RESUMO
Tuberculosis (TB) remains one of the infectious diseases with high incidence and high mortality. About a quarter of the population has been latently infected with Mycobacterium tuberculosis. At present, the available TB treatment strategies have the disadvantages of too long treatment duration and serious adverse reactions. The sustained inflammatory response leads to permanent tissue damage. Unfortunately, the current selection of treatment regimens does not consider the immunomodulatory effects of various drugs. In this study, we preliminarily evaluated the effects of commonly used anti-tuberculosis drugs on innate immunity at the cellular level. The results showed that clofazimine (CFZ) has a significant innate immunosuppressive effect. CFZ significantly inhibited cytokines and type I interferons (IFNα and IFNß) expression under both lipopolysaccharide stimulation and CFZ-resistant strain infection. In further mechanistic studies, CFZ strongly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65 and had no significant effect on the phosphorylation of p38. In conclusion, our study found that CFZ suppresses innate immunity against Mycobacterium tuberculosis by NF-κB, which should be considered in future regimen development. IMPORTANCE: The complete elimination of Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, from TB patients is a complicated process that takes a long time. The excessive immune inflammatory response of the host for a long time causes irreversible organic damage to the lungs and liver. Current antibiotic-based treatment options involve multiple complex drug combinations, often targeting different physiological processes of Mtb. Given the high incidence of post-tuberculosis lung disease, we should also consider the immunomodulatory properties of other drugs when selecting drug combinations.
Assuntos
Clofazimina , Imunidade Inata , Mycobacterium tuberculosis , NF-kappa B , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Clofazimina/farmacologia , Imunidade Inata/efeitos dos fármacos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Humanos , Antituberculosos/farmacologia , Animais , Camundongos , Citocinas/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico , Fator de Transcrição RelA/metabolismoRESUMO
BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.
Assuntos
Clofazimina , Glutamina , Proteína Huntingtina , Doença de Huntington , PPAR gama , Peptídeos , Peixe-Zebra , Animais , Humanos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Clofazimina/farmacologia , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Hansenostáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Peptídeos/toxicidade , PPAR gama/metabolismo , PPAR gama/genética , Glutamina/metabolismo , Glutamina/toxicidadeRESUMO
Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened â¼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.
Assuntos
Antígeno CTLA-4 , Clofazimina , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologiaRESUMO
Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.
Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Complexo Mycobacterium avium , Pneumopatias/microbiologiaRESUMO
IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.
Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Trifosfato de AdenosinaRESUMO
Among different strategies to develop novel therapies, drug repositioning (aka repurposing) aims at identifying new uses of an already approved or investigational drug. This approach has the advantages of availability of the extensive pre-existing knowledge of the drug's safety, pharmacology and toxicology, manufacturing and formulation. It provides advantages to the risk-versus-rewards trade-off as compared to the costly and time-consuming de novo drug discovery process. Clofazimine, a red-colored synthetic derivative of riminophenazines initially isolated from lichens, was first synthesized in the 1950 s, and passed through several phases of repositioning in its history as a drug. Being initially developed as an anti-tuberculosis treatment, it was repurposed for the treatment of leprosy, prior to re-repositioning for the treatment of multidrug-resistant tuberculosis and other infections. Since 1990 s, reports on the anticancer properties of clofazimine, both in vitro and in vivo, started to appear. Among the diverse mechanisms of action proposed, the activity of clofazimine as a specific inhibitor of the oncogenic Wnt signaling pathway has recently emerged as the promising targeting mechanism of the drug against breast, colon, liver, and other forms of cancer. Seventy years after the initial discovery, clofazimine's journey as a drug finding new applications continues, serving as a colorful illustration of drug repurposing in modern pharmacology.
Assuntos
Clofazimina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Descoberta de Drogas , Antituberculosos/farmacologia , Antituberculosos/uso terapêuticoRESUMO
Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.
Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Infecção Persistente , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia , Encéfalo/patologia , ZoonosesRESUMO
In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through Rv0678 variants, a gene encoding a repressor protein that regulates mmpS5/mmpL5 efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that in vitro generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. Rv0678 variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent atpE SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (fbiD: del555GCT) or rifampicin mono-resistant (fbiA: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include Rv0678, glpK, nuoG, and uvrD1. Genes with variants in the bedaquiline resistant mutants included atpE, fadE28, truA, mmpL5, glnH, and pks8, while clofazimine-resistant mutants displayed ppsD, fbiA, fbiD, mutT3, fadE18, Rv0988, and Rv2082 variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Clofazimina/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Testes de Sensibilidade Microbiana , Genômica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: An innovative approach has been introduced for identifying and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. In the present study, we evaluated the inhibitory effects of Malaria Box (MBox) compounds (n = 8) against the growth of Babesia microti in mice and conducted bioinformatics analysis between the selected hits and the currently used antibabesial drugs, with far-reaching implications for potent combinations. METHODS: A fluorescence assay was used to evaluate the in vivo inhibitory effects of the selected compounds. Bioinformatics analysis was conducted using hierarchical clustering, distance matrix and molecular weight correlation, and PubChem fingerprint. The compounds with in vivo potential efficacy were selected to search for their target in the piroplasm parasites using quantitative PCR (qPCR). RESULTS: Screening the MBox against the in vivo growth of the B. microti parasite enabled the discovery of potent new antipiroplasm drugs, including MMV396693 and MMV665875. Interestingly, statistically significant (P < 0.05) downregulation of cysteine protease mRNA levels was observed in MMV665875-treated Theileria equi in vitro culture in comparison with untreated cultures. MMV396693/clofazimine and MMV665875/atovaquone (AV) showed maximum structural similarity (MSS) with each other. The distance matrix results indicate promising antibabesial efficacy of combination therapies consisting of either MMV665875 and AV or MMV396693 and imidocarb dipropionate (ID). CONCLUSIONS: Inhibitory and hematology assay results suggest that MMV396693 and MMV665875 are potent antipiroplasm monotherapies. The structural similarity results indicate that MMV665875 and MMV396693 have a similar mode of action as AV and ID, respectively. Our findings demonstrated that MBox compounds provide a promising lead for the development of new antibabesial therapeutic alternatives.
Assuntos
Babesia microti , Babesiose , Cisteína Proteases , Malária , Theileria , Animais , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Cisteína Proteases/farmacologia , Reposicionamento de Medicamentos , Imidocarbo/análogos & derivados , Camundongos , Theileria/fisiologiaRESUMO
AIMS: Malignant pleural mesothelioma (MPM) is a rare cancer of lungs' pleural cavity, with minimally effective therapies available. Thus, there exists a necessity for drug repurposing which is an attractive strategy for drug development in MPM. Repurposing of an old FDA-approved anti-leprotic drug, Clofazimine (CFZ), presents an outstanding opportunity to explore its efficacy in treating MPM. MAIN METHODS: Cytotoxicity, scratch assay, and clonogenic assays were employed to determine CFZ's ability to inhibit cell viability, cell migration, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of CFZ in MSTO-211H cell line. Gene expression analysis was performed using RT-qPCR assays to determine the CFZ's effect of key genes. Western blot studies were performed to determine CFZ's ability to induce apoptosis its effect to induce autophagy marker. KEY FINDINGS: CFZ showed significant cytotoxicity against both immortalized and primary patient-derived cell lines with IC50 values ranging from 3.4 µM (MSTO-211H) to 7.1 µM (HAY). CFZ significantly impaired MPM cell cloning efficiency, migration, and tumor spheroid formation. 3D Spheroid model showed that CFZ resulted in reduction in spheroid volume. RT-qPCR data showed downregulation of genes ß-catenin, BCL-9, and PRDX1; and upregulation of apoptosis markers such as PARP, Cleaved caspase 3, and AXIN2. Additionally, immunoblot analysis showed that CFZ down-regulates the expression of ß-catenin (apoptosis induction) and up-regulates p62, LC3B protein II (autophagy inhibition). SIGNIFICANCE: It can be concluded that CFZ could be a promising molecule to repurpose for MPM treatment which needs numerous efforts from further studies.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , beta CateninaRESUMO
In this study, we explored clofazimine (CFZ) as a potential substrate of uptake and efflux transporters that might be involved in CFZ disposition, using transporter gene overexpressing cell lines in vitro. The intracellular concentrations of CFZ were significantly increased in the presence of selective inhibitors of P-gp and BCRP, which include verapamil, cyclosporine-A, PSC-833, quinidine, Ko143, and daunorubicin. In a bidirectional transport assay using transwell cultures of cell lines overexpressing P-gp and BCRP, the mean efflux ratios of CFZ were found to be 4.17 ± 0.63 and 3.37 ± 1.2, respectively. The Km and maximum rate of uptake (Vmax) were estimated to be 223.3 ± 14.73 µM and 548.8 ± 87.15 pmol/min/mg protein for P-gp and 381.9 ± 25.07 µM and 5.8 ± 1.22 pmol/min/mg protein for BCRP, respectively. Among the uptake transporters screened, the CFZ uptake rate was increased 1.93 and 3.09-fold in HEK293 cell lines overexpressing OAT1 and OAT3, respectively, compared to the control cell lines, but no significant uptake was observed in cell lines overexpressing OCT1, OCT2, OATP1B1, OATP1B3, OATP2B1, or NTCP. Both OAT1- and OAT3-mediated uptake was inhibited by the selective inhibitors diclofenac, probenecid, and butanesulfonic acid. The Km and Vmax values of CFZ were estimated to be 0.63 ± 0.15 µM and 8.23 ± 1.03 pmol/min/mg protein, respectively, for OAT1 and 0.47 ± 0.1 µM and 17.81 ± 2.19 pmol/min/mg protein, respectively, for OAT3. These findings suggest that CFZ is a novel substrate of BCRP, OAT1, and OAT3 and a known substrate of P-gp in vitro.
Assuntos
Clofazimina , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Clofazimina/farmacologia , Interações Medicamentosas , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoRESUMO
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model thatâin contrast to regular inbred miceâstrongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 µm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 µm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/análise , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Clofazimina/farmacologia , Granuloma/diagnóstico por imagem , Granuloma/tratamento farmacológico , Humanos , Lasers , Camundongos , Necrose , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tuberculose/diagnóstico por imagem , Tuberculose/tratamento farmacológicoRESUMO
Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.
Assuntos
Antituberculosos/imunologia , Antituberculosos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Clofazimina/farmacologia , Citocinas/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de CélulasRESUMO
A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPß, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Clofazimina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Inativação Gênica , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fatores de Iniciação de Peptídeos/antagonistas & inibidores , Fatores de Iniciação de Peptídeos/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is a cancer subtype critically dependent upon excessive activation of Wnt pathway. The anti-mycobacterial drug clofazimine is an efficient inhibitor of canonical Wnt signaling in TNBC, reducing tumor cell proliferation in vitro and in animal models. These properties make clofazimine a candidate to become first targeted therapy against TNBC. In this work, we optimized the clofazimine structure to enhance its water solubility and potency as a Wnt inhibitor. After extensive structure-activity relationships investigations, the riminophenazine 5-(4-(chlorophenyl)-3-((2-(piperazin-1-yl)ethyl)imino)-N-(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (MU17) was identified as the new lead compound for the riminophenazine-based targeted therapy against TNBC and Wnt-dependent cancers. Compared to clofazimine, the water-soluble MU17 displayed a 7-fold improved potency against Wnt signaling in TNBC cells resulting in on-target suppression of tumor growth in a patient-derived mouse model of TNBC. Moreover, allowing the administration of reduced yet effective dosages, MU17 displayed no adverse effects, most notably no clofazimine-related skin coloration.
Assuntos
Clofazimina/farmacologia , Fenazinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clofazimina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Solubilidade , Relação Estrutura-Atividade , Água/química , Via de Sinalização Wnt/efeitos dos fármacosAssuntos
Uso Off-Label , Dermatopatias/tratamento farmacológico , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Colchicina/farmacologia , Colchicina/uso terapêutico , Dapsona/farmacologia , Dapsona/uso terapêutico , Dermatologia , Humanos , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Losartan/farmacologia , Losartan/uso terapêutico , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Ondansetron/farmacologia , Ondansetron/uso terapêutico , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Tetraciclinas/farmacologia , Tetraciclinas/uso terapêutico , Talidomida/farmacologia , Talidomida/uso terapêutico , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/uso terapêuticoRESUMO
For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1ß in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.
Assuntos
Antituberculosos/farmacologia , Desferroxamina/farmacologia , Diarilquinolinas/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Mycobacterium bovis/efeitos dos fármacos , Amicacina/farmacologia , Carga Bacteriana/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clofazimina/farmacologia , Ciclosserina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Linezolida/farmacologia , Macrófagos/imunologia , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , Cultura Primária de Células , Pirazinamida/farmacologiaRESUMO
The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.
Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genéticaRESUMO
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Assuntos
Antibacterianos/farmacologia , Clofazimina/farmacologia , Macrófagos/microbiologia , Salmonella enterica/efeitos dos fármacos , Animais , Células Cultivadas , Escherichia coli , CamundongosRESUMO
BACKGROUND: The plenteous resistance to and undesirable consequences of the existing antipiroplasmic therapies have emphasized the urgent need for new chemotherapeutics and drug targets for both prophylaxis and chemotherapy. Hydroxyurea (HYD) is an antineoplastic agent with antitrypanosomal activity. Eflornithine (α-difluoro-methyl ornithine, DFMO) is the best choice therapy for the treatment of late-stage Gambian human African trypanosomiasis. METHODS: In this study, the inhibitory and combination efficacy of HYD and DFMO with existing babesicidal drugs (diminazene aceturate (DA), atovaquone (ATV), and clofazimine (CLF)) deoxyribonucleotide in vitro against the multiplication of Babesia and Theileria. As well as, their chemotherapeutic effects were assessed on B. microti strain that infects rodents. The Cell Counting Kits-8 (CCK-8) test was used to examine their cytotoxicity on human foreskin fibroblast (HFF), mouse embryonic fibroblast (NIH/3T3), and Madin-Darby bovine kidney (MDBK) cells. FINDINGS: HYD and DFMO suppressed the multiplication of all tested species (B. bigemina, B. bovis, B. caballi, B. divergens, and T. equi) in a dose-related manner. HFF, NIH/3T3, or MDBK cell viability was not influenced by DFMO at 1000 µM, while HYD affected the MDBK cell viability at EC50 value of 887.5±14.4 µM. The in vitro combination treatments of DFMO and HYD with CLF, DA, and ATV exhibited synergistic and additive efficacy toward all tested species. The in vivo experiment revealed that HYD and DFMO oral administration at 100 and 50 mg/kg inhibited B. microti multiplication in mice by 60.1% and 78.2%, respectively. HYD-DA and DFMO-DA combined treatments showed higher chemotherapeutic efficacy than their monotherapies. CONCLUSION: These results indicate the prospects of HYD and DFMO as drug candidates for piroplasmosis treatment, when combined mainly with DA, ATV, and CLF. Therefore, further studies are needed to combine HYD or DFMO with either ATV or CLF and examine their impact on B. microti infection in mice.