Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Bioorg Med Chem ; 92: 117425, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544256

RESUMO

Monoamine oxidases (MAOA/MAOB) are enzymes known for their role in neurotransmitter regulation in the central nervous system (CNS). Irreversible and non-selective MAO inhibitors (MAOi's) were the first class of antidepressants, thus subsequent work on drugs such as the selective MAOA inhibitor clorgyline has focussed on selectivity and increased CNS penetration. MAOA is highly expressed in high grade and metastatic prostate cancer with a proposed effect on prostate cancer growth, recurrence, and drug resistance. A Phase II Clinical Trial has demonstrated the therapeutic effects of the irreversible nonselective MAOi phenelzine for prostate cancer. However, neurologic adverse effects led to early withdrawal in 25% of the enrolled patient-population. In this work, we revised the clorgyline scaffold with the goal of decreasing CNS penetration to minimize CNS-related side effects while retaining or enhancing MAOA inhibition potency and selectivity. Using the known co-crystal structure of clorgyline bound with FAD co-factor in the hMAOA active site as a reference, we designed and synthesized a series of compounds predicted to have lower CNS penetration (logBB). All synthesized derivatives displayed favorable drug-like characteristics such as predicted Caco-2 permeability and human oral absorption, and exhibited highly selective hMAOA binding interactions. Introduction of an HBD group (NH2 or OH) at position 5 of the phenyl ring clorgyline resulted in 3x more potent hMAOA inhibition with equivalent or better hMAOB selectivity, and similar prostate cancer cell cytotoxicity. In contrast, introduction of larger substituents at this position or at the terminal amine significantly reduced the hMAOA inhibition potency, attributed in part to a steric clash within the binding pocket of the MAOA active site. Replacement of the N-methyl group by a more polar, but larger 2-hydroxyethyl group did not enhance potency. However, introduction of a polar 2-hydroxy in the propyl chain retained the highly selective MAOA inhibition and cancer cell cytotoxicity of clorgyline while reducing its CNS score from 2 to 0. We believe that these results identify a new class of peripherally directed MAOIs that may allow safer therapeutic targeting of MAOA for a variety of anti-cancer and anti-inflammatory indications.


Assuntos
Inibidores da Monoaminoxidase , Neoplasias da Próstata , Masculino , Humanos , Clorgilina/farmacologia , Células CACO-2 , Inibidores da Monoaminoxidase/farmacologia , Antidepressivos , Monoaminoxidase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Encéfalo/metabolismo
2.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172473

RESUMO

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Assuntos
Antineoplásicos , Glioblastoma , Camundongos , Animais , Monoaminoxidase/metabolismo , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Clorgilina/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90
3.
Mol Immunol ; 155: 27-43, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682136

RESUMO

AIM: Previously, we revealed a crucial role of 5-HT degradation system (5DS), consisting of 5-HT2A receptor (5-HT2AR), 5-HT synthases and monoamine oxidase A (MAO-A), in ischemia-reperfusion (IR)-caused organ injury. Whereas, platelet activating factor receptor (PAFR) also mediates myocardial ischemia-reperfusion injury (MIRI). Here, we try to clarify the relationship between 5DS and PAFR in mediating MIRI. METHODS: H9c2 cell injury and rat MIRI were caused by hypoxia/reoxygenation (H/R) or PAF, and by ligating the left anterior descending coronary artery then untying, respectively. 5-HT2AR and PAFR antagonists [sarpogrelate hydrochloride (SH) and BN52021], MAO-A, AKT, mTOR and 5-HT synthase inhibitors (clorgyline, perifosine, rapamycin and carbidopa), and gene-silencing PKCε were used in experiments RESULTS: The mitochondrial ROS production, respiratory chain damage, inflammation, apoptosis and myocardial infarction were significantly prevented by BN52021, SH and clorgyline in H/R and PAF-treated cells and in IR myocardium. BN52021 also significantly suppressed the upregulation of PAFR, 5-HT2AR, 5-HT synthases and MAO-A expression (mRNA and protein), and Gαq and PKCε (in plasmalemma) expression induced by H/R, PAF or IR; the effects of SH were similar to that of BN52021 except for no affecting the expression of PAFR and 5-HT2AR. Gene-silencing PKCε suppressed H/R and PAF-induced upregulation of 5-HT synthases and MAO-A expression in cells; perifosine and rapamycin had not such effects; however, clorgyline suppressed H/R and PAF-induced phosphorylation of AKT and mTOR. CONCLUSION: MIRI is probably due to PAFR-mediated 5-HT2AR activation, which further activates PKCε-mediated 5-HT synthesis and degradation, leading to mitochondrial ROS production.


Assuntos
Traumatismo por Reperfusão Miocárdica , Glicoproteínas da Membrana de Plaquetas , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G , Serotonina , Animais , Ratos , Apoptose , Clorgilina/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Serina-Treonina Quinases TOR/metabolismo
4.
Eur J Med Chem ; 202: 112475, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652406

RESUMO

A series of rasagiline-clorgyline hybrids was designed, synthesized and investigated in vitro for their inhibition of monoamine oxidase and amyloid-ß aggregation. Most of compounds were found to be selective and highly potent hMAO-B inhibitors showing IC50 values in the nanomolar, and exhibited a moderate inhibition of amyloid-ß aggregation. 7-((5-(methyl(prop-2-yn-1-yl)amino) pentyl)oxy)chroman-4-one (6j) was the most interesting compound identified in this research, endowed with higher hMAO-B potency (IC50 = 4 nM) and selectivity (SI > 25000) compared to the reference selective inhibitor rasagiline (IC50 = 141 nM, SI > 355), and exhibited good inhibitory activity against Aß1-42 aggregation (40.78%, 25 µM). Kinetic and molecular modeling studies revealed that 6j was a competitive reversible inhibitor for hMAO-B. Moreover, compound 6j displayed low toxicity and good neuroprotective effects in SH-SY5Y cell assay, and could penetrate the blood-brain barrier according to the parallel artificial membrane permeability assay. Pharmacokinetics assay revealed that compound 6j possessed good pharmacokinetic profiles after intravenous and oral administrations. Overall, these results highlighted that compound 6j was an effective and promising multitarget agent against Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Desenho de Fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorgilina/química , Clorgilina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Indanos/química , Indanos/farmacologia , Masculino , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Nat Commun ; 11(1): 2689, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483206

RESUMO

The antiandrogen enzalutamide (Enz) has improved survival in castration resistant prostate cancer (CRPC) patients. However, most patients eventually develop Enz resistance that may involve inducing the androgen receptor (AR) splicing variant 7 (ARv7). Here we report that high expression of monoamine oxidase-A (MAO-A) is associated with positive ARv7 detection in CRPC patients following Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment and further suppress EnzR cell growth in vitro and in vivo. Our findings suggest that Enz-increased ARv7 expression can transcriptionally enhance MAO-A expression resulting in Enz resistance via altering the hypoxia HIF-1α signals. Together, our results show that targeting the Enz/ARv7/MAO-A signaling with the antidepressants phenelzine or clorgyline can restore Enz sensitivity to suppress EnzR cell growth, which may indicate that these antidepression drugs can overcome the Enz resistance to further suppress the EnzR CRPC.


Assuntos
Clorgilina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Fenelzina/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Processamento Alternativo , Animais , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estabilidade Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Monoaminoxidase/química , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Células Neoplásicas Circulantes/metabolismo , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Prostate ; 79(6): 667-677, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30693539

RESUMO

BACKGROUND: Monoamine oxidase A (MAOA) is best known for its role in neuro-transmitter regulation. Monoamine oxidase inhibitors are used to treat atypical depression. MAOA is highly expressed in high grade prostate cancer and modulates tumorigenesis and progression in prostate cancer. Here, we investigated the potential role of MAOA inhibitors (MAOAIs) in relation to the androgen receptor (AR) pathway and resistance to antiandrogen treatment in prostate cancer. METHODS: We examined MAOA expression and the effect of MAOI treatment in relation to AR-targeted treatments using the LNCaP, C4-2B, and 22Rv1 human prostate cancer cell lines. MAOA, AR-full length (AR-FL), AR splice variant 7 (AR-V7), and PSA expression was evaluated in the presence of MAOAIs (clorgyline, phenelzine), androgenic ligand (R1881), and antiandrogen (enzalutamide) treatments. An enzalutamide resistance cell line was generated to test the effect of MAOAI treatment in this model. RESULTS: We observed that MAOAIs, particularly clorgyline and phenelzine, were effective at decreasing MAOA activity in human prostate cancer cells. MAOAIs significantly decreased growth of LNCaP, C4-2B, and 22Rv1 cells and produced additive growth inhibitory effects when combined with enzalutamide. Clorgyline decreased expression of AR-FL and AR-V7 in 22Rv1 cells and was effective at decreasing growth of an enzalutamide-resistant C4-2B cell line with increased AR-V7 expression. CONCLUSIONS: MAOAIs decrease growth and proliferation of androgen-sensitive and castration-resistant prostate cancer cells. Clorgyline, in particular, decreases expression of AR-FL and AR-V7 expression and decreases growth of an enzalutamide-resistant cell line. These findings provide preclinical validation of MAOA inhibitors either alone or in combination with antiandrogens for therapeutic intent in patients with advanced forms of prostate cancer.


Assuntos
Clorgilina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fenelzina/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Benzamidas , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Gradação de Tumores , Nitrilas , Feniltioidantoína/farmacologia , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
7.
J Pathol ; 243(2): 220-229, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28722111

RESUMO

Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines and produces H2 O2 . It facilitates the progression of gliomas and prostate cancer, but its expression and functional relevance have not been studied in lymphoma. Here, we evaluated MAOA in 427 cases of Hodgkin and non-Hodgkin lymphoma and in a spectrum of reactive lymphoid tissues by immunohistochemistry on formalin-fixed, paraffin-embedded specimens. MAOA was expressed by Hodgkin Reed-Sternberg (HRS) cells in the majority of classical Hodgkin lymphomas (cHLs) (181/241; 75%), with 34.8% showing strong expression. Weak MAOA was also noted in a minority of primary mediastinal large B-cell lymphomas (8/47; 17%) and in a mediastinal gray-zone lymphoma. In contrast, no MAOA was found in non-neoplastic lymphoid tissues, nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL; 0/8) or any other non-Hodgkin lymphomas studied (0/123). MAOA was more common in Epstein-Barr virus (EBV)-negative compared to EBV-positive cHL (p < 0.0001) and was especially prevalent in the EBV-negative nodular sclerosing subtype. Similar to primary human lymphoma specimens, most cHL-derived cell lines displayed MAOA activity, whereas non-Hodgkin-lymphoma-derived cell lines did not. The MAOA inhibitor clorgyline reduced the growth of L1236 cells and U-HO1 cells, and shRNA knockdown of MAOA reduced the growth of L1236 cells. Conversely, ectopic overexpression of MAOA increased the growth of MAOA-negative HDLM2 cells. Combined treatment with clorgyline and ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) was more effective in reducing cell growth than either regimen alone. In summary, MAOA is highly expressed in cHL and may reflect the distinct biology of this lymphoma. Further studies on the potential utility of MAOA as a diagnostic marker and therapeutic target are warranted. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença de Hodgkin/enzimologia , Monoaminoxidase/metabolismo , Linhagem Celular Tumoral , Clorgilina/farmacologia , Infecções por Vírus Epstein-Barr/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Monoaminoxidase/farmacologia , Células de Reed-Sternberg/metabolismo
8.
PLoS One ; 11(11): e0166750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861613

RESUMO

3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorgilina/farmacologia , Células-Tronco de Carcinoma Embrionário , Fluoxetina/farmacologia , Expressão Gênica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Selegilina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
9.
Chem Biol Interact ; 230: 9-20, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25656918

RESUMO

The objective of the study was to evaluate the metabolism dependent inhibition of CYP2B6 catalyzed bupropion hydroxylation in human liver microsomes by monoamine oxidase (MAO) inhibitors and to predict the drug-drug interaction potential of monoamine oxidase inhibitors as perpetrators of drug interaction. Human liver microsomal CYP2B6 activities were investigated using bupropion hydroxylation as probe substrate marker. The results from single point time dependent inhibition and shift assays suggest that clorgyline, pargyline, phenelzine, and selegiline were metabolism based inhibitors of CYP2B6. In IC50 shift assays, clorgyline, pargyline, phenelzine and selegiline are metabolism based inhibitors of CYP2B6 with fold shit of 3.0-, 3.7-, 2.9-, and 11.4-fold respectively. The inactivation of clorgyline was characterized by KI value of 2.5 ± 0.3 and k(inact) value of 0.045 ± 0.001 min(-1). Phenelzine inactivated CYP2B6 with KI and k(inact) values of 44.9 ± 6.9 µM and 0.085 ± 0.003 min(-1) respectively. Inactivation of selegiline was characterized with KI and k(inact) values of 22.0 ± 3.3 and 0.074 ± 0.002 min(-1) respectively. The inactivation caused by these inhibitors was not reversed by dialysis indicating irreversible inhibition. Based on the mechanistic static model, selegiline showed an increase in the area under the curve (AUC) of efavirenz and bupropion by 1.01-fold. Phenelzine predicted to cause an increase in the AUC of efavirenz and bupropion by 9.4- and 2.4-fold respectively considering unbound hepatic inlet concentrations of phenelzine. In conclusion, the results from this study demonstrated that MAO inhibitors can inactivate human liver microsomal CYP2B6. The likelihood of drug interaction when selegiline co-administered with CYP2B6 substrates is remote. Caution is required while co-administering phenelzine with substrates that are exclusively metabolized by CYP2B6 enzyme and substrates that have narrow therapeutic index.


Assuntos
Bupropiona/farmacocinética , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2B6/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Monoaminoxidase/farmacologia , Bupropiona/metabolismo , Clorgilina/farmacologia , Interações Medicamentosas , Glutationa/metabolismo , Humanos , Hidroxilação , Concentração Inibidora 50 , Cinésica , Microssomos Hepáticos/metabolismo , Inibidores da Monoaminoxidase/química , Pargilina/farmacologia , Fenelzina/farmacologia , Selegilina/farmacologia
10.
Mol Pharm ; 11(10): 3452-62, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25115303

RESUMO

ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-ß mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Melanoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Clorgilina/farmacologia , Daunorrubicina/farmacologia , Humanos , Rodamina 123/farmacologia , Rodaminas/farmacologia , Saccharomyces cerevisiae/genética , Tacrolimo/farmacologia
11.
Cell Signal ; 26(12): 2621-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152370

RESUMO

Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer. The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line. CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the ß-catenin/[phospho]GSK-3ß complex as well as the E-cadherin/ß-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status. These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism. This potentially implicates an MAO-A-sensitive step in advanced breast cancer and should be borne in mind when considering pharmacological treatment options for co-morbid depression in breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Clorgilina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Monoaminoxidase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , RNA Mensageiro/genética , Vimentina/metabolismo , beta Catenina/metabolismo
12.
PLoS One ; 8(9): e75136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040395

RESUMO

Epigenetic gene silencing, mediated by aberrant promoter DNA hypermethylation and repressive histone modifications, is a hallmark of cancer. Although heritable, the dynamic nature and potential reversibility through pharmacological interventions make such aberrations attractive targets. Since cancers contain multiple epigenetic abnormalities, combining therapies that target different defects could potentially enhance their individual efficacies. 5-Aza-2'-deoxycytidine (5-Aza-CdR), FDA-approved drug for the treatment of myelodysplastic syndrome, can inhibit DNA methyltransferases (DNMTs) upon incorporation into the DNA of dividing cells, resulting in global demethylation. More recently, the first histone demethylase, lysine specific demethylase 1 (LSD1), which demethylates both histone and non-histone substrates, has become a new target for epigenetic therapy. Using, clorgyline, an LSD1 inhibitor (LSD1i) to treat cancer cell lines, we show that clorgyline employs two mechanisms of action depending on the cell type: it can either induce global DNA demethylation or inhibit LSD1-driven H3K4me2 and H3K4me1 demethylation to establish an active chromatin configuration. We also investigate the therapeutic efficacy of combining 5-Aza-CdR with clorgyline and determine that this combinatorial treatment has synergistic effects on reactivating aberrantly silenced genes by enriching H3K4me2 and H3K4me1. Many of the reactivated genes are categorized as cancer testis antigens or belong to the interferon-signaling pathway, suggesting potential implications for immunotherapy. Together, our results demonstrate that combinatorial treatment consisting of a DNMT inhibitor (DNMTi) and an LSD1i have enhanced therapeutic values and could improve the efficacy of epigenetic therapy.


Assuntos
Azacitidina/análogos & derivados , Clorgilina/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inativação Gênica/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Azacitidina/farmacologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA/efeitos dos fármacos , Decitabina , Sinergismo Farmacológico , Histonas/metabolismo , Humanos , Regulação para Cima/efeitos dos fármacos
13.
Br J Pharmacol ; 166(2): 650-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22225569

RESUMO

BACKGROUND AND PURPOSE Preclinical pharmacology of 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormones, indicates that it is a rapid modulator of rodent metabolism and behaviour. Since T1AM undergoes rapid enzymatic degradation, particularly by MAO, we hypothesized that the effects of T1AM might be altered by inhibition of MAO. EXPERIMENTAL APPROACH We investigated the effects of injecting T1AM (i.c.v.) on (i) feeding behaviour, hyperglycaemia and plasma levels of thyroid hormones and (ii) T1AM systemic bioavailability, in overnight fasted mice, under control conditions and after pretreatment with the MAO inhibitor clorgyline. T1AM (1.3, 6.6, 13, 20 and 26 µg·kg(-1) ) or vehicle were injected i.c.v. in fasted male mice not pretreated or pretreated i.p. with clorgyline (2.5 mg·kg(-1) ). Glycaemia was measured by a glucorefractometer, plasma triiodothyronine (fT3) by a chemiluminescent immunometric assay, c-fos activation immunohistochemically and plasma T1AM by HPLC coupled to tandem-MS. KEY RESULTS T1AM, 1.3 µg·kg(-1) , produced a hypophagic effect (-24% vs. control) and reduced c-fos activation. This dose showed systemic bioavailability (0.12% of injected dose), raised plasma glucose levels and reduced peripheral insulin sensitivity (-33% vs. control) and plasma fT3 levels. These effects were not linearly related to the dose injected. Clorgyline pretreatment strongly increased the systemic bioavailability of T1AM and prevented the hyperglycaemia and reduction in fT3 induced by T1AM. CONCLUSIONS AND IMPLICATIONS T1AM induces central and peripheral effects including hyperglycaemia and a reduction in plasma fT3 levels in fasted mice. These effects critically depend on the concentration of T1AM or its metabolites in target organs.


Assuntos
Hiperglicemia/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tironinas/farmacologia , Animais , Glicemia/análise , Clorgilina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Exenatida , Jejum/fisiologia , Hiperglicemia/induzido quimicamente , Hipoglicemiantes/farmacologia , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Pâncreas/metabolismo , Peptídeos/farmacologia , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue , Tironinas/sangue , Tironinas/farmacocinética , Peçonhas/farmacologia
14.
J Alzheimers Dis ; 28(2): 403-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22045496

RESUMO

The concentration of presenilin-1 (PS-1) protein at the mitochondrial-associated aspect of the endoplasmic reticulum supports the potential for a mitochondrial influence of PS-1. Given that carriers of certain Alzheimer's disease (AD)-related PS-1 variants are predisposed to clinical depression and that depression has been historically associated with the mitochondrial enzyme, monoamine oxidase-A (MAO-A), we investigated cortical MAO-A function in the AD-related PS-1(M146V) knock-in mouse. The MAO-A system was clearly altered in the PS-1(M146V) mouse as revealed by (a) a mismatch between MAO-A protein expression and MAO-A activity; (b) changes in MAO-A-mediated monoaminergic neurotransmitter metabolism; (c) changes in non-cognitive behavior following treatment with the irreversible MAO-A inhibitor clorgyline; and (d) an increase in the potency of clorgyline in these same mice. We next investigated whether PS-1(M146V) could be influencing MAO-A directly. We observed (a) an enhanced MAO-A activity in necropsied PS-1(M146V) mouse cortical extracts incubated with DAPT (a PS-1 substrate-competitor); (b) the proximity of PS-1 with MAO-A and mitochondrial markers in cortical sections and in primary cortical neurons; (c) the co-segregation and co-immunoprecipitation of PS-1 and MAO-A within the mitochondrial fraction; and (d) the co-immunoprecipitation of overexpressed PS-1(M146V) and MAO-A proteins from N2a lysates. The PS-1(ΔEx9) and PS-1(D257A) variants, known to have low substrate-binding capacity, co-immunoprecipitated weakly with MAO-A. These combined data support a physical interaction between PS-1 and MAO-A that could influence MAO-A activity and contribute to the monoaminergic disruptions common to disorders as seemingly diverse as depression and AD.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Metionina/genética , Monoaminoxidase/metabolismo , Presenilina-1/genética , Valina/genética , Doença de Alzheimer/genética , Análise de Variância , Animais , Células Cultivadas , Córtex Cerebral/patologia , Cromatografia Líquida de Alta Pressão/métodos , Clorgilina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ácido Hidroxi-Indolacético/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Inibidores da Monoaminoxidase/farmacologia , Mutação/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Compostos Orgânicos , Serotonina/metabolismo , Frações Subcelulares/enzimologia , Natação/psicologia , Transfecção , Canais de Ânion Dependentes de Voltagem/metabolismo
15.
J Biol Chem ; 286(32): 28322-30, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21697081

RESUMO

Monoamine oxidases (MAO-A, MAO-B) metabolize biogenic amines and have been implicated in neuronal apoptosis. Although apoptosis is an important process in embryo development, the role of MAO isoenzymes has not been investigated in detail. We found that expression of MAO-A and MAO-B can be detected early on during embryo development. Expression levels remained constant until around midgestation but then dropped to almost undetectable levels toward birth. Similar expression kinetics were observed in the brain. Isoform-specific expression silencing of MAO-A mediated by siRNA during in vitro embryogenesis induced developmental defects, as indicated by a reduction of the crown rump length and impaired cerebral development. These alterations were paralleled by elevated serotonin levels. Similar abnormalities were observed when embryos were cultured in the presence of the MAO-A inhibitor clorgyline or when the transcriptional inhibitor of MAO-A expression R1 was overexpressed. In contrast, no such alterations were detected when expression of MAO-B was knocked down. To explore the underlying mechanisms for the developmental abnormalities in MAO-A knockdown embryos, we quantified the degree of developmental apoptosis in the developing brain. MAO-A knockdown reduced the number of apoptotic cells in the neuroepithelium, which coincided with impaired activation of caspases 3 and 9. Moreover, we observed reduced cyclin D1 levels as an indicator of impaired cell proliferation in MAO-A knockdown embryos. This data highlights MAO-A as a vital regulator of embryonic brain development.


Assuntos
Apoptose/fisiologia , Encéfalo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Monoaminoxidase/biossíntese , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/enzimologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Proliferação de Células/efeitos dos fármacos , Clorgilina/farmacologia , Ciclina D1/genética , Ciclina D1/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Monoaminoxidase/genética , Inibidores da Monoaminoxidase/farmacologia , RNA Interferente Pequeno/genética
16.
Hum Pathol ; 42(11): 1667-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21531005

RESUMO

Epigenetic changes including histone methylation, histone acetylation, and DNA methylation are thought to play important roles in the onset and progression of cancer in numerous tumor types. Recent evidence shows that dysregulated epigenetic modifications are as significant as genetic mutations and can act as oncogenic driver lesions causing autonomous growth of cancer cells. Here, we investigated the role of lysine-specific demethylase 1 in mesenchymal tumors. Lysine-specific demethylase 1 is the first discovered histone lysine demethylase and can demethylate both H3K4me2/1 and H3K9me2/1. By analyzing a total of 468 tumors, we describe for the first time high lysine-specific demethylase 1 expression in several highly malignant sarcomas, including synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors and malignant peripheral nerve sheath tumors. Among the intermediate tumors only solitary fibrous tumors were found to be highly lysine-specific demethylase 1 positive, whereas lysine-specific demethylase 1 expression was low or absent in benign tumors. Lysine-specific demethylase 1 inhibition with small molecule inhibitors resulted in growth inhibition of synovial sarcoma cells in vitro and an increase in global H3K4me2 methylation. Sarcomas continue to remain a clinical challenge and therefore the identification of both diagnostic markers and novel drug targets for the development of new therapeutic options are needed. Our results suggest that dysregulation of lysine-specific demethylase 1 is associated with highly malignant sarcomas proposing them as molecular tumor markers as well as targets for the treatment of these tumor types.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Histona Desmetilases/biossíntese , Neoplasias de Bainha Neural/metabolismo , Rabdomiossarcoma/metabolismo , Sarcoma Sinovial/metabolismo , Tumores Fibrosos Solitários/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Clorgilina/farmacologia , Epigênese Genética , Histona Desmetilases/antagonistas & inibidores , Humanos , Inibidores da Monoaminoxidase/farmacologia , Tranilcipromina/farmacologia
17.
Neurochem Int ; 58(1): 78-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21056607

RESUMO

Since a substantial proportion of smokers have comorbid mood disorders, the smoking cessation aid varenicline might occasionally be prescribed to patients who are simultaneously treated with antidepressants. Given that varenicline is a selective nicotinic acetylcholine receptor partial agonist and not a substrate or inhibitor of drug metabolizing enzymes, pharmacokinetic interactions with various classes of antidepressants are highly unlikely. It is, however, conceivable that varenicline may have a pharmacodynamic effect on antidepressant-evoked increases in central monoamine release. Interactions resulting in excessive transmitter release could cause adverse events such as serotonin syndrome, while attenuation of monoamine release could impact the clinical efficacy of antidepressants. To investigate this we examined whether varenicline administration modulates the effects of the selective serotonin reuptake inhibitor sertraline and the monoamine oxidase inhibitor clorgyline, given alone and combined, on extracellular concentrations of the monoamines serotonin, dopamine, and norepinephrine in rat brain by microdialysis. Given the important role attributed to cortical monoamine release in serotonin syndrome as well as antidepressant activity, the effects on extracellular monoamine concentrations were measured in the medial prefrontal cortex. Responses to maximally effective doses of sertraline or clorgyline and of sertraline plus clorgyline were the same in the absence as in the presence of a relatively high dose of varenicline, which by itself had no significant effect on cortical monoamine release. This is consistent with the binding profile of varenicline that has insufficient affinity for receptors, enzymes, or transporters to inhibit or potentiate the pharmacologic effects of antidepressants. Since varenicline neither diminished nor potentiated sertraline- or clorgyline-induced increases in neurotransmitter levels, combining varenicline with serotonergic antidepressants is unlikely to cause excessive serotonin release or to attenuate antidepressant efficacy via effects on cortical serotonin, dopamine or norepinephrine release.


Assuntos
Antidepressivos/farmacologia , Benzazepinas/farmacologia , Monoaminas Biogênicas/metabolismo , Espaço Extracelular/metabolismo , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/metabolismo , Quinoxalinas/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Clorgilina/farmacologia , Interpretação Estatística de Dados , Dopamina/metabolismo , Interações Medicamentosas , Espaço Extracelular/efeitos dos fármacos , Masculino , Microdiálise , Inibidores da Monoaminoxidase/farmacologia , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Serotonina/metabolismo , Sertralina/farmacologia , Vareniclina , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
18.
Basic Clin Pharmacol Toxicol ; 107(4): 830-41, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20456331

RESUMO

Previous studies have demonstrated that serotonin (5-HT) syndromes, particularly for the malignant cases, can be alleviated by ice water mists, cooling blankets and many other external cooling measures. In this study, we tested the hypothesis that external cooling measures reduce the responsivity of 5-HT(2A) receptors to excessive 5-HT efflux, which may be a possible mechanism underlying the treatment of serotonin syndrome. To test this, rat experiments were carried out in the standard and cool ambient temperature (T(amb) ) by administration of the 5-HT precursor 5-hydroxy-L-tryptophan combined with the monoamine oxidase inhibitor clorgyline. The first set of experiments was to assess severity of the syndromes by measuring body temperature responses. Consistent with the hypothesis, we found that the syndrome was malignant at the standard T(amb) of 22°C but alleviated at 12 or 6°C, these results being similar to those in rats pre-treated with the 5-HT(2A) receptor antagonist ketanserin. The second set of experiments was to utilize microdialysis to determine the relationship between the syndrome severity and 5-HT levels at the above-mentioned T(amb) . We found that excessive 5-HT efflux consisted of primary and secondary components through two distinct mechanisms. Furthermore, the secondary component efflux, which can be ascribed to 5-HT(2A) receptor activation, was proportionally reduced at the cool T(amb) of 12 and 6°C. In conclusion, results of this study support the hypothesis that cooling T(amb) reduces the functional activity of 5-HT(2A) receptors, thus alleviating the malignant syndrome.


Assuntos
Encéfalo/metabolismo , Hipotermia Induzida , Receptor 5-HT2A de Serotonina/fisiologia , Síndrome da Serotonina/terapia , Serotonina/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Clorgilina/farmacologia , Ketanserina/farmacologia , Masculino , Microdiálise , Inibidores da Monoaminoxidase/farmacologia , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Síndrome da Serotonina/induzido quimicamente , Síndrome da Serotonina/metabolismo
19.
J Cancer Res Clin Oncol ; 136(11): 1761-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20204405

RESUMO

PURPOSE: Inhibitors of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades neurotransmitters including serotonin and norepinephrine, are commonly used to treat neurological conditions including depression. Recently, we and others identified high expression of MAOA in normal basal prostatic epithelium and high-grade primary prostate cancer (PCa). In contrast, MAOA is low in normal secretory prostatic epithelium and low-grade PCa. An irreversible inhibitor of MAOA, clorgyline, induced secretory differentiation in primary cultures of normal basal epithelial cells and high-grade PCa. Furthermore, clorgyline inhibited several oncogenic pathways in PCa cells, suggesting clinical value of MAOA inhibitors as a pro-differentiation and anti-oncogenic therapy for high-risk PCa. Here, we extended our studies to a model of advanced PCa, VCaP cells, which were derived from castration-resistant metastatic PCa and express a high level of MAOA. METHODS: Growth of VCaP cells in the presence or absence of clorgyline was evaluated in vitro and in vivo. Gene expression changes in response to clorgyline were determined by microarray and validated by quantitative real-time polymerase chain reaction. RESULTS: Treatment with clorgyline in vitro inhibited growth and altered the transcriptional pattern of VCaP cells in a manner consistent with the pro-differentiation and anti-oncogenic effects seen in treated primary PCa cells. Src, beta-catenin, and MAPK oncogenic pathways, implicated in androgen-independent growth and metastasis, were significantly downregulated. Clorgyline treatment of mice bearing VCaP xenografts slowed tumor growth and induced transcriptome changes similar to those noted in vitro. CONCLUSION: Our results support the possibility that anti-depressant drugs that target MAOA might find a new application in treating PCa.


Assuntos
Monoaminoxidase/metabolismo , Neoplasias da Próstata/enzimologia , Animais , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular , Clorgilina/farmacologia , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Monoaminoxidase/genética , Estadiamento de Neoplasias , Transplante de Neoplasias/veterinária , Neoplasias da Próstata/patologia , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo/patologia
20.
J Neurochem ; 109(6): 1745-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457119

RESUMO

Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.


Assuntos
Dopaminérgicos/toxicidade , Dopamina/metabolismo , Metanfetamina/toxicidade , Neurônios/citologia , Síndromes Neurotóxicas/etiologia , Núcleo Accumbens , Animais , Clorgilina/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Levodopa , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Síndromes Neurotóxicas/patologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Lectinas de Plantas/metabolismo , Reserpina/farmacologia , Proteínas Inativadoras de Ribossomos/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA