Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
2.
J Pharmacol Exp Ther ; 388(2): 560-567, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863486

RESUMO

Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.


Assuntos
Lesão Pulmonar Aguda , Substâncias para a Guerra Química , Fosgênio , Humanos , Pulmão , Cloro/farmacologia , Cloro/toxicidade , Substâncias para a Guerra Química/toxicidade , Fosgênio/metabolismo , Fosgênio/farmacologia , Lesão Pulmonar Aguda/metabolismo , Irritantes
3.
Toxicol Appl Pharmacol ; 479: 116714, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820773

RESUMO

The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.


Assuntos
Acetilcisteína , Lesão Pulmonar , Camundongos , Animais , Suínos , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Cloro/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Antioxidantes/farmacologia , Pulmão , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mediadores da Inflamação
4.
Toxicol Appl Pharmacol ; 461: 116388, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690086

RESUMO

Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.


Assuntos
Cloro , Lesão Pulmonar , Camundongos , Masculino , Animais , Cloro/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Metabolismo Energético
5.
Inhal Toxicol ; 34(13-14): 399-411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260290

RESUMO

OBJECTIVE: Chlorine (Cl2), as an asphyxiant toxicant, induced poisoning incidents and acute lung injury (ALI) occur frequently. The specific pathogenesis of Cl2-induced ALI remains unclear. Immune cells play an important role in the process of lung damage. We used single-cell RNA sequencing (scRNA-seq) technology to explore T cells and macrophages molecular mechanism. METHODS: Female BALB/c mice were exposed to 400 ppm Cl2 for 15 min. scRNA-seq technology was used to observe the heterogeneity of T cells and macrophages. Hematoxylin-eosin (H&E) staining was used to evaluate the degree of lung injury. Immunofluorescence was used to verify the highly expressed genes of our interest. RESULTS: A total of 5316 to 7742 cells were classified into eight different cell types. Several new highly expressed anti-inflammatory and pro-inflammatory genes were found in T cells and macrophages, which were further verified in vitro. Through the pseudotime analysis of macrophages, it was found that the expression of pro-inflammatory and anti-inflammatory genes showed opposite trends in the development of Cl2-induced ALI. This study also mapped T cells-macrophage communication and identified the development of several important receptor-ligand complexes in Cl2-induced ALI. CONCLUSIONS: These findings are worthy of further exploration and provide new resources and directions for the study of Cl2-induced ALI in mice, especially in immune and inflammation mechanisms.


Assuntos
Lesão Pulmonar Aguda , Cloro , Camundongos , Feminino , Animais , Cloro/toxicidade , Linfócitos T , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Pulmão/patologia , Camundongos Endogâmicos BALB C , Anti-Inflamatórios/farmacologia , Macrófagos , Análise de Sequência de RNA , Lipopolissacarídeos/toxicidade
6.
J Coll Physicians Surg Pak ; 32(4): S73-S75, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35633019

RESUMO

Chlorine is an irritant gas, which is implicated in inhalational exposures and can affect the respiratory system leading to complications. We report a case of a 38-year man who presented in the Emergency Department (ED) after exposure to chlorine gas due to an industrial accident. During the course of ED stay, he developed gradual difficulty in breathing, which on investigation, was found to be related to the complication of pneumomediastinum. The patient required endotracheal intubation, but was difficult to ventilate. Bilateral chest tube insertion was performed, which led to the resolution of the pneumothoraces. The emergency physicians should be aware of such a case so that they can intervene. Key Words: Chlorine, Emergency, Pneumomediastinum, Toxicity.


Assuntos
Enfisema Mediastínico , Pneumotórax , Cloro/toxicidade , Humanos , Intubação Intratraqueal , Masculino , Enfisema Mediastínico/induzido quimicamente , Enfisema Mediastínico/diagnóstico por imagem
7.
Respir Res ; 23(1): 14, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073921

RESUMO

BACKGROUND: Heparan sulfate (HS) degradation mediates pulmonary endothelial hyper-permeability and acute pulmonary edema during acute respiratory distress syndrome (ARDS). The aim of this study was to examine whether histone H4 induced HS degradation by activating heparanase (HPSE) in chlorine gas (Cl2)-induced ARDS. METHODS: Acute lung injury was induced by Cl2 exposure or histone H4 injection in C57BL/6 mice. Histone H4 in bronchoalveolar lavage fluid (BALF) and plasma was measured by ELISA. HS degradation was measured by immunostaining, ELISA, and flow cytometry. HPSE mRNA and protein were measured by real-time qPCR and western blot analysis, respectively, at preset timepoints. The HPSE inhibitor OGT2115 and specific siRNAs were used to study the role of HPSE during HS degradation caused by Cl2 exposure or histone H4 challenge. Blocking antibodies against TLR1, TLR2, TLR4, or TLR6 were used in vitro to investigate which signaling pathway was involved. The transcriptional regulation of HPSE was studied vis-à-vis NF-κB, which was assessed by nuclear translocation of NF-κB p65 and phosphorylation of I-κBα protein. RESULTS: Histone H4 in BALF and plasma increased evidently after Cl2 inhalation. Cl2 exposure or histone H4 challenge caused obvious acute lung injury in mice, and the pulmonary glycocalyx was degraded evidently as observed from endothelial HS staining and measurement of plasma HS fragments. Pretreatment with OGT2115, an HPSE inhibitor, relieved the acute lung injury and HS degradation caused by Cl2 exposure or histone H4 challenge. Targeted knockdown of HPSE by RNA interference (RNAi) significantly inhibited histone H4 induced HS degradation in HPMECs, as measured by immunofluorescence and flow cytometry. By inducing phosphorylation of I-κB α and nuclear translocation of NF-κB p65, histone H4 directly promoted mRNA transcription and protein expression of HPSE in a dose-dependent manner. Additionally, a blocking antibody against TLR4 markedly inhibited both activation of NF-κB and expression of HPSE induced by histone H4. CONCLUSIONS: Histone H4 is a major pro-inflammatory mediator in Cl2-induced ARDS in mice, and induces HS degradation by activating HPSE via TLRs- and NF-κB-signaling pathways.


Assuntos
Regulação da Expressão Gênica , Glucuronidase/genética , Histonas/metabolismo , RNA Mensageiro/genética , Síndrome do Desconforto Respiratório/genética , Animais , Líquido da Lavagem Broncoalveolar/química , Cloro/toxicidade , Modelos Animais de Doenças , Glucuronidase/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais
8.
Toxicol In Vitro ; 80: 105317, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35065218

RESUMO

Chlorine (Cl2) is a common toxic industrial gas and human inhalation exposure causes tissue damage with symptoms ranging from wheezing to more severe symptoms such as lung injury or even death. Because the mechanism behind Cl2-induced cell death is not clearly understood, the present study aimed to study the cellular effects in vitro after Cl2 exposure of human A549 lung epithelial cells. In addition, the possible treatment effects of the anti-inflammatory antioxidant N-acetyl cysteine (NAC) were evaluated. Exposure of A549 cells to Cl2 (100-1000 ppm) in the cell medium induced cell damage and toxicity within 1 h in a dose-dependent manner. The results showed that 250 ppm Cl2 increased cell death and formation of apoptotic-like bodies, while 500 ppm Cl2 exposure resulted in predominantly necrotic death. Pre-treatment with NAC was efficient to prevent cell damage at lower Cl2 concentrations in part by averting the formation of apoptotic-like bodies and increasing the expression of the anti-apoptotic proteins clusterin and phosphorylated tumour protein p53(S46). Analysis showed that Cl2 induced cell death by a possibly caspase-independent mechanism, since no cleavage of caspase-3 could be detected after exposure to 250 ppm. Currently, these results justifies further research into new treatment strategies for Cl2-induced lung injury.


Assuntos
Cloro/toxicidade , Pulmão/citologia , Oxidantes/toxicidade , Células A549 , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Caspase 3 , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Citocinas/metabolismo , Humanos
9.
Toxicol Mech Methods ; 31(4): 244-256, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31532270

RESUMO

Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.


Assuntos
Cloro/toxicidade , Lesão Pulmonar Aguda , Animais , Antídotos/farmacologia , Substâncias para a Guerra Química/toxicidade , Pulmão/efeitos dos fármacos
10.
Prehosp Disaster Med ; 36(1): 18-24, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33183378

RESUMO

OBJECTIVE: The main objective was to study different clinical presentations and outcomes of patients after acute industrial chlorine gas exposure in Oman with evaluation of overall incident management to help develop a chemical exposure incident protocol. METHODS: This was a retrospective observational study of 15 patients exposed to chlorine gas after an accidental chlorine gas leak in a metal melting factory in Oman. RESULTS: Six (40%) patients were admitted and nine (60%) patients were discharged from the emergency department (ED) after initial management. The important post-chlorine gas exposure clinical symptoms were eye irritation (66.6%), cough (73.3%), shortness of breath (40.0%), chest discomfort (66.6%), rhinorrhea (66.6%), dizziness (40.0%), vomiting (46.6%), sore throat (13.3%), and stridor (53.3%). Important signs included tachycardia (40.0%), tachypnea (40.0%), wheeze (20.0%), and use of accessory muscles for breathing (20.0%). Signs and symptoms of eye irritation, rhinorrhea, tachycardia, tachypnea, wheeze, and use of accessory muscles for breathing have shown significant correlation with outcome (admission) having P value of <.05. CONCLUSION: In the presented acute chlorine gas exposure incidence, 15 exposed persons were brought to the ED, out of which six were admitted and nine were discharged after symptomatic treatment. Signs and symptoms of eye irritation, rhinorrhea, tachycardia, tachypnea, wheeze, and use of accessory muscles of breathing show significant relation with the outcome of admission.


Assuntos
Vazamento de Resíduos Químicos , Cloro , Cloro/toxicidade , Humanos , Incidência , Omã/epidemiologia , Respiração
11.
Am J Respir Cell Mol Biol ; 63(5): 681-689, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697598

RESUMO

Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.


Assuntos
Cloro/toxicidade , Cisteína/metabolismo , Leucotrienos/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Líquido da Lavagem Broncoalveolar , Técnicas de Cocultura , Cisteína/biossíntese , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucina-5/antagonistas & inibidores , Interleucina-5/metabolismo , Leucotrienos/biossíntese , Lipossomos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia/metabolismo , Pneumonia/patologia
12.
Mikrochim Acta ; 187(8): 435, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647994

RESUMO

Lysosomes with a single-layered membrane structure are mainly involved in the scavenging of foreign substances and play an important role in maintaining normal physiological functions of living cells. In this work, near-neutrally charged fluorescent carbon dots (CDs) were prepared with lipophilicity through a facile one-pot hydrothermal carbonization of chloranil and triethylenetetramine at 160 °C for 3 h. The as-obtained CDs are proved to have good photostability, low cost, and excellent biocompatibility. Importantly, the as-prepared CDs with high quantum yield of 30.8% show excitation-dependent emission with great stability, and thus, they can be well used for the long-term target imaging of lysosomes in living cells without further modification. Meanwhile, the CDs can quickly enter into the lysosomes within 30 min, and the green fluorescence (FL) of CDs reaches the plateau when incubated for 60 min. By comparing the fluorescent intensity, the information about distribution and amount of lysosomes in different cells can be obtained. The proposed CD-based strategy demonstrates great promise for label-free target imaging of lysosomes in living cells. Graphical abstract The near-neutral carbon dots (CDs) with lipophilicity are used as label-free fluorescent nanoprobes for the long-term imaging of lysosomes in living cells.


Assuntos
Corantes Fluorescentes/química , Lisossomos/metabolismo , Pontos Quânticos/química , Animais , Carbono/química , Carbono/toxicidade , Linhagem Celular Tumoral , Cloro/química , Cloro/toxicidade , Corantes Fluorescentes/toxicidade , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Nitrogênio/química , Nitrogênio/toxicidade , Pontos Quânticos/toxicidade , Células RAW 264.7
13.
Environ Mol Mutagen ; 61(6): 588-601, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32374889

RESUMO

Water disinfection, primarily by chlorination, is one of the greatest achievements of public health. However, more than half a century after its introduction, studies in the 1970s reported that (a) chlorine interacted with organic matter in the water to form disinfection by-products (DBPs); (b) two DBPs, chloroform and bromoform, both trihalomethanes (THMs), were rodent carcinogens; (c) three brominated THMs were mutagenic; in six studies chlorinated drinking waters in the United States and Canada were mutagenic; and (d) in one epidemiological study there was an association between bladder cancer mortality and THM exposure. This led the U.S. Environmental Protection Agency to issue its first DBP regulation in 1979. Forty years later, >600 DBPs have been characterized, 20/22 have been shown to be rodent carcinogens, >100 have been shown to be genotoxic, and 1000s of water samples have been found to be mutagenic. Data support a hypothesis that long-term dermal/inhalation exposure to certain levels of the three brominated THMs, as well as oral exposure to the haloacetic acids, combined with a specific genotype may increase the risk for bladder cancer for a small but significant population group. Improved water-treatment methods and stricter regulations have likely reduced such risks over the years, and further reductions in potential risk are anticipated with the application of advanced water-treatment methods and wider application of drinking water regulations. This 40-year research effort is a remarkable example of sustained cooperation between academic and government scientists, along with public/private water companies, to find answers to a pressing public health question.


Assuntos
Desinfecção/métodos , Água Potável/análise , Purificação da Água/métodos , Animais , Aniversários e Eventos Especiais , Carcinógenos/análise , Carcinógenos/toxicidade , Cloro/análise , Cloro/toxicidade , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção/legislação & jurisprudência , Água Potável/efeitos adversos , Água Potável/legislação & jurisprudência , Halogenação , Humanos , Neoplasias/induzido quimicamente , Saúde Pública , Trialometanos/análise , Trialometanos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/legislação & jurisprudência
14.
Toxicol Lett ; 322: 58-65, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962155

RESUMO

High-level concentrations of chlorine (Cl2) can cause life-threatening lung injuries and the objective in this study was to understand the pathogenesis of short-term sequelae of Cl2-induced lung injury and to evaluate whether pre-treatment with the antioxidant N-acetyl cysteine (NAC) could counteract these injuries using Cl2-exposed precision-cut lung slices (PCLS). The lungs of Sprague-Dawley rats were filled with agarose solution and cut into 250 µm-thick slices that were exposed to Cl2 (20-600 ppm) and incubated for 30 min. The tissue slices were pre-treated with NAC (5-25 mM) before exposure to Cl2. Toxicological responses were analyzed after 5 h by measurement of LDH, WST-1 and inflammatory mediators (IL-1ß, IL-6 and CINC-1) in medium or lung tissue homogenate. Exposure to Cl2 induced a concentration-dependent cytotoxicity (LDH/WST-1) and IL-1ß release in medium. Similar cytokine response was detected in tissue homogenate. Contraction of larger airways was measured using electric-field-stimulation method, 200 ppm and control slices had similar contraction level (39 ± 5%) but in the 400 ppm Cl2 group, the evoked contraction was smaller (7 ± 3%) possibly due to tissue damage. NAC-treatment improved cell viability and reduced tissue damage and the contraction was similar to control levels (50 ± 11%) in the NAC treated Cl2-exposed slices. In conclusion, Cl2 induced a concentration-dependent lung tissue damage that was effectively prevented with pre-treatment with NAC. There is a great need to improve the medical treatment of acute lung injury and this PCLS method offers a way to identify and to test new concepts of treatment of Cl2-induced lung injuries.


Assuntos
Acetilcisteína/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cloro/toxicidade , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley
15.
Anal Chim Acta ; 1091: 76-87, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31679577

RESUMO

To understand the effect of Cl doping in carbon dots, nitrogen-doped carbon dots (N-Cdots) and nitrogen and chlorine dual-doped carbon dots (Cl,N-Cdots) were fabricated by high-temperature carbonization and low-temperature concentrated acid (HCl) acidification of dried shaddock peel, respectively. The quantum yield of Cl,N-Cdots is about four times of that of N-Cdots and the size of Cl,N-Cdots is smaller than that of N-Cdots. Furthermore, since trinitrophenol (PA) and ClO- could effectively quench the fluorescence of Cl,N-Cdots, the fluorescence sensors for determining PA and ClO- was constructed, respectively. The linear range of PA and ClO- are 0.9-90 µM and 3.24-216 µM with the limit of detection of 37.1 nM and 2.88 µM, respectively. The proposed sensor was used to detect PA in Taiyuan tap water, Wutai tap water, Wutai rain water and Wutai river water samples with encouraging results. The as-constructed sensor was also used to detect ClO- in Taiyuan tap water and commercial disinfectants. Last but not least, Cl,N-Cdots was employed as an agent for A549 and HeLa cell-imaging, possessing optimal imaging effect and ultra-low cytotoxicity. Our results suggested that Cl,N-Cdots has promising applications in sensing, water monitoring, commodity supervision and cell-imaging.


Assuntos
Ácido Hipocloroso/análise , Nitrofenóis/análise , Picratos/análise , Pontos Quânticos/química , Poluentes Químicos da Água/análise , Carbono/química , Carbono/toxicidade , Linhagem Celular Tumoral , Cloro/química , Cloro/toxicidade , Citrus/química , Desinfetantes/análise , Água Potável/análise , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nitrogênio/química , Nitrogênio/toxicidade , Pontos Quânticos/toxicidade , Rios/química , Espectrometria de Fluorescência/métodos
16.
BMJ Case Rep ; 12(7)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366613

RESUMO

A previously fit and well 9-year-old boy developed shortness of breath and chest pain after playing with friends on a building site where bonfire materials were being collected. Firstline investigations failed to explain his symptoms, which worsened over the next 24 hours, necessitating endotracheal intubation and mechanical ventilation. When public health and the police retraced his steps, they found barrels of sodium hypochlorite and red diesel at the bonfire site, which when mixed had the potential to form chlorine gas leading to the diagnosis of a chemical pneumonitis secondary to chlorine gas inhalation. Supportive care was continued, and he was successfully extubated after 48 hours. At 6-week follow-up, he had no ongoing pulmonary symptoms.


Assuntos
Bronquiolite/induzido quimicamente , Dor no Peito/induzido quimicamente , Cloro/toxicidade , Exposição Ambiental/efeitos adversos , Exposição por Inalação/efeitos adversos , Acidentes , Vazamento de Resíduos Químicos , Dor no Peito/diagnóstico por imagem , Dor no Peito/fisiopatologia , Criança , Dispneia , Humanos , Masculino , Saúde Pública , Respiração Artificial , Resultado do Tratamento
17.
J Allergy Clin Immunol ; 144(4): 945-961.e9, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31356919

RESUMO

BACKGROUND: Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease. OBJECTIVE: We sought to explore the mechanisms of airway adaptation to oxidative injury. METHODS: For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation. RESULTS: Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-ß and prostaglandin E2. CONCLUSION: Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-ß and prostaglandin E2.


Assuntos
Adaptação Fisiológica/fisiologia , Macrófagos Alveolares/metabolismo , Estresse Oxidativo/imunologia , Hipersensibilidade Respiratória/metabolismo , Animais , Cloro/toxicidade , Dinoprostona/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Irritantes/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia , Fator de Crescimento Transformador beta/metabolismo
18.
Clin Toxicol (Phila) ; 57(2): 77-98, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30672349

RESUMO

INTRODUCTION: Chlorine exposure can lead to pulmonary obstruction, reactive airway dysfunction syndrome, acute respiratory distress syndrome and, rarely, death. OBJECTIVE: We performed a systematic review of published animal and human data regarding the management of chlorine exposure. METHODS: Three databases were searched from 2007 to 2017 using the following keywords "("chlorine gas" OR "chlorine-induced" OR" chlorine-exposed") AND ("therapy" OR "treatment" OR "post-exposure")". Forty-five relevant papers were found: 22 animal studies, 6 reviews, 19 case reports and 1 human randomized controlled study. General management: Once the casualty has been removed from the source of exposure and adequately decontaminated, chlorine-exposed patients should receive supportive care. Humidified oxygen: If dyspnea and hypoxemia are present, humidified oxygen should be administered. Inhaled bronchodilators: The use of nebulized or inhaled bronchodilators to counteract bronchoconstriction is standard therapy, and the combination of ipratropium bromide with beta2-agonists effectively reversed bronchoconstriction, airway irritation and increased airway resistance in experimental studies. Inhaled sodium bicarbonate: In a randomized controlled trial, humidified oxygen, intravenous prednisolone and inhaled salbutamol were compared with nebulized sodium bicarbonate. The only additional benefit of sodium bicarbonate was to increase the forced expiratory volume in one second, 2 and 4 h after administration. Corticosteroids: Dexamethasone 100 mg/kg intraperitoneally (IP) reduced lung edema when given within 1 h of chlorine inhalation and when administered within 6 h significantly decreased (p < 0.01) the leukocyte count in the bronchoalveolar lavage (BAL). As corticosteroids were never given alone in clinical studies, it is impossible to assess whether they had an additional beneficial effect. Antioxidants: An ascorbic acid/deferoxamine combination (equivalent to 100 mg/kg and 15 mg/kg, respectively) was administered intramuscularly 1 h after chlorine exposure, then every 12 h up to 60 h, then as an aerosol, and produced a significant reduction (p < 0.05) in BAL leukocytes and a significant reduction (p < 0.007) in mortality at 72 h. The single clinical case reported was uninterpretable. Sodium nitrite: Sodium nitrite 10 mg/kg intramuscularly (IM), 30 min post-chlorine exposure in mice and rabbits significantly reduced (p < 0.01) the number of leukocytes and the protein concentration in BAL and completely reversed mortality in rabbits and decreased mortality by about 50% in mice. No clinical studies have reported the use of sodium nitrite. Dimethylthiourea: Dimethylthiourea 100 mg/kg IP significantly decreased (p < 0.05) lymphocytes and neutrophils in BAL fluid 24 h after chlorine exposure in experimental studies. No clinical studies have been undertaken. AEOL 10150: Administration of AEOL10150 5 mg/kg IP at 1 h and 9 h post-chlorine exposure reduced significantly the neutrophil (p < 0.001) and macrophage (p < 0.05) bronchoalveolar cell counts. Transient receptor potential vanilloid 4 (TRPV4): IM or IP TRPV4 reduced significantly (p < 0.001) bronchoalveolar neutrophil and macrophage counts to baseline at 24 h. No clinical studies have been performed. Reparixin and triptolide: In experimental studies, triptolide 100-1000 µg/kg IP 1 h post-exposure caused a significant decrease (p < 0.001) in bronchoalveolar neutrophils, whereas reparixin 15 mg/kg IP 1 h post-exposure produced no benefit. Rolipram: Nanoemulsion formulated rolipram administered intramuscularly returned airway resistance to baseline. Rolipram (40%)/poly(lactic-co-glycolic acid) (60%) 0.36 mg/mouse given intramuscularly 1 h post-exposure significantly reduced (p < 0.05) extravascular lung water by 20% at t + 6 h. Prophylactic antibiotics: Studies in patients have failed to demonstrate benefit. Sevoflurane: Sevoflurane has been used in one intubated patient in addition to beta2-agonists. Although the peak inspiratory pressure was decreased after 60 min, the role of sevofluorine is not known. CONCLUSIONS: Various therapies seem promising based on animal studies or case reports. However, these recommendations are based on low-level quality data. A systematic list of outcomes to monitor and improve may help to design optimal therapeutic protocols to manage chlorine-exposed patients.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Cloro/toxicidade , Exposição por Inalação/efeitos adversos , Lesão Pulmonar Aguda/terapia , Animais , Serviços Médicos de Emergência/métodos , Humanos
19.
Intern Med ; 58(9): 1311-1314, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626821

RESUMO

Pulmonary tumor thrombotic microangiopathy (PTTM) is a complication characterized by dyspnea, pulmonary hypertension, and occasionally sudden death. We encountered a man who developed PTTM and had an inhalation history of chemical herbicides and abnormal findings on chest computed tomography, mimicking chemical inhalation lung injury. He was diagnosed with PTTM with adenocarcinoma by a transbronchial lung biopsy and received chemotherapy and anticoagulant therapy. He survived for one month. An autopsy revealed primary gastric cancer with PTTM that can have a presentation similar to diffuse pulmonary diseases, including chemical inhalation lung injury. The examination of a biopsy specimen is crucial in such patients.


Assuntos
Lesão Pulmonar Aguda/diagnóstico , Microangiopatias Trombóticas/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Idoso , Autopsia , Biópsia , Queimaduras por Inalação/diagnóstico , Carcinoma de Células em Anel de Sinete/diagnóstico , Carcinoma de Células em Anel de Sinete/secundário , Cloro/toxicidade , Diagnóstico Diferencial , Dispneia/patologia , Evolução Fatal , Herbicidas/toxicidade , Humanos , Hipertensão Pulmonar/complicações , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Neoplasias Primárias Desconhecidas/diagnóstico , Células Neoplásicas Circulantes , Neoplasias Gástricas/diagnóstico , Microangiopatias Trombóticas/complicações , Tomografia Computadorizada por Raios X/efeitos adversos
20.
Toxicol Appl Pharmacol ; 363: 11-21, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30189237

RESUMO

Chlorine is a chemical threat agent that can be harmful to humans. Acute inhalation of high levels of chlorine results in the death of airway epithelial cells and can lead to persistent adverse effects on respiratory health, including airway remodeling and hyperreactivity. We previously developed a mouse chlorine exposure model in which animals developed inflammation and fibrosis in large airways. In the present study, examination by laser capture microdissection of developing fibroproliferative lesions in FVB/NJ mice exposed to 240 ppm-h chlorine revealed upregulation of genes related to macrophage function. Treatment of chlorine-exposed mice with the corticosteroid drug budesonide daily for 7 days (30-90 µg/mouse i.m.) starting 1 h after exposure prevented the influx of M2 macrophages and the development of airway fibrosis and hyperreactivity. In chlorine-exposed, budesonide-treated mice 7 days after exposure, large airways lacking fibrosis contained extensive denuded areas indicative of a poorly repaired epithelium. Damaged or poorly repaired epithelium has been considered a trigger for fibrogenesis, but the results of this study suggest that inflammation is the ultimate driver of fibrosis in our model. Examination at later times following 7-day budesonide treatment showed continued absence of fibrosis after cessation of treatment and regrowth of a poorly differentiated airway epithelium by 14 days after exposure. Delay in the start of budesonide treatment for up to 2 days still resulted in inhibition of airway fibrosis. Our results show the therapeutic potential of budesonide as a countermeasure for inhibiting persistent effects of chlorine inhalation and shed light on mechanisms underlying the initial development of fibrosis following airway injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Budesonida/uso terapêutico , Cloro/toxicidade , Glucocorticoides/uso terapêutico , Inflamação/tratamento farmacológico , Exposição por Inalação/efeitos adversos , Fibrose Pulmonar/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Budesonida/farmacologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Glucocorticoides/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Microdissecção e Captura a Laser , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA