Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 87: 103727, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34454063

RESUMO

The intensive use of the antihypertensive losartan potassium (LOS) has culminated in its high occurrence in aquatic environments. However, insufficient studies had investigated its effects in non-target organisms. In this study, ecotoxicity of LOS was assessed in aquatic organisms from distinct trophic levels (Desmodesmus subspicatus, Daphnia magna, and Astyanax altiparanae). Genotoxicity was assessed by the comet assay in D. magna and A. altiparanae, and biochemical biomarkers for the fish. LOS was more toxic to D. subspicatus (EC50(72h) = 27.93 mg L-1) than D. magna (EC50 = 303.69 mg L-1). Subsequently, this drug showed to induce more DNA damage in D. magna than A. altiparanae, when exposed to 2.5 mg L-1. No significant stress responses were observed by the fish biomarkers, suggesting that higher trophic levels organisms are more tolerant to LOS toxicity. LOS showed relatively low toxic potential for a short period of exposure, but with different patterns of toxicity for the organisms from distinct trophic levels, contributing to further risk assessment of LOS.


Assuntos
Anti-Hipertensivos/toxicidade , Losartan/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Characidae/genética , Characidae/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/crescimento & desenvolvimento , Ensaio Cometa , Daphnia/efeitos dos fármacos , Daphnia/genética , Cadeia Alimentar , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo
2.
Ecotoxicol Environ Saf ; 208: 111628, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396148

RESUMO

Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (ΦM) and effective (Φ'M) quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC50-96h of 0.67 and 1.53 µM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and ΦM. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 µM) and phospholipids (PL - at 0.89 and 1.11 µM) and decreased values of triglycerides (at 0.22 µM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 µM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.


Assuntos
Cádmio/toxicidade , Clorofíceas/fisiologia , Cobalto/toxicidade , Poluentes Químicos da Água/toxicidade , Clorofíceas/efeitos dos fármacos , Clorofila A , Ecotoxicologia , Água Doce/química , Metais/farmacologia , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II
3.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911184

RESUMO

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Assuntos
Acetamidas/toxicidade , Clorofíceas/efeitos dos fármacos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofíceas/fisiologia , Água Doce , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
J Toxicol Environ Health A ; 84(6): 249-260, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33357043

RESUMO

In the aquatic environment, plastics may release several hazardous substances of severe ecotoxicological concern not covalently bound to the polymers. The aim of this study was to examine the adverse effects of leachates of different virgin polymers, polypropylene (PP), polyethylene (PE), and polystyrene (PS) on marine microalgae Dunaliella tertiolecta. The tests carried out on D. tertiolecta included: growth inhibition, oxidative stress (DCFH-DA), and DNA damage (COMET assay). Polypropylene and PS leachates produced growth inhibition at the lowest concentration (3.1% of leachate). In contrast, a hormesis phenomenon was observed with PE leachates. An algae inhibition growth ranking (PP>PS>PE) was noted, based upon EC50 values. Reactive oxygen species (ROS) generated were increased with leachates concentrations with PS exhibiting the highest ROS levels, while a marked genotoxic effect (30%) was found only with PP. All leachates were free from detectable quantities of organic compounds (GC/MS) but showed the presence of transition, post-transition and alkaline earth metals, metalloids, and nonmetals (

Assuntos
Clorofíceas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Polietileno/toxicidade , Polipropilenos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Dano ao DNA , Estresse Oxidativo
5.
Aquat Toxicol ; 230: 105706, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302172

RESUMO

Triclosan, a widely used biocide broadly found in aquatic environments, is cause of concern due to its unknown effects on non-targets organisms. In this study, a multi biomarker approach was used in order to evaluate the 72 h-effect of triclosan on the freshwater alga Pseudokirchneriella subcapitata (Raphidocelis subcapitata). Triclosan, at environmental relevant concentrations (27 and 37 µg L-1), caused a decrease of proliferative capacity, which was accompanied by an increase of cell size and a profound alteration of algae shape. It was found that triclosan promoted the intracellular accumulation of reactive oxygen species, the depletion of non-enzymatic antioxidant defenses (reduced glutathione and carotenoids) and a decrease of cell metabolic activity. A reduction of photosynthetic pigments (chlorophyll a and b) was also observed. For the highest concentration tested (37 µg L-1), a decrease of photosynthetic efficiency was detected along with a diminution of the relative transport rate of electrons on the photosynthetic chain. In conclusion, triclosan presents a deep impact on the microalga P. subcapitata morphology and physiology translated by multiple target sites instead of a specific point (cellular membrane) observed in the target organism (bacteria). Additionally, this study contributes to clarify the toxicity mechanisms of triclosan, in green algae, showing the existence of distinct modes of action of the biocide depending on the microalga.


Assuntos
Clorofíceas/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Desinfetantes/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Clorofíceas/metabolismo , Clorofila A/metabolismo , Clorófitas/metabolismo , Desinfetantes/metabolismo , Água Doce/química , Glutationa/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Ecotoxicol Environ Saf ; 184: 109580, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493585

RESUMO

Ionic Liquids (ILs) are generically regarded as environmentally "harmless" and thus, assumed as "non-toxic". However, due to the endless design possibilities, their ecotoxicological profile is still poorly known. An accurate knowledge on the toxicity of a substance is required, under the scope of environmental regulation worldwide, before their application and commercialization. Knowledge on the relationship between the chemical structure and toxic effects is essential for the future design of more biocompatible solvents. Focusing on the use of ILs as base lubricants, lubricant additives, or even as potential working fluids for absorption heat pumps, the knowledge on its environmental impact is of great importance, due to the possibility of spills. In this specific context, four analogues of glycine-betaine-based ILs (AGB-ILs) and four glycine-betaine based ILs (GB-ILs) were synthesized and characterized. Their ecotoxicity was assessed using representatives of two trophic levels in aquatic ecosystems, the bacteria Allivibrio fischeri (commonly used as a screening test organism) and the microalgae Raphidocelis subcapitata (as an alternative test organism that has been proven very sensitive to several IL families). The microalgae were more sensitive than the bacteria, hence, following a precautionary principle, we recommend considering the toxicity towards microalgae as an indicator in future studies regarding the focused ILs. Although four of the studied ILs were derived from a natural amino acid, all were considered hazardous for the aquatic environment, disproving the primary theory that all ILs derived from natural compounds are benign. Furthermore, the modification in the structure of anion and the cation can lead to the increase of toxicity.


Assuntos
Betaína/química , Glicina/química , Líquidos Iônicos/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Ânions/química , Cátions/química , Clorofíceas/efeitos dos fármacos , Ecotoxicologia , Biomarcadores Ambientais/efeitos dos fármacos , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Poluentes Químicos da Água/síntese química , Poluentes Químicos da Água/química
7.
Ecotoxicology ; 28(8): 890-902, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392637

RESUMO

Aquatic pollution caused by dyes has increased together with the growth of activities using colorants such as the textile, leather, food, and agrochemicals industries. Because most popular azo dyes are synthesized from benzidine, a carcinogenic compound, a threat to aquatic biota could be expected. The use of single species for toxicity assessment provides limited data, so a battery of test organisms, including representatives of different trophic levels such as algae, zooplankters, and fish, could undoubtedly provide more information. Therefore, our study was aimed at evaluating the toxic effect of the azo dye Direct blue 15 (DB15) on a battery of bioassays using a primary producer (Pseudokirchneriella subcapitata), a primary consumer (Ceriodaphnia dubia), and a secondary consumer (Danio rerio). P. subcapitata was more sensitive to DB15 (IC50 = 15.99 mg L-1) than C. dubia (LC50: 450 mg L-1). In the algae exposed to DB15, chlorophyll-a and -b were significantly increased, and carotenoids were reduced. The concentrations of protein, carbohydrates, and lipids per cell in P. subcapitata exposed to all DB15 concentrations were significantly higher than that measured in control. At 25 mg L-1 of DB15, survival, total progeny, and the number of released clutches were significantly decreased, and the start of reproduction was delayed in C. dubia. DB15 did not induce lethal or sublethal effects in D. rerio embryos at any of the tested concentrations from 24 to 72 h post-fertilization (hpf), but from 96 to 144 hpf, the larvae exposed to 100 and 500 mg L-1 developed yolk sac edema, curved tail, and skeletal deformations. After 144 hpf, DB15 produced a significant increase in embryos without a heartbeat, as the concentration of dye raised. The textile-used, azo dye DB15, caused toxic effects of different magnitude on microalgae, cladocerans, and zebrafish embryos; for this reason, the discharge of this colorant into waterbodies should be regulated to prevent environmental impacts.


Assuntos
Compostos Azo/toxicidade , Clorofíceas/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Corantes/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Microalgas/efeitos dos fármacos
8.
Bioresour Technol ; 287: 121419, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31078811

RESUMO

Microalgae are a promising biofuel resource, but their high cost and low productivity hinder their commercial applications. In the present study, Monoraphidium sp. QLZ-3 was cultivated in walnut shell extracts (WSE) supplemented with carbon dioxide (CO2). Biomass was enhanced from 0.40 g L-1 to 1.18 g L-1, and lipid content reached 49.54% in WSE-12% CO2 media. Biomass and lipid productivity reached 196.88 and 97.52 mg L-1 d-1, which were 1.33- and 1.57-fold higher than those of the control, respectively. The amount of carbohydrates increased, but the protein contents decreased. Furthermore, the application of CO2 promoted nutrient and polyphenol absorption and upregulated the expression levels of lipid biosynthetic genes of this WSE-cultivated alga. These results indicated that coupling WSE and CO2 could be an efficient strategy to enhance biofuel production by microalgae.


Assuntos
Biomassa , Dióxido de Carbono/farmacologia , Clorofíceas/metabolismo , Juglans/química , Lipídeos/biossíntese , Microalgas/metabolismo , Nutrientes , Biocombustíveis , Metabolismo dos Carboidratos , Carboidratos , Clorofíceas/efeitos dos fármacos , Microalgas/efeitos dos fármacos
9.
Eur Biophys J ; 48(3): 231-248, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30806730

RESUMO

We examined the response of algal cells to laboratory-induced cadmium stress in terms of physiological activity, autonomous features (motility and fluorescence), adhesion dynamics, nanomechanical properties, and protein expression by employing a multimethod approach. We develop a methodology based on the generalized mathematical model to predict free cadmium concentrations in culture. We used algal cells of Dunaliella tertiolecta, which are widespread in marine and freshwater systems, as a model organism. Cell adaptation to cadmium stress is manifested through cell shape deterioration, slower motility, and an increase of physiological activity. No significant change in growth dynamics showed how cells adapt to stress by increasing active surface area against toxic cadmium in the culture. It was accompanied by an increase in green fluorescence (most likely associated with cadmium vesicular transport and/or beta-carotene production), while no change was observed in the red endogenous fluorescence (associated with chlorophyll). To maintain the same rate of chlorophyll emission, the cell adaptation response was manifested through increased expression of the identified chlorophyll-binding protein(s) that are important for photosynthesis. Since production of these proteins represents cell defence mechanisms, they may also signal the presence of toxic metal in seawater. Protein expression affects the cell surface properties and, therefore, the dynamics of the adhesion process. Cells behave stiffer under stress with cadmium, and thus, the initial attachment and deformation are slower. Physicochemical and structural characterizations of algal cell surfaces are of key importance to interpret, rationalize, and predict the behaviour and fate of the cell under stress in vivo.


Assuntos
Cádmio/farmacologia , Clorofíceas/citologia , Clorofíceas/fisiologia , Laboratórios , Estresse Fisiológico/efeitos dos fármacos , Disponibilidade Biológica , Cádmio/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Clorofíceas/metabolismo , Eletroquímica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinética , Modelos Biológicos
10.
Ecotoxicol Environ Saf ; 168: 388-393, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30396135

RESUMO

Silver nanomaterials (AgNMs) of different shapes and sizes are potentially toxic to aquatic organisms. However, studies on the toxicity of AgNMs and on their shape-dependent effects on algae are scarce. The present study evaluated the effects of three AgNMs (silver nanospheres, AgNPs; silver nanowires, AgNWs; silver nanoplates, AgPLs) with different shapes coated with polyvinylpyrrolidone on the growth and photosynthetic performance of an alga, Chlorococcum infusionum. We used growth measurements and determined the photosynthetic parameters based on chlorophyll fluorescence transients in the algal cells exposed to different concentrations of the three AgNMs. The effective concentrations at 50% (EC50) of AgNPs, AgNWs, and AgPLs were calculated to be 0.1, 0.045, and 0.021 mg/L, respectively. The results showed that the toxicity of AgNMs in C. infusionum was in the order, AgPLs (40 nm diameter) > AgNWs (21,000 nm length × 42 nm diameter) > AgNPs (57 nm diameter), based on the decrease in growth and three photosynthetic activities. We propose that the toxic potential of AgNMs is primarily dependent on their diameter and secondarily on their shape. Overall, this study provides, for the first time, a comparison of the growth and photosynthetic activities of C. infusionum exposed to AgNMs of three different shapes.


Assuntos
Clorofíceas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Clorofíceas/metabolismo , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos , Povidona/química , Povidona/toxicidade
11.
FEMS Microbiol Lett ; 366(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899507

RESUMO

The aim of our study was to establish the effect of selenium and betaine on the growth of D. salina, accumulation of photosynthetic pigments and antioxidant activity of the hydrophobic fraction. This approach was an attempt to demonstrate 'microalgae biostimulant' effects, similar to 'plant biostimulant' effects, i.e. increased tolerance to abiotic stress and enhanced accumulation of bioactive compounds. A high-throughput assay was done in 24-well microplates, at 15% NaCl and different concentrations of sodium selenite (0, 0.5, 2 and 8 µM) or betaine (0, 5, 50 and 500 µM). Both selenium and betaine induced a slight delay in algae growth during the actively growing stage but the final density reached similar values to the control. Betaine significantly enhanced (50%-100%) carotenoids and chlorophyll a accumulation, in a concentration depending manner. Antioxidant activity increased almost 3-fold in extracts of algae treated with 50 µM betaine. Selenium had a much more discrete effect than betaine on pigments biosynthesis. The antioxidant activity of the extracts increased 2-fold in the presence of Se compared to the control. Our work proves that it is possible to enhance production and activity of bioactive compounds from microalgae by using ingredients, which already proved to act as plant biostimulants.


Assuntos
Betaína/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/crescimento & desenvolvimento , Clorofila A/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Selênio/metabolismo , Antioxidantes/análise , Carotenoides/metabolismo , Clorofíceas/metabolismo , Misturas Complexas/química , Misturas Complexas/isolamento & purificação , Meios de Cultura/química , Cloreto de Sódio/metabolismo
12.
J Phycol ; 54(3): 317-328, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464721

RESUMO

Culture experiments were conducted on ten phytoplankton species to examine their biological and physiological responses during exposure to oil and a combination of oil and dispersant. The species tested included a range of taxa typically found in the Gulf of Mexico such as cyanobacteria, chlorophytes, and diatoms. Cultures were exposed to Macondo surrogate oil using the water accommodated fraction (WAF), and dispersed oil using a chemically enhanced WAF (CEWAF) and diluted CEWAF, to replicate conditions following the Deepwater Horizon spill in the Gulf of Mexico. A range of responses were observed, that could broadly class the algae as either "robust" or "sensitive" to oil and/or dispersant exposure. Robust algae were identified as Synechococcus elongatus, Dunaliella tertiolecta, two pennate diatoms Phaeodactylum tricornutum and Navicula sp., and Skeletonema grethae CCMP775, and were largely unaffected by any of the treatments (no changes to growth rate or time spent in lag phase relative to controls). The rest of the phytoplankton, all centric diatoms, exhibited at least some combination of reduced growth rates or increased lag time in response to oil and/or dispersant exposure. Photophysiology did not have a strong treatment effect, with significant inhibition of photosynthetic efficiency (Fv /Fm ) only observed in the CEWAF, if at all. We found that the effects of oil and dispersants on phytoplankton physiology were species-dependent, and not always detrimental. This has significant implications on how oil spills might impact phytoplankton community structure and bloom dynamics in the Gulf of Mexico, which in turn impacts higher trophic levels.


Assuntos
Lipídeos/efeitos adversos , Poluição por Petróleo/efeitos adversos , Fitoplâncton/efeitos dos fármacos , Tensoativos/efeitos adversos , Clorofíceas/efeitos dos fármacos , Clorofíceas/fisiologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Relação Dose-Resposta a Droga , Golfo do México , Fitoplâncton/fisiologia , Synechococcus/efeitos dos fármacos , Synechococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA