Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Biotechnol J ; 19(6): e2300662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863126

RESUMO

Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aß42 were investigated. We found that CQ could reduce Aß42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aß42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.


Assuntos
Peptídeos beta-Amiloides , Antioxidantes , Clioquinol , Glutationa , Estresse Oxidativo , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae , Estresse Oxidativo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Clioquinol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Fragmentos de Peptídeos/metabolismo , Simulação de Acoplamento Molecular , Catalase/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
2.
Nihon Yakurigaku Zasshi ; 159(2): 78-82, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432923

RESUMO

Clioquinol was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. We previously performed a global analysis of human neuroblastoma cells using DNA chips and demonstrated that clioquinol induced 1) DNA double-strand breaks and subsequent activation of ATM/p53 signaling; 2) the expression of VGF, the precursor of neuropeptides involved in pain reactions, by inducing c-Fos; 3) the expression of interleukin-8, which is reported to be involved in intestinal inflammation, optic neuropathy, and neuropathic pain, by down-regulating GATA-2 and GATA-3. We also demonstrated that clioquinol induced zinc influx and oxidation of the copper chaperone ATOX1, leading to the impairment of the functional maturation of a copper-dependent enzyme dopamine-ß-hydroxylase and the inhibition of noradrenaline biosynthesis. Thus, clioquinol-induced neurotoxicity in SMON seems to be mediated by multiple pathways.


Assuntos
Clioquinol , Doenças do Nervo Óptico , Humanos , Clioquinol/efeitos adversos , Cobre , Medula Espinal , Japão , Proteínas de Transporte de Cobre , Chaperonas Moleculares
3.
Biochem Pharmacol ; 222: 116092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408679

RESUMO

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.


Assuntos
Clioquinol , Ratos , Humanos , Animais , Chlorocebus aethiops , Clioquinol/farmacologia , Oxiquinolina , Receptores Adrenérgicos alfa 1/metabolismo , Ionóforos , Zinco
4.
Bioorg Med Chem ; 85: 117289, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094433

RESUMO

Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.


Assuntos
Clioquinol , Ensaios de Triagem em Larga Escala , Humanos , Metaloproteinase 14 da Matriz , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo
5.
J Med Chem ; 66(5): 3393-3410, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891739

RESUMO

A series of autophagy-targeted antimetastatic clioquinol (CLQ) platinum(IV) conjugates were designed and prepared by incorporating an autophagy activator CLQ into the platinum(IV) system. Complex 5 with the cisplatin core bearing dual CLQ ligands with potent antitumor properties was screened out as a candidate. More importantly, it displayed potent antimetastatic properties both in vitro and in vivo as expected. Mechanism investigation manifested that complex 5 induced serious DNA damage to increase γ-H2AX and P53 expression and caused mitochondria-mediated apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it promoted prodeath autophagy by suppressing PI3K/AKT/mTOR signaling and activating the HIF-1α/Beclin1 pathway. The T-cell immunity was elevated by restraining the PD-L1 expression and subsequently increasing CD3+ and CD8+ T cells. Ultimately, metastasis of tumor cells was suppressed by the synergistic effects of DNA damage, autophagy promotion, and immune activation aroused by CLQ platinum(IV) complexes. Key proteins VEGFA, MMP-9, and CD34 tightly associated with angiogenesis and metastasis were downregulated.


Assuntos
Antineoplásicos , Clioquinol , Platina/farmacologia , Clioquinol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral
6.
Chem Biol Interact ; 369: 110268, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36396104

RESUMO

Clioquinol (CQ) is considered as a promising drug of neurodegenerative diseases. However, the underlying mechanism is unclear. Our previous study has proved that CQ induces S-phase cell cycle arrest through the elevation of intracellular calcium concentration ([Ca2+]i) with high levels of SERCA2. Furthermore, it could induce autophagy in an intracellular calcium independent manner in human neurotypic SH-SY5Y cells. In this study, the involvement of calreticulin (CRT) in autophagy induced by CQ was investigated. Our results illustrated the endoplasmic reticulum (ER) stress induced by CQ and DTT led to the cell death in different manners. DTT, an ER stress positive control, induced UPR accompanied with up-regulation of CRT and apoptosis, while CQ inhibited UPR accompanied with down-regulation of CRT,resulting in autophagy. Then, overexpression of CRT was shown to cause UPR and decrease [Ca2+]i, leading to cell apoptosis and inhibition of S-phase arrest induced by CQ. While the UPR was alleviated and autophagy was further enhanced in CRT deficient cells by using targeted siRNA. Meanwhile, down-regulation of CRT resulted in [Ca2+]i overload and induction of S-phase arrest. Finally, we found that the effect of CQ on the HT22 cells was similar to that on the SH-SY5Y cells. Our data showed for the first time that CQ decreased expression of CRT, leading to autophagy, an increase of [Ca2+]i, and cell S-phase arrest in the neurotypic cells. The present study describes the cellular signal pathways regulating autophagy by CQ and highlights the potential therapeutic application of CQ in neurodegenerative disorders.


Assuntos
Clioquinol , Neuroblastoma , Humanos , Regulação para Baixo , Cálcio/metabolismo , Clioquinol/farmacologia , Calreticulina/metabolismo , Calreticulina/farmacologia , Estresse do Retículo Endoplasmático , Apoptose , Autofagia , Linhagem Celular Tumoral
7.
Eur J Med Chem ; 244: 114841, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257284

RESUMO

Based on the multitarget strategy, a series of novel clioquinol-1-benzyl-1,2,3,6-tetrahydropyridine hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation in vitro revealed that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE). The optimal compound, 19n, exhibited excellent AChE inhibitory potency (IC50 = 0.11 µM), appropriate metal chelating functions, modulation of AChE- and metal-induced Aß aggregation, neuroprotection against okadaic acid-induced mitochondrial dysfunction and ROS damage, and interesting properties that reduced p-Tau levels in addition to no toxicity on SH-SY5Y cells observed at a concentration up to 50 µM. Most importantly, compound 19n was more well tolerated (>1200 mg/kg) than donepezil (LD50 = 28.124 mg/kg) in vivo. Moreover, compound 19n demonstrated marked improvements in cognitive and spatial memory in two AD mice models (scopolamine-induced and Aß1-42-induced) and suppressed inflammation induced by Aß1-42 in the cortex. The multifunctional profiles of compound 19n demonstrate that it deserves further investigation as a promising lead in the development of innovatively multifunctional drugs for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Clioquinol , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Clioquinol/farmacologia , Clioquinol/uso terapêutico , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Pirrolidinas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Ligantes , Relação Estrutura-Atividade , Desenho de Fármacos
8.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769495

RESUMO

The neuropathological hallmarks of Alzheimer's disease (AD) are senile plaques (SPs), which are composed of amyloid ß protein (Aß), and neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau protein. As bio-metal imbalance may be involved in the formation of NFT and SPs, metal regulation may be a direction for AD treatment. Clioquinol (CQ) is a metal-protein attenuating compound with mild chelating effects for Zn2+ and Cu2+, and CQ can not only detach metals from SPs, but also decrease amyloid aggregation in the brain. Previous studies suggested that Cu2+ induces the hyperphosphorylation of tau. However, the effects of CQ on tau were not fully explored. To examine the effects of CQ on tau metabolism, we used a human neuroblastoma cell line, M1C cells, which express wild-type tau protein (4R0N) via tetracycline-off (TetOff) induction. In a morphological study and ATP assay, up to 10 µM CQ had no effect on cell viability; however, 100 µM CQ had cytotoxic effects. CQ decreased accumulation of Cu+ in the M1C cells (39.4% of the control), and both total and phosphorylated tau protein. It also decreased the activity of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) (37.3% and 60.7% levels of the control, respectively), which are tau kinases. Of note, activation of protein phosphatase 2A (PP2A), which is a tau phosphatase, was also observed after CQ treatment. Fractionation experiments demonstrated a reduction of oligomeric tau in the tris insoluble, sarkosyl soluble fraction by CQ treatment. CQ also decreased caspase-cleaved tau, which accelerated the aggregation of tau protein. CQ activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Although further studies are needed to elucidate the mechanisms responsible for the effects of CQ on tau, CQ may shed light on possible AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Clioquinol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Emaranhados Neurofibrilares/efeitos dos fármacos , Multimerização Proteica , Proteínas tau/química , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia , Linhagem Celular Tumoral , Cobre/química , Humanos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo
9.
Am J Respir Cell Mol Biol ; 65(2): 189-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33861690

RESUMO

Strict control of iron homeostasis is critical for the maintenance of normal lung function. Iron accumulates in the lungs of patients with idiopathic pulmonary fibrosis (PF), but the characteristics of iron metabolism in the pathogenesis of PF and related targeting therapeutics are not well studied. In this study, we investigated the cellular and molecular characteristics of iron metabolism in fibrotic lungs and further explored the efficacy of clioquinol (CQ) for the treatment of PF as well as its functional mechanism. Iron aggregates accumulated in the lungs of patients with idiopathic PF, and FTL (ferritin light chain) transcripts were increased in their pulmonary fibroblasts. In the bleomycin (BLM)-induced PF (BLM-PF) mouse model, pulmonary iron accumulation is a very early and concomitant event of PF. Labile iron pool levels in both fibroblasts and macrophages from the BLM-PF model were elevated, and iron metabolism was dysregulated. CQ attenuated PF induced by BLM and FITC, and iron-saturated CQ did not alleviate BLM-PF. Furthermore, CQ inhibited the activation of fibroblasts, including proliferation, fibrotic differentiation, proinflammatory cytokine secretion, and migration. In conclusion, our study demonstrated that CQ, acting as an iron chelator, attenuates experimental PF through inactivation of fibroblasts, providing support for targeting iron metabolism as a basis for PF treatment.


Assuntos
Quelantes/farmacologia , Clioquinol/farmacologia , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Ferro/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos
10.
J Biochem Mol Toxicol ; 35(5): e22727, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33511738

RESUMO

Clioquinol has been reported to act as a potential therapy for neurodegenerative diseases and cancer. However, the underlying mechanism is unclear. We have previously reported that clioquinol induces S-phase cell cycle arrest through the elevation of calcium levels in human neurotypic SH-SY5Y cells. In this study, different types of cells were observed to detect if the effect of clioquinol on intracellular calcium levels is cell type-specific. The Cell Counting Kit-8 assay showed that clioquinol exhibited varying degrees of concentration-dependent cytotoxicity in different cell lines, and that the growth inhibition caused by it was not related to cell source or carcinogenesis. In addition, the inhibition of cell growth by clioquinol was positively associated with its effect on intracellular calcium content ([Ca2+ ]i ). Furthermore, the elevation of [Ca2+ ]i induced by clioquinol led to S-phase cell cycle arrest. Similar to our previous studies, the increase in [Ca2+ ]i was attributed to changes in the expression levels of the calcium pump SERCA2. Comparison of expression levels of SERCA2 between cell lines showed that cells with high levels of SERCA2 were more sensitive to clioquinol. In addition, analysis using UALCAN and the Human Protein Atlas also showed that the expression of SERCA2 in the corresponding human tissues was similar to that of the cells tested in this study, suggesting potential in the application of clioquinol in the future. In summary, our results expand the understanding of the molecular mechanism of clioquinol and provide an important strategy for the rational use of clioquinol.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Clioquinol/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Humanos , Células PC12 , Ratos
11.
Arch Toxicol ; 95(1): 135-148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034664

RESUMO

Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-ß-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.


Assuntos
Clioquinol/toxicidade , Proteínas de Transporte de Cobre/metabolismo , Cobre/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Norepinefrina/biossíntese , Neuropatia Óptica Tóxica/etiologia , Linhagem Celular Tumoral , Proteínas de Transporte de Cobre/genética , Humanos , Chaperonas Moleculares/genética , Neurônios/enzimologia , Oxirredução , Proteína-Lisina 6-Oxidase/metabolismo , Via Secretória , Neuropatia Óptica Tóxica/enzimologia , Zinco/metabolismo
12.
J Pharm Sci ; 110(1): 338-346, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339529

RESUMO

Modulating the abundance of the blood-brain barrier (BBB) efflux transporter breast cancer resistance protein (BCRP) has the potential to impact brain levels of drugs and endogenous substrates. Studies have demonstrated that the metal ionophore clioquinol (CQ) increases BBB abundance of P-glycoprotein (P-gp), an effect associated with increased endothelial cell levels of Cu2+. This study therefore assessed whether human brain endothelial (hCMEC/D3) cell abundance and function of BCRP is modulated by CQ. hCMEC/D3 cells were treated with CQ, Zn2+ and Cu2+ (CZC) (0.5 µM, 0.5 µM, 0.1 µM, respectively) for 24 h and BCRP mRNA and protein abundance was determined by Western blot and qPCR, respectively. After a series of optimisation studies assessing specificity of bodipy prazosin (BP) and Ko143 as a substrate and inhibitor of BCRP, respectively, the impact of CZC on BP uptake was assessed. While CZC did not increase mRNA expression of BCRP, BCRP abundance was increased 1.8 ± 0.1-fold; this was associated with a 68.1 ± 3.3% reduction in accumulation of BP in hCMEC/D3 cells. This is the first study to demonstrate that augmenting metal ion availability enhances protein abundance and function of BCRP at the BBB, which may be exploited to modulate CNS access of therapeutics and endogenous substrates.


Assuntos
Neoplasias da Mama , Clioquinol , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Clioquinol/farmacologia , Cobre , Células Endoteliais/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Zinco
13.
Arch Toxicol ; 95(2): 631-640, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156368

RESUMO

Clioquinol has been implicated as a causative agent for subacute myelo-optico-neuropathy (SMON) in humans, although the mechanism remains to be elucidated. In this study, we utilized astrocyte-derived cell line, KT-5 cells to explore its potential cytotoxicity on glial cells. KT-5 cells were exposed in vitro to a maximum of 50 µM clioquinol for up to 24 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte trazolium bromide (MTT) assay of the cells revealed that clioquinol induced significant cell damage and death. We also found that clioquinol caused accumulation of microtubule-associated protein light chain-3 (LC3)-II and sequestosome-1 (p62) in a dose- and time-dependent manner, suggesting the abnormality of autophagy-lysosome pathway. Consistent with these findings, an exposure of 20 µM clioquinol induced the accumulation of cellular autophagic vacuoles. Moreover, an exposure of 20 µM clioquinol provoked a statistically significant reduction of intracellular lysosomal acid hydrolases activities but no change in lysosomal pH. It also resulted in a significant decline of intracellular ATP levels, enhanced cellular levels of reactive oxygen species, and eventually cell death. This cell death at least did not appear to occur via apoptosis. 10 µM Chloroquine, lysosomal inhibitor, blocked the autophagic degradation and augmented clioquinol-cytotoxicity, whereas rapamycin, an inducer of autophagy, rescued clioquinol-induced cytotoxicity. Thus, our present results strongly suggest clioquinol acts as a potentially cytotoxic agent to glial cells. For future clinical application of clioquinol on the treatment of neurological and cancer disorders, we should take account of this type of cell death mechanism.


Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Clioquinol/toxicidade , Lisossomos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Astrócitos/metabolismo , Linhagem Celular , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Neuroglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
14.
Metallomics ; 12(12): 1931-1940, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33107537

RESUMO

The study of novel mechanisms of action of vanadium compounds is critical to elucidating the role and importance of these kinds of compounds as antitumor and antimetastatic agents. This work deals with in silico and in vitro studies of one clioquinol oxidovanadium(iv) complex [VO(clioquinol)2], VO(CQ)2, and its regulation of FAK. In particular, we focus on elucidating the relationship of the FAK inhibition, MMP activity and antimetastatic effects of the complex in human bone cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Clioquinol/farmacologia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Vanádio/farmacologia , Antineoplásicos/química , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Clioquinol/análogos & derivados , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/metabolismo , Simulação de Acoplamento Molecular , Osteossarcoma/metabolismo , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Vanádio/química
15.
Aging (Albany NY) ; 12(10): 9515-9533, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424108

RESUMO

Despite decades of research into the pathology mechanisms of Parkinson's disease (PD), disease-modifying therapy of PD is scarce. Thus, searching for new drugs or more effective neurosurgical treatments has elicited much interest. Clioquinol (CQ) has been shown to have therapeutic benefits in rodent models of neurodegenerative disorders. However, it's neuroprotective role and mechanisms in PD primate models and PD patients, especially in the advanced stages, are not fully understood. Furthermore, issues such as spontaneous recovery of motor function and high symptom variability in different monkeys after the same toxic protocol, has not been resolved before the present study. In this study, we designed a chronic and long-term progressive protocol to generate a stabilized PD monkey model showed with classic motor and non-motor deficits, followed by treatment analysis of CQ. We found that CQ could remarkably improve the motor and non-motor deficits, which were based on the reduction of iron content and ROS level in the SN and further improvement in pathology. Meanwhile, we also showed that ferroptosis was probably involved in the pathogenesis of PD. In addition, the study shows a positive effect of CQ on AKT/mTOR survival pathway and a blocking effect on p53 medicated cell death in vivo and in vitro.


Assuntos
Clioquinol/farmacologia , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Haplorrinos , Doença de Parkinson/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
16.
Int J Biol Sci ; 16(5): 777-789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071548

RESUMO

Loco-regional recurrence of nasopharyngeal carcinoma (NPC) after radiation therapy is one of the main types of treatment failure. This study is aimed to explore the possible causes of inside-field recurrence of NPC patients in order to develop effective treatment methods. Our study indicated that CD44 and autophagy proteins in tumor tissues of patients with recurrent NPC are higher than that of the relapse free patients. The in vitro experiments further confirmed that cancer stem cells (CSCs) were more radioresistant with enhanced autophagy activity. Treatment with clioquinol (CQ) combined with zinc could obviously enhance the radiosensitivity of CNE-2s cells through autophagy inhibition, activation of the caspase system and impairment of DNA damage repair. The in vivo experiments have further consolidated our findings. Our results suggest that CSCs and enhanced autophagy activity may be involved in the inside-field recurrence of NPC, and CQ combined with zinc could be an important therapeutic approach for recurrent NPC.


Assuntos
Clioquinol/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Zinco/uso terapêutico , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação
17.
Artigo em Inglês | MEDLINE | ID: mdl-32106803

RESUMO

BACKGROUND: Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE: This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS: Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS: Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION: Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.


Assuntos
Clioquinol/uso terapêutico , Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Clioquinol/administração & dosagem , Estudos de Viabilidade , Feminino , Humanos , Masculino
18.
Artigo em Inglês | MEDLINE | ID: mdl-31907180

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant nosocomial pathogen. We showed previously that thiostrepton (TS), a Gram-positive thiopeptide antibiotic, is imported via pyoverdine receptors and synergizes with iron chelator deferasirox (DSX) to inhibit the growth of P. aeruginosa and Acinetobacter baumannii clinical isolates. A small number of P. aeruginosa and A. baumannii isolates were resistant to the combination, prompting us to search for other compounds that could synergize with TS against those strains. From literature surveys, we selected 14 compounds reported to have iron-chelating activity, plus one iron analogue, and tested them for synergy with TS. Doxycycline (DOXY), ciclopirox olamine (CO), tropolone (TRO), clioquinol (CLI), and gallium nitrate (GN) synergized with TS. Individual compounds were bacteriostatic, but the combinations were bactericidal. Our spectrophotometric data and chrome azurol S agar assay confirmed that the chelators potentiate TS activity through iron sequestration rather than through their innate antimicrobial activities. A triple combination of TS plus DSX plus DOXY had the most potent activity against P. aeruginosa and A. baumannii isolates. One P. aeruginosa clinical isolate was resistant to the triple combination but susceptible to a triple combination containing higher concentrations of CLI, CO, or DOXY. All A. baumannii isolates were susceptible to the triple combinations. Our data reveal a diverse set of compounds with dual activity as antibacterial agents and TS adjuvants, allowing combinations to be tailored for resistant clinical isolates.


Assuntos
Antibacterianos/farmacologia , Ferro/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Ciclopirox/farmacologia , Clioquinol/farmacologia , Doxiciclina/farmacologia , Gálio/farmacologia , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tropolona/farmacologia
19.
Metallomics ; 12(2): 173-182, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755502

RESUMO

Clioquinol is recently considered to be the most promising drug for treating cancer and neurodegenerative diseases. However, its mode of action varies from different disease models. In this study, we found that clioquinol inhibited cell growth in human neurotypic SHSY-5Y cells, which was attributed to both S-phase cell-cycle arrest and autophagic cell death. Clioquinol increased the intracellular contents of iron and zinc as well as calcium as measured by ICP-AES. Staining of Fluo-3 confirmed an increase in the level of calcium. Analysis of the metal-binding ability of clioquinol showed that it was not a chelating agent of calcium ions and the elevation of intracellular calcium content is not achieved by clioquinol as an ionophore. CaCl2 could simulate or even aggravate the cytotoxicity of clioquinol and it increased S-phase cell cycle arrest induced by clioquinol in a concentration dependent manner. Staining of acridine orange demonstrated that autophagy induced by clioquinol was not affected by addition of calcium ions. In contrast, the intracellular calcium ion chelator BAPTA-am abolished the clioquinol-induced S phase arrest and reduced the cell death caused by clioquinol. The WB assay of cell cycle-related proteins (CDK2, p21 and p27) further confirmed that S phase arrest is positively correlated with intracellular calcium elevation, which was due to the alterations of the mRNA and protein levels of calcium pumps (SERCA and SPCA). Taken together, these data indicate that clioquinol regulates the level of intracellular calcium ions to induce S-phase cell cycle arrest in human SH-SY5Y cells. Our results demonstrate for the first time that an increase of intracellular calcium content is one of the mechanisms of clioquinol in the inhibition of human neurotypic SHSY-5Y cells.


Assuntos
Antineoplásicos/farmacologia , Cálcio/metabolismo , Quelantes/farmacologia , Clioquinol/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/análise , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Ferro/análise , Ferro/metabolismo , Zinco/análise , Zinco/metabolismo
20.
ACS Chem Neurosci ; 10(12): 4787-4799, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697472

RESUMO

Previously, we designed, synthesized, and evaluated a series of quinolone-benzofuran derivatives as multitargeted anti-Alzheimer's disease (anti-AD) compounds, and we discovered that WBQ5187 possesses superior anti-AD bioactivity. In this work, we investigated the pharmacokinetics of this new molecule, as well as its therapeutic efficacy in restoring cognition and neuropathology, in the APP/PS1 mouse model of AD. Pharmacokinetic analyses demonstrated that WBQ5187 possessed rational oral bioavailability, metabolic stability, and excellent blood-brain barrier (BBB) permeability. Pharmacodynamics studies indicated that a 12-week treatment with the lead compound at doses of 40 mg/kg or higher significantly enhanced the learning and memory performance of the APP/PS1 transgenic mice, and the effect was more potent than that of clioquinol (CQ). Furthermore, WBQ5187 notably reduced cerebral ß-amyloid pathology, gliosis, and neuronal cell loss and increased the levels of cAMP in the hippocampus of these mice. The surrogate measures of emesis indicated that WBQ5187 had no effect at its cognitive effective doses. Overall, our results demonstrated that this compound markedly improves cognitive and spatial memory functions in AD mice and represents a promising pharmaceutical agent with potential for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Benzofuranos/uso terapêutico , Química Encefálica/efeitos dos fármacos , Clioquinol/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Inibidores da Fosfodiesterase 4/uso terapêutico , Resorcinóis/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Anestésicos Gerais/toxicidade , Animais , Benzofuranos/química , Benzofuranos/farmacocinética , Disponibilidade Biológica , Barreira Hematoencefálica , Clioquinol/química , Clioquinol/farmacocinética , Clioquinol/uso terapêutico , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Gliose/tratamento farmacológico , Gliose/prevenção & controle , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Náusea/induzido quimicamente , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacocinética , Inibidores da Fosfodiesterase 4/toxicidade , Resorcinóis/química , Resorcinóis/farmacocinética , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Vômito/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA