Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 91(2): 225-235, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869271

RESUMO

Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.


Assuntos
Arabidopsis , Clorofilídeos , Clorófitas , Clorofilídeos/metabolismo , Clorofila A/metabolismo , Oxigenases/genética , Oxigenases/química , Oxigenases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Plantas , Clorófitas/metabolismo , Ferro/metabolismo
2.
Eur J Pharmacol ; 919: 174797, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122867

RESUMO

Photodynamic therapy (PDT) is noninvasive, low toxicity, and photo-selective, but may be resisted by malignant cells. A previous study found chlorin e6 (Ce6) mediated PDT showed drug resistance in lung cancer cells (LLC), which may be associated with PDT-induced DNA damage response (DDR). DDR may up-regulate glutathione peroxidase 4 (GPX4), which in turn degrade ROS induced by PDT. However, dihydroartemisinin (DHA) was found to down-regulate GPX4. Accordingly, the DHA was hypothesized to improve the resistance to PDT. The present work explores the mechanism of Ce6 mediated drug resistance and reveals whether DHA can enhance the efficacy of PDT by suppressing GPX4. The in vitro experiments found Ce6 treatment did not inhibit the viability of LLC within 6 h without inducing significant apoptosis, suggesting LLC were resistant to PDT. Further investigation demonstrated PDT could damage DNA and up-regulate GPX4, thus degrading the generated ROS. DHA effectively inhibited the viability of LLC and induced apoptosis. Importantly, DHA displayed a prominent inhibitory effect on the GPX4 expression and thereby triggered ferroptosis. Combining DHA with Ce6 for treatment of LLC resulted in the suppressed GPX4 and elevated ROS. Finally, the findings showed DHA combined with Ce6 exhibited superb anti-lung cancer efficacy. In summary, Ce6 PDT damages DNA, up-regulates GPX4 to degrade ROS, thereby inducing drug resistance. Down-regulation of GPX4 by DHA-triggered ferroptosis significantly enhances the efficacy of PDT. This study provides an outstanding theoretical basis for the regulation of the intratumoral redox system and improving PDT efficacy against lung cancer by herbal monomer DHA.


Assuntos
Artemisininas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Clorofilídeos/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
3.
ACS Appl Mater Interfaces ; 13(37): 43937-43951, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499462

RESUMO

Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Lewis/diagnóstico por imagem , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Multifuncionais/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Compostos de Cádmio/efeitos da radiação , Compostos de Cádmio/uso terapêutico , Carcinoma Pulmonar de Lewis/metabolismo , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/metabolismo , Clorofilídeos/efeitos da radiação , Clorofilídeos/uso terapêutico , Feminino , Humanos , Luz , Camundongos Endogâmicos C57BL , Nanopartículas Multifuncionais/química , Nanopartículas Multifuncionais/metabolismo , Nanopartículas Multifuncionais/efeitos da radiação , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/uso terapêutico , Medicina de Precisão/métodos , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Pontos Quânticos/efeitos da radiação , Pontos Quânticos/uso terapêutico , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Compostos de Selênio/efeitos da radiação , Compostos de Selênio/uso terapêutico , Oxigênio Singlete/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Sulfetos/efeitos da radiação , Sulfetos/uso terapêutico , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/efeitos da radiação , Compostos de Zinco/uso terapêutico
4.
Int Immunopharmacol ; 100: 108164, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562845

RESUMO

Photodynamic therapy (PDT) is an emerging anti-tumor strategy.Photosensitizer chlorin e6 (Ce6) can induce photodynamic effect to selectively damage lung cancer cells.In order to further improve its tumor targeting ability, macrophages can be applied as carrier to deliver Ce6 to lung cancer.Tumor associated macrophages (TAM) are important immunocytes in lung cancer immune microenvironment. TAM play crucial role in tumor promotion due to the Immunosuppressive property, reprogramming phenotype of TAM therefore has become a promising strategy.Based on this, in the present study, we suppose that TAM can be used as carrier to deliver Ce6 to lung cancer and be reprogrammed to M1 phenotype by photodynamic action to mediate anti-lung cancer efficacy.The results showed TAM could load with Ce6 and keep viability in the absence of near infrared irradiation (NIR).Moreover, Its viability decreased little within 10 h after NIR.Ce6-loaded TAM could deliver Ce6 to lung cancer cells and retain some drugs in TAM per se.After NIR, phagocytosis of macrophages was enhanced. The expressions of GBP5, iNOS and MHC-II was up-regulated, which indicated TAM were polarized to M1 phenotype.Finally, the study also found the reprogrammed macrophages could inhibit the proliferation and promote the apoptosis of lung cancer cells.These results suggested that macrophages could deliver Ce6 to lung cancer and exhibit anti-lung cancer effect through photodynamic reprogramming.This study provides a novel approach for combining photodynamic action with anti-tumor immunotherapy.


Assuntos
Carcinoma Pulmonar de Lewis/tratamento farmacológico , Clorofilídeos/farmacologia , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Fotoquimioterapia , Radiossensibilizantes/farmacologia , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Proliferação de Células , Clorofilídeos/metabolismo , Técnicas de Cocultura , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fagocitose , Fenótipo , Células RAW 264.7 , Radiossensibilizantes/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia
5.
Int Immunopharmacol ; 99: 107960, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284286

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is easy to relapse after resection for its lack of anti-tumor immunity due to pro-tumorigenesis by promoting M2 type macrophage polarization. Recent studies have shown that exosomes are closely related to the occurrence and development of HCC. Antigenic exosomes from HCC are able to polarize into alternatively activated macrophages M2, but do not stimulate M1 macrophages polarization. Iron oxide nanoparticles (IONs) have been demonstrated to be able to promote M1 macrophages polarization. This research was to explore exosomes as vehicles to synergize with pegylated IONs loaded with chlorin e6 (PIONs@E6) to enhance their immunity against HCC via promoting M1 macrophages polarization. MATERIALS AND METHODS: PIONs@E6 was synthesized and then characterized by chemico-physical analysis, transmission electron microscope (TEM), respectively. After characterization of PIONs-contained exosomes by TEM, and then the exosomal surface specific molecules CD9 and CD63 were determined by Western Blotting assay. Markers of M1 macrophage polarization in vitro and in vivo were analyzed by enzyme linked immunosorbent assay (ELISA) and flow cytometry, respectively. Intracellular reactive oxygen species (ROS) in macrophages were analyzed using a Spectra Max fluorescence microplate reader. Inhibitory effect of PIONs-contained exosomes on HCC was evaluated by monitoring tumor growth in an in vivo xenograft mice model. RESULTS: PIONs@E6 showed good water solubility with a core diameter around 10 nm and a hydrate diameter around 37 nm. The expression of exosome specific markers CD9 and CD63 was kept at a high level. PIONs-contained exosomes can dose-dependently promote M1 macrophages polarization in vitro and in vivo. Of note, PIONs-contained exosomes could initiate a significantly higher level of ROS in macrophages and remarkably inhibit the tumor growth in mice bearing HCC xenograft. CONCLUSION: Exosomes as vehicles could be synergized with PIONs@E6 to enhance their immunity against HCC via promoting M1 macrophages polarization.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Clorofilídeos/metabolismo , Neoplasias Hepáticas/diagnóstico , Macrófagos/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Ativação de Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos Endogâmicos ICR , Espécies Reativas de Oxigênio , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
6.
Environ Toxicol Pharmacol ; 46: 147-157, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27458703

RESUMO

Chlorophyllin (CHL), a sodium-copper-salt derived from chlorophyll, has been widely used as a food-dye, also reportedly having some anti-cancer effect. We tested if PLGA-loaded CHL (NCHL) could have additional protective abilities through its faster and targeted drug delivery in cancer cells. Physico-chemical characterization of NCHL was done through atomic-force microscopy and UV-spectroscopy. NCHL demonstrated greater ability of drug uptake and strong anti-cancer potentials in non-small cell lung cancer cells, A549, as revealed from data of% cell viability, generation of reactive-oxygen-species and expression of bax, bcl2, caspase3, p53 and cytochrome c proteins. Circular dichroic spectral data indicated strong binding of NCHL with calf-thymus-DNA, causing a conformational/structural change in DNA. Further, NCHL could cross the blood-brain-barrier in mice and showed greater efficacy in recovery process of tissue damage, reduction in chromosomal aberrations and% of micronuclei in co-mutagens (Sodiumarsenite+Benzo[a]Pyrene)-treated mice at a much reduced dose, indicating its use in therapeutic oncology.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Clorofilídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/metabolismo , Aberrações Cromossômicas , Dicroísmo Circular , Citocromos c/metabolismo , DNA/metabolismo , Humanos , Ácido Láctico/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Biol Chem ; 290(2): 1141-54, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422320

RESUMO

Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4(-). Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.


Assuntos
Ferredoxina-NADP Redutase/biossíntese , Oxirredutases/biossíntese , Fotossíntese/genética , Roseobacter/enzimologia , Clorofilídeos/química , Clorofilídeos/metabolismo , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Oxirredução , Oxirredutases/química , Roseobacter/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-21680231

RESUMO

In this paper, the chlorophyll derivatives, metallochlorophyllin (Chl-M) (M=Fe, Zn and Cu) including chlorophyllin iron (Chl-Fe), chlorophyllin zinc (Chl-Zn) and chlorophyllin copper (Chl-Cu), were adopted as sonosensitizers to combine with ultrasonic irradiation, and the sonodynamic damage of bovine serum albumin (BSA) was investigated. At first, the interaction of Chl-M with BSA was studied by fluorescence spectroscopy. The results show that the quenching mechanism belongs to a static process and among them the affinity of Chl-Fe to BSA is the most obvious. Then, some influence factors on the sonodynamic damage of BSA molecules in the presence of Chl-M under ultrasonic irradiation were also studied. Synchronous fluorescence spectra show that the binding and damage sites of Chl-M to BSA molecule are mainly on the tryptophan (Trp) residues. The generation of ROS in Chl-M sonodynamic process is estimated by the method of Oxidation-Extraction Spectrometry (OEP). This paper may offer some valuable references for the study of the sonodynamic activity of Chl-M and the effect of the central metals. Synchronously, it contributes to the application of Chl-M in SDT for tumor treatment.


Assuntos
Clorofilídeos/metabolismo , Clorofilídeos/efeitos da radiação , Ligação Proteica/efeitos da radiação , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/efeitos da radiação , Ultrassom , Animais , Antimutagênicos/metabolismo , Antimutagênicos/efeitos da radiação , Bovinos , Humanos , Compostos Organometálicos/metabolismo , Compostos Organometálicos/efeitos da radiação , Protetores contra Radiação/metabolismo , Protetores contra Radiação/efeitos da radiação , Espectrometria de Fluorescência
9.
Environ Sci Technol ; 45(10): 4521-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21513270

RESUMO

In recent years, effective methods for cyanobacterial blooms treatment have been an important issue. In this study, we demonstrated a rapid catalytic microwave method to deal with Microcystis aeruginosa with FeCl(3)-loaded active carbon. Microcystis aeruginosa damage process was monitored by measuring optical density, chlorophyll-a content, superoxide dismutase activity, l-glutathione content, and turbidity of the treated Microcystis aeruginosa suspension. It was found that this method could quickly and efficiently induce the degradation of Microcystis aeruginosa. On the basis of control experiments and characterization results, we attributed the excellent catalytic performance to the synergy effect between hole-doping of the catalyst and hot spot of microwave irradiation. This work provides a fast and green treatment method for cyanobacterial blooms.


Assuntos
Carvão Vegetal/química , Cloretos/química , Compostos Férricos/química , Microcystis/efeitos da radiação , Micro-Ondas , Aderência Bacteriana , Catálise , Clorofilídeos/metabolismo , Eutrofização/efeitos dos fármacos , Glutationa/metabolismo , Microcystis/metabolismo , Superóxido Dismutase/metabolismo , Propriedades de Superfície , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Purificação da Água/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-19939730

RESUMO

Sonodynamic therapy (SDT) is an attractive antitumor treatment for recent years. In this paper, sodium magnesium chlorophyllin (SMC) as a sonosensitizer combining with ultrasonic (US) irradiation to damage bovine serum albumin (BSA) has been investigated by fluorescence and UV-vis spectroscopy. The interaction of BSA with SMC was studied by the quenching of intrinsic fluorescence at varying temperature. The quenching constants (K(SV)), effective binding constants (K(A)), apparent association constants (K(a)) and binding site numbers were determined. The results indicated the quenching mechanism is a static procedure. Thermodynamic parameters show that the interactions involve hydrogen bonds, hydrophobic interactions, electrostatic interactions and complexations. The binding distance is 3.533 nm. The synergistic effect of SMC and ultrasound was estimated including the study of damage conditions. Synchronous fluorescence spectra indicate the damage to Trp residues is more serious. This paper may offer some valuable references for using spectroscopy method to study the application of chlorophyll derivatives in antitumor treatment.


Assuntos
Clorofilídeos/química , Compostos de Magnésio/química , Radiossensibilizantes/química , Soroalbumina Bovina/química , Soroalbumina Bovina/efeitos da radiação , Ultrassom , Animais , Bovinos , Clorofilídeos/metabolismo , Estrutura Molecular , Neoplasias/radioterapia , Ligação Proteica/efeitos da radiação , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Soroalbumina Bovina/metabolismo , Sódio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
11.
J Bacteriol ; 189(17): 6176-84, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17586634

RESUMO

Bacteriochlorophyll (BChl) c is the major photosynthetic pigment in the green sulfur bacterium Chlorobaculum tepidum, in which it forms protein-independent aggregates that function in light harvesting. BChls c, d, and e are found only in chlorosome-producing bacteria and are unique among chlorophylls because of methylations that occur at the C-8(2) and C-12(1) carbons. Two genes required for these methylation reactions were identified and designated bchQ (CT1777) and bchR (CT1320). BchQ and BchR are members of the radical S-adenosylmethionine (SAM) protein superfamily; each has sequence motifs to ligate a [4Fe-4S] cluster, and we propose that they catalyze the methyl group transfers. bchQ, bchR, and bchQ bchR mutants of C. tepidum were constructed and characterized. The bchQ mutant produced BChl c that was not methylated at C-8(2), the bchR mutant produced BChl c that was not methylated at C-12(1), and the double mutant produced [8-ethyl, 12-methyl]-BChl c that lacked methylation at both the C-8(2) and C-12(1) positions. Compared to the wild type, the Qy absorption bands for BChl c in the mutant cells were narrower and blue shifted to various extents. All three mutants grew slower and had a lower cellular BChl c content than the wild type, an effect that was especially pronounced at low light intensities. These observations show that the C-8(2) and C-12(1) methylations of BChl c play important roles in the adaptation of C. tepidum to low light intensity. The data additionally suggest that these methylations also directly or indirectly affect the regulation of the BChl c biosynthetic pathway.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Chlorobi/enzimologia , Chlorobi/fisiologia , Clorofilídeos/metabolismo , Metiltransferases/metabolismo , Proteínas de Bactérias/química , Bacterioclorofilas/química , Chlorobi/genética , Chlorobi/crescimento & desenvolvimento , Citoplasma/química , Deleção de Genes , Metiltransferases/genética , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Organelas/ultraestrutura , Análise Espectral
12.
Biopolymers ; 77(3): 129-36, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15630698

RESUMO

Porphyrins and their metal derivatives are strong protein binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA and protein. The presence of several high-affinity binding sites on human serum albumin (HSA) makes it possible target for many organic and inorganic molecules. Chlorophyll a and chlorophyllin (a food-grade derivative of chlorophyll), the ubiquitous green plant pigment widely consumed by humans, are potent inhibitors of experimental carcinogenesis and interact with protein and DNA in many ways. This study was designed to examine the interaction of HSA with chlorophyll (Chl) and chlorophyllin (Chln) in aqueous solution at physiological conditions. Fourier transform infrared, UV-visible, and CD spectroscopic methods were used to determine the pigment binding mode, the binding constant, and the effects of porphyrin complexation on protein secondary structure. Spectroscopic results showed that chlorophyll and chlorophyllin are located along the polypeptide chains with no specific interaction. Stronger protein association was observed for Chl than for Chln, with overall binding constants of K(Chl) = 2.9 x 10(4)M(-1) and K(Chln) = 7.0 x 10(3)M(-1). The protein conformation was altered (infrared data) with reduction of alpha-helix from 55% (free HSA) to 41-40% and increase of beta-structure from 22% (free HSA) to 29-35% in the pigment-protein complexes. Using the CDSSTR program (CD data) also showed major reduction of alpha-helix from 66% (free HSA) to 58 and 55% upon complexation with Chl and Chln, respectively.


Assuntos
Clorofila/química , Clorofilídeos/química , Albumina Sérica/química , Clorofila/metabolismo , Clorofilídeos/metabolismo , Dicroísmo Circular , Humanos , Estrutura Secundária de Proteína , Albumina Sérica/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Biomol Struct Dyn ; 22(1): 45-50, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15214804

RESUMO

Porphyrins and their metal derivatives are strong nucleic acids binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. Chlorophyll (Chl) binds DNA via guanine N-7 atom (major groove) and the backbone phosphate group (Neault and Tajmir-Riahi. Biophys. J. 76, 2177, 1999), whereas chlorophyllin (Chln) intercalates into A-T and G-C regions (Neault and Tajmir-Riahi. J. Phys. Chem. B. 102, 1610, 1998). This study was designed to examine the interaction of RNA with chlorophyll a and chlorophyllin in aqueous solution at physiological pH with pigment/RNA(phosphate) ratios (r) of 1/80 to 1/2. Fourier transform infrared (FTIR) and UV-visible difference spectroscopic methods were used to characterize the nature of pigment-RNA interaction and to establish correlation between spectral changes and the pigment binding mode, binding constant, RNA secondary structure and structural variations of pigment-RNA complexes in aqueous solution. Spectroscopic results showed that Chl and Chln bind RNA through G-C and A-U bases and the backbone phosphate group with overall binding constants of KChl = 1.95 x 10(5) M(-1) and KChln = 1.61 x 10(5) M(-1). The larger K value obtained for Chl-RNA complexes is attributed to the formation of more stable five or six-coordinate Mg cation in the RNA adducts, while the four-coordination Cu(II) in Chln can be more stable than that of the five or six-coordinated copper ion in the Chln-RNA complexes. Aggregation of pigment-RNA complexes occurs at high metalloporphyrin concentrations. No biopolymer secondary structural changes were observed upon pigment interaction and RNA remains in the A-family structure in these pigment complexes.


Assuntos
Clorofila/química , Clorofilídeos/química , RNA/química , Antimutagênicos/química , Clorofila/metabolismo , Clorofilídeos/metabolismo , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico , RNA/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biol Pharm Bull ; 25(4): 520-2, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11995936

RESUMO

Chlorophyllin, a water-soluble derivative of chlorophyll, is known to suppress the mutagenic and carcinogenic action of compounds having polycyclic structures, e.g., heterocyclic amines and aflatoxin B1. Recently, we reported that chlorophyllin fixed on chitosan (chl-chitosan), which is insoluble in water, can efficiently and tightly trap these heterocyclic amines. We have studied whether this adsorption to chl-chitosan can result in an interference with DNA-adduct formation caused by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), a heterocyclic amine, in CDF1 mice, in which Trp-P-2 had been shown to induce hepatocellular carcinomas. Mice were fed a diet containing Trp-P-2 with or without chl-chitosan. After 3 d of feeding, DNA-adduct formation in liver and lung was examined by 32P-postlabeling analysis. Adducts formed from Trp-P-2 were significantly decreased by the chl-chitosan addition (p<0.05, t-test). These results suggest that the uptake of Trp-P-2 into the mouse was lowered by its adsorption to chl-chitosan, either within the digestive tract or within the food itself. This trapping agent, chl-chitosan, is thus worthy of study for cancer chemoprevention.


Assuntos
Carbolinas/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Clorofilídeos/metabolismo , Adutos de DNA/antagonistas & inibidores , Adutos de DNA/metabolismo , Animais , Carbolinas/antagonistas & inibidores , Quitina/farmacologia , Quitosana , Clorofilídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos
15.
J Agric Food Chem ; 50(7): 2173-9, 2002 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11902975

RESUMO

Sodium copper chlorophyllin (SCC), a mixture of water-soluble chlorophyll derivatives, is used as both a food colorant and a common dietary supplement. Although the potential antimutagenic and antioxidant properties of this commercial preparation have been demonstrated, limited information is available on its digestion and absorption by humans. Stability of SCC was examined during simulated gastric and small intestinal digestion. Three preparations were subjected to in vitro digestion: SCC in water, SCC in water + 10% corn oil, and SCC in applesauce. SCC components from raw material preparations and in digested samples were analyzed by C(18) HPLC with photodiode array detection. Cu(II)chlorin e(4), the major chlorin component of SCC, was relatively stable during simulated digestion. In contrast, greater than 90% of Cu(II)chlorin e(6) was degraded to undetermined products during digestion. Recovery of Cu(II)chlorin e(6) after digestion was increased by incorporation of SCC into applesauce, suggesting a protective role of the inclusion matrix for stabilization of labile SCC components. Accumulation of SCC derivatives was investigated by using differentiated cultures of the TC7 clone of the Caco-2 human intestinal cell line. Cellular accumulation from media containing 0.5 to 60 ppm SCC was linear with intracellular content ranging between 0.2 and 29.6 microg of total SCC per mg of cellular protein. Uptake of SCC by Caco-2 cells was significantly (p < 0.01) lower in cultures incubated at 4 degrees C than in those incubated at 37 degrees C. Although intracellular SCC was transported into both apical and basolateral compartments when Caco-2 cells were grown on inserts, apical efflux was significantly greater (p < 0.01) than basolateral efflux. Stability of Cu(II)chlorin e(4) during in vitro digestion and effective uptake by Caco-2 enterocyte-like cells support the likelihood that a portion of this SCC component or its metabolites is absorbed from the human intestine.


Assuntos
Clorofilídeos/metabolismo , Digestão , Mucosa Intestinal/metabolismo , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Estabilidade de Medicamentos , Células Epiteliais/metabolismo , Humanos , Malus
16.
Plant J ; 12(3): 605-14, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9351245

RESUMO

Arabidopsis thaliana plants were grown at 23 degrees C and changes in carbohydrate metabolism, photosynthesis and photosynthetic gene expression were studied after the plants were shifted to 5 degrees C. The responses of leaves shifted to 5 degrees C after development at 23 degrees C are compared to leaves that developed at 5 degrees C. Shifting warm developed leaves to 5 degrees C lead to a severe suppression of photosynthesis that correlated with a rapid and sustained accumulation of hexose phosphates and soluble sugars. Associated with the suppression of photosynthesis and the accumulation of soluble sugars was a reduction in the amount of transcript for genes encoding photosynthetic proteins (cab and rbcS). In contrast, leaves that developed at 5 degrees C showed an increase in photosynthesis and control levels of photosynthetic gene expression. This recovery occurred even though leaves that developed at 5 degrees C maintained large pools of soluble sugars. Leaves that developed at 5 degrees C also showed a strong upregulation of the cytosolic pathway for soluble sugar synthesis but not of the chloroplastic pathway for starch synthesis. This was shown at the level of both enzyme activity and the amount of transcript. Thus, development of Arabidopsis leaves at 5 degrees C resulted in metabolic changes that enabled them to produce and accumulate large soluble sugar pools without any associated suppression of photosynthesis or photosynthetic gene expression. These changes were also associated with enhanced freezing tolerance. We suggest that this reprogramming of carbohydrate metabolism associated with development at low temperature is essential to the development of full freezing tolerance and for winter survival of over-wintering herbaceous annuals.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Expressão Gênica , Fotossíntese/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Clorofilídeos/metabolismo , Temperatura Baixa , Fluorescência , Frutose-Bifosfatase/metabolismo , Glucose-1-Fosfato Adenililtransferase , Glucosiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Solubilidade
17.
Eur J Biochem ; 242(1): 163-70, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8954166

RESUMO

Enzyme activity of chlorophyll(ide) b reductase is present in etioplasts. Recently the conversion of chlorophyllide b to chlorophyll a via 7(1)-hydroxychlorophyll a was demonstrated in barley etioplasts. We used zinc pheophorbide b for a detailed investigation of the reduction of the 7-formyl group to the 7(1)-hydroxy compound in intact barley etioplasts. The reaction proceeded likewise before esterification and after esterification with phytyl diphosphate. The metal-free pheophorbide b, that is not accepted by chlorophyll synthase for esterification, is reduced to 7(1)-hydroxypheophorbide a to a small extent. The zinc (13(2)S)-pheophorbide b is at least equally well accepted for reduction as the epimer with the 13(2)R configuration of natural chlorophyll b. The reaction requires NADPH or NADH, although the latter is less effective. ATP is not required for the first step to the 7(1)-hydroxy compound. The significance of chlorophyll b reduction for acclimation from shade to sun leaves and for chlorophyll degradation is discussed.


Assuntos
Oxirredutases do Álcool/metabolismo , Clorofilídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Hordeum , NADP/metabolismo , Especificidade por Substrato
18.
Cancer Lett ; 94(1): 33-40, 1995 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-7621442

RESUMO

Chlorophyllin (CHL), a water-soluble sodium and copper derivative of chlorophyll, has been shown to be a strong antimutagen in several test systems, but its mechanism of antimutagenic action is largely unknown. In the present study, we have found the protective properties of CHL against vinyl carbamate, p-nitrophenyl vinyl ether and their electrophilic epoxides. CHL exhibited dose-related inhibition of his+ reversion in Salmonella typhimurium TA 1535 induced by these mutagens. Formation of DNA adducts from vinyl carbamate epoxide (VCO) and 2'-(4-nitrophenoxy)oxirane (NPO) was also markedly attenuated in the presence of CHL. Oral administration of CHL prior to the topical application of each of the above carcinogens resulted in significant reduction in both incidence and multiplicity of skin tumors in mice. The effective protection by CHL against VCO and NPO suggest that its formation of inactive complexes with these carcinogens is mediated by mechanisms other than pi-pi interactions.


Assuntos
Antimutagênicos/farmacologia , Clorofilídeos/farmacologia , Compostos de Epóxi/antagonistas & inibidores , Papiloma/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Uretana/análogos & derivados , Compostos de Vinila/antagonistas & inibidores , Animais , Antimutagênicos/metabolismo , Clorofilídeos/metabolismo , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Compostos de Epóxi/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos ICR , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos , Uretana/antagonistas & inibidores , Uretana/metabolismo , Compostos de Vinila/metabolismo
19.
J Cell Biol ; 129(2): 299-308, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7721935

RESUMO

The key enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), is a nuclear-encoded plastid protein. Its posttranslational transport into plastids of barley depends on the intraplastidic availability of one of its substrates, protochlorophyllide (PChlide). The precursor of POR (pPOR), synthesized from a corresponding full-length barley cDNA clone by coupling in vitro transcription and translation, is enzymatically active and converts PChlide to chlorophyllide (Chlide) in a light- and NADPH-dependent manner. Chlorophyllide formed catalytically remains tightly but noncovalently bound to the precursor protein and stabilizes a transport-incompetent conformation of pPOR. As shown by in vitro processing experiments, the chloroplast transit peptide in the Chlide-pPOR complex appears to be masked and thus is unable to physically interact with the outer plastid envelope membrane. In contrast, the chloroplast transit peptide in the naked pPOR (without its substrates and its product attached to it) and in the pPOR-substrate complexes, such as pPOR-PChlide or pPOR-PChlide-NADPH, seems to react independently of the mature region of the polypeptide, and thus is able to bind to the plastid envelope. When envelope-bound pPOR-PChlide-NADPH complexes were exposed to light during a short preincubation, the enzymatically produced Chlide slowed down the actual translocation step, giving rise to the sequential appearance of two partially processed translocation intermediates. However, ongoing translocation induced by feeding the chloroplasts delta-aminolevulinic acid, a precursor of PChlide, was able to override these two early blocks in translocation, suggesting that the plastid import machinery has a substantial capacity to denature a tightly folded, envelope-bound precursor protein. Together, our results show that pPOR with Chlide attached to it is impaired both in the ATP-dependent step of binding to a receptor protein component of the outer chloroplast envelope membrane, as well as in the PChlide-dependent step of precursor translocation.


Assuntos
Clorofilídeos/metabolismo , Cloroplastos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/metabolismo , Precursores de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Membrana Celular/metabolismo , Clorofilídeos/farmacologia , Hordeum/enzimologia , Luz , Oxirredutases/química , Dobramento de Proteína , Precursores de Proteínas/química , Sinais Direcionadores de Proteínas/fisiologia , Protoclorifilida/metabolismo
20.
Mutat Res ; 308(2): 191-203, 1994 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-7518046

RESUMO

Mechanisms of the antimutagenic action of chlorophyllin (CHL) towards benzo[a]pyrene (BP) were studied in vitro. In the Salmonella assay, CHL inhibited the mutagenic activity of BP in the presence of an S9 activation system and was particularly effective against the direct-acting ultimate carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). Spectral studies indicated that the time-dependent hydrolysis of BPDE to tetrols was augmented in the presence of CHL concentrations on the order of 5 microM. Dose-related inhibition of several cytochrome P450-dependent enzyme activities was observed upon addition of CHL to in vitro incubations. Spectral changes for the interaction between CHL and cytochrome P450 indicated that CHL does not bind to the active site of the enzyme, but exerts its inhibitory effect indirectly. This was achieved by inhibiting NADPH-cytochrome P450 reductase (Ki approximately 120 microM with cytochrome c as substrate), and did not involve lowering of the effective substrate concentration by complex formation with the procarcinogen. It is concluded that the in vitro antimutagenic activity of CHL towards BP involves accelerated degradation of the ultimate carcinogen, with inhibition of carcinogen activation occurring only at high CHL concentrations. The latter mechanism is unlikely to occur in vivo following p.o. administration due to the limited uptake of CHL from the gut, but tissue concentrations may be sufficiently high to cause degradation of BPDE.


Assuntos
Antimutagênicos/farmacologia , Benzo(a)pireno/metabolismo , Clorofilídeos/farmacologia , Adutos de DNA , Oxigenases de Função Mista/antagonistas & inibidores , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Animais , Antimutagênicos/metabolismo , Biotransformação/efeitos dos fármacos , Carcinógenos/metabolismo , Clorofilídeos/metabolismo , Citocromo P-450 CYP1A1 , Inibidores das Enzimas do Citocromo P-450 , DNA/metabolismo , Hidrólise , Masculino , Microssomos Hepáticos/enzimologia , Testes de Mutagenicidade , Oxirredutases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA