MOG), myelin-associated glycoprotein (MAG) and myelin basic protein (MBP), sphingomyelin synthase-1 (SMS1), and sphingomyelinase-2 (SMPD2) were assayed by Western blotting. RESULTS: The intracerebroventricular injection of composite Aß caused degeneration of the myelin sheath structure and was accompanied by the decreased claudin 11, MOG, MAG, MBP, and SMS1, and increased SMPD2 protein expression in the cerebral cortex. However, 35, 70, and 140 mg/kg SSFs can differentially ameliorate the above abnormal changes induced by composite Aß. CONCLUSION: SSFs can alleviate myelin sheath degeneration and increase the protein expression of claudin 11, MOG, MAG, and MBP, and the effective mechanism may be related to the positive regulation of SMS1 and SMPD2 activities.


Assuntos
Bainha de Mielina , Scutellaria baicalensis , Ratos , Animais , Bainha de Mielina/metabolismo , Flavonoides/farmacologia , Oligodendroglia , Glicoproteína Mielina-Oligodendrócito , Claudinas/metabolismo
18.
Neuro Endocrinol Lett ; 44(8): 537-546, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131177

RESUMO

BACKGROUND: Deeper studies on the pathological mechanism associated with invasiveness of non-functioning pituitary adenoma (NFPA) is imperative to find better treatments. This research was preliminarily conducted to investigate the correlation between the expression of Claudin-9 (CLDN9), Tyrosine kinase-2 (TYK2), Signal transducers and activators of transcription-3 (STAT3) and invasiveness in NFPA to illustrate the pathological mechanism. METHODS: Clinical data and surgical specimens of 12 patients with NFPA were collected and divided into invasive and non-invasive NFPA groups, comprising six patients for each group. CLDN9, TYK2 and STAT3 transcription and expression levels in the NFPA tissues of the two groups were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The lentiviral plasmid transfection technique was used to develop a rat pituitary tumour GT1-1 cell line null control group (NC) and CLDN9-overexpressed experimental group (OE-CLDN9), and TYK2 and STAT3 transcription levels in the NC and OE-CLDN9 cell groups were detected using qRT-PCR. RESULTS: The CLDN9 and STAT3 expressions were significantly higher in invasive than in non-invasive NFPA tissues, whereas the TYK2 expression in invasive NFPA tissues was significantly lower than that in non-invasive NFPA (p < 0.001); The STAT3 upregulated (p < 0.001) and the TYK2 downregulated (p < 0.01) after the CLDN9 overexpression. CONCLUSION: Upregulated CLDN9 may increase the NFPA invasiveness through STAT3. In addition, low TYK2 expression might enhance the invasiveness in NFPA, which needs further studies to confirm. These results could provide a promising research leads for targeted treatment of NFPA.


Assuntos
Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/patologia , TYK2 Quinase/genética , TYK2 Quinase/uso terapêutico , Claudinas/genética , Claudinas/metabolismo , Claudinas/uso terapêutico
19.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189019, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951482

RESUMO

Endometrial carcinoma (EC) defines a heterogeneous group of neoplastic diseases originating from the transformation of endometrial cells that constitute the internal lining of the uterus. To date several molecular targets have been analysed to describe the natural course of the disease, claudins being among these. Claudins are the main components of tight junctions (TJs), and their main functions are ascribed to the compartmentalization of tissues and cell-cell communication by means of intracellular ions diffusion: these features are typical of epithelial cells. Their overexpression, mis-localization or loss contribute to the malignancy of EC cells. This review collected all available data regarding the expression, regulation and claudin-related signaling pathways to provide a comprehensive view on the influence of claudin in EC progression. Further, the translational potential of claudin differential expression was explored, indicating that their role in personalized medicine could also contribute to EC therapy besides their employment for diagnosis and prognosis.


Assuntos
Claudinas , Neoplasias do Endométrio , Feminino , Humanos , Claudinas/genética , Claudinas/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Transdução de Sinais
20.
Cancer Genomics Proteomics ; 20(6): 539-555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889067

RESUMO

BACKGROUND/AIM: Breast cancers constitute heterogeneous tumor groups and their categorization in subtypes based on the expression of the estrogen (ER), progesterone (PR) and HER2 receptors has advanced therapeutics. Claudin-low breast cancer has been proposed as an additional subtype which is mostly ER, PR and HER2 negative, but its identification has not led to corresponding specific treatments yet. MATERIALS AND METHODS: Breast cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were assessed for mRNA suppression of claudins and mRNA expression of ER and ERBB2 (the gene encoding HER2). The set of identified claudin-low cell lines were compared with representative ER-/ERBB2- cell lines for associated molecular alterations, gene dependencies through CRISPR and microRNA arrays and in vitro drug sensitivities using the Genomics of Drug Sensitivity in Cancer (GDSC) project. RESULTS: Claudin-low cell lines display up-regulation of mRNA expression of epithelial to mesenchymal transition (EMT) regulators. Methylation sensitive genes are down-regulated in claudin-low lines compared with other cell lines, without associated up-regulation of DNA methyltransferases. Dependency screen microarrays reveal dependencies of claudin-low cell lines on components of the cytoskeleton but no consistent dependencies in known oncogenes or tumor suppressors. Potential drug sensitivities revealed in the drug screens included sensitivities to WNT pathway modulators, tyrosine kinase cascade inhibitors and BET inhibitors. On the other hand, claudin-low cell lines showed resistance to deacetylase inhibitors. CONCLUSION: Claudin-low cell line models duplicate features of claudin-low breast cancers and may serve as guides for identification of drugs worth exploring for further development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal/genética , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA