Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 190: 92-106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574563

RESUMO

The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.


Assuntos
Claustrum , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Claustrum/metabolismo , Axônios/metabolismo , Neurônios GABAérgicos/metabolismo , Somatostatina/metabolismo , Dendritos/metabolismo
2.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664674

RESUMO

Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus (DEPN) which has been recognized as an epileptogenic zone. We generated a forebrain-specific Ctgf knockout (FbCtgf KO) mouse line in which the expression of Ctgf in the DEPN is eliminated. In this study, we adopted a pentylenetetrazole (PTZ)-induced seizure model and found similar severity and latencies to death between FbCtgf KO and WT mice. Interestingly, there was a delay in the seizure reactions in the mutant mice. We further observed reduced c-fos expression subsequent to PTZ treatment in the KO mice, especially in the hippocampus. While the densities of astrocytes and microglia in the hippocampus were kept constant after acute PTZ treatment, microglial morphology was different between genotypes. Our present study demonstrated that in the FbCtgf KO mice, PTZ failed to increase neuronal activity and microglial response in the hippocampus. Our results suggested that inhibition of Ctgf function may have a therapeutic potential in preventing the pathophysiology of epilepsy.


Assuntos
Astrócitos/fisiologia , Fator de Crescimento do Tecido Conjuntivo/deficiência , Genes fos , Microglia/fisiologia , Prosencéfalo/metabolismo , Convulsões/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Contagem de Células , Claustrum/efeitos dos fármacos , Claustrum/metabolismo , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Convulsivantes/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Pentilenotetrazol/toxicidade , Prosencéfalo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA