Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Nat Commun ; 13(1): 652, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115512

RESUMO

Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estômatos de Plantas/metabolismo , Amido/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Citosol/metabolismo , Peróxido de Hidrogênio/farmacologia , Luz , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Microscopia Confocal , NADP/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Oxidantes/farmacologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas
2.
Plant J ; 107(6): 1771-1787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250673

RESUMO

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Assuntos
Cloroplastos/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Nicotiana/microbiologia , Phytophthora infestans/patogenicidade , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/imunologia , Dinitrobenzenos/farmacologia , Luz , Microscopia Confocal , Pinças Ópticas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Sulfanilamidas/farmacologia , Tiazolidinas/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/imunologia
3.
Plant Physiol ; 186(1): 125-141, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793922

RESUMO

Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Arabidopsis/efeitos dos fármacos , Técnicas Biossensoriais , Cloroplastos/efeitos dos fármacos , Herbicidas/efeitos adversos , Oxirredução , Paraquat/efeitos adversos , Plântula/efeitos dos fármacos , Plântula/metabolismo
4.
Ecotoxicol Environ Saf ; 207: 111265, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920313

RESUMO

Aluminum (Al) toxicity is a major yield-limiting factor for crops in acidic soils. In this work, we have investigated the potential role of spermidine (Spd) on Al toxicity in rice chloroplasts. Exogenous Spd markedly reduced Al concentration and elevated other nutrient elements such as Mn, Mg, Fe, K, Ca, and Mo in chloroplasts of Al-treated plants. Meanwhile, Spd further activated arginine decarboxylase (ADC) activity of key enzyme in polyamine (PA) synthesis, and enhanced PA contents in chloroplasts. Spd application dramatically addressed Al-induced chlorophyll (Chl) losses, inhibited thylakoid membrane protein complexes degradation, especially photosystem II (PSII), and significantly depressed the accumulations of superoxide radical (O2·-), hydrogen peroxide (H2O2), and malondialdehyde (MDA) in chloroplasts. Spd addition activated antioxidant enzyme activities and decreased soluble sugar content in chloroplasts compared with Al treatment alone. Spd not only reversed the inhibition of photosynthesis-related gene transcript levels induced by Al toxicity, but diminished the increased expression of Chl catabolism-related genes. Furthermore, Chl fluorescence analysis showed that Spd protected PSII reaction centers and photosynthetic electron transport chain under Al stress, thus improving photosynthetic performance. These results suggest that PAs are involved in Al tolerance in rice chloroplasts and can effectively protect the integrity and function of photosynthetic apparatus, especially PSII, by mitigating oxidative damage induced by Al toxicity.


Assuntos
Alumínio/toxicidade , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espermidina/farmacologia , Alumínio/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo
5.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375193

RESUMO

Five-day exposure of clary sage (Salvia sclarea L.) to 100 µM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.


Assuntos
Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Salvia/efeitos dos fármacos , Clorofila/metabolismo , Clorofila A/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Hormese , Hidroponia/métodos , Microscopia Eletrônica de Transmissão , Fotoquímica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salvia/metabolismo
6.
Sci Rep ; 10(1): 6883, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327687

RESUMO

This research was conducted to understand the influence of foliar applied melatonin (0, 50, 100, 150 and 200 µM) on two Salvia species (Salvia nemorosa L., and Salvia reuterana Boiss) under conditions of water stress. Water stress was applied using a reduced irrigation strategy based on re-watering at 80%, 60% and 40% of the field capacity (FC). Increasing water stress, while significantly enhancing malondialdehyde (MDA), H2O2, electrolyte leakage, oxidized glutathione (GSSG), and total glutathione (GT), reduced glutathione (GSH), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione reductase (GR) activities, which led to a marked reduction in fluorescence (Fv/Fm). Foliar application of melatonin alleviated the oxidative stress by increasing GT, CAT, POD, SOD and GR activities and reducing GSSG. In particular, melatonin heightened GSH content as well as the ratio of GSH/GSSG when compared to non-sprayed water stressed plants. Melatonin-treated plants had significantly lower SOD and POD activities than control plants under drought stress, while the CAT activity was enhanced with the foliar treatment. Essential oil yield of both Salvia species increased with the decrease in irrigation from 80% to 60% FC but diminished with the more severe water deficit (40% FC). Essential oil components of Salvia nemorosa were ß- caryophyllene, germacrene- B, spathulenol, and cis- ß- farnesene, while (E) - ß- ocimene, α- gurjnnene, germacrene-D, hexyl acetate and aromadendrene was the major constituents of Salvia reuterana. When plants were subjected to water deficit, melatonin treatment increased the concentration and composition of the essential oil. In particular, melatonin treatments improved the primary oil components in both species when compared to non-melatonin treated plants. In conclusion, reduced irrigation regimes as well as melatonin treatments resulted in a significant improvement of essential oil production and composition in both Salvia species.


Assuntos
Secas , Glutationa/metabolismo , Melatonina/farmacologia , Óleos Voláteis/metabolismo , Salvia/fisiologia , Estresse Fisiológico , Análise de Variância , Antioxidantes/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Análise por Conglomerados , Eletrólitos/metabolismo , Dissulfeto de Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
7.
Chembiochem ; 21(8): 1206-1216, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747114

RESUMO

The mechanisms underlying interactions between diatoms and bacteria are crucial to understand diatom behaviour and proliferation, and can result in far-reaching ecological consequences. Recently, 2-alkyl-4-quinolones have been isolated from marine bacteria, both of which (the bacterium and isolated chemical) inhibited growth of microalgae, suggesting these compounds could mediate diatom-bacteria interactions. The effects of several quinolones on three diatom species have been investigated. The growth of all three was inhibited, with half-maximal inhibitory concentrations reaching the sub-micromolar range. By using multiple techniques, dual inhibition mechanisms were uncovered for 2-heptyl-4-quinolone (HHQ) in Phaeodactylum tricornutum. Firstly, photosynthetic electron transport was obstructed, primarily through inhibition of the cytochrome b6 f complex. Secondly, respiration was inhibited, leading to repression of ATP supply to plastids from mitochondria through organelle energy coupling. These data clearly show how HHQ could modulate diatom proliferation in marine environments.


Assuntos
4-Quinolonas/farmacologia , Trifosfato de Adenosina/metabolismo , Complexo Citocromos b6f/antagonistas & inibidores , Diatomáceas/efeitos dos fármacos , Mitocôndrias/fisiologia , Plastídeos/efeitos dos fármacos , Tilacoides/metabolismo , Cloroplastos/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Fotossíntese
8.
Molecules ; 24(16)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426567

RESUMO

A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S. aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure-activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.


Assuntos
Anilidas/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Naftóis/farmacologia , Ampicilina/farmacologia , Anilidas/síntese química , Anilidas/química , Antibacterianos/síntese química , Antibacterianos/química , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Metilação , Testes de Sensibilidade Microbiana , Mycobacterium kansasii/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Naftóis/síntese química , Naftóis/química , Fotossíntese/efeitos dos fármacos , Análise de Componente Principal , Spinacia oleracea/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Relação Estrutura-Atividade , Células THP-1
9.
BMC Plant Biol ; 19(1): 253, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196035

RESUMO

BACKGROUND: Because of their broad applications in our life, nanoparticles are expected to be present in the environment raising many concerns about their possible adverse effects on the ecosystem of plants. The aim of this study was to examine the effect of different sizes and concentrations of iron oxide nanoparticles [(Fe3O4) NPs] on morphological, physiological, biochemical, and ultrastructural parameters in tobacco (Nicotiana tabacum var.2 Turkish). RESULTS: Lengths of shoots and roots of 5 nm-treated plants were significantly decreased in all nanoparticle-treated plants compared to control plants or plants treated with any concentration of 10 or 20 nm nanoparticles. The photosynthetic rate and leaf area were drastically reduced in 5 nm (Fe3O4) NP-treated plants of all concentrations compared to control plants and plants treated with 10 or 20 nm (Fe3O4) NPs. Accumulation of sugars in leaves showed no significant differences between the control plants and plants treated with iron oxide of all sizes and concentrations. In contrast, protein accumulation in plants treated with 5 nm iron oxide dramatically increased compared to control plants. Moreover, light and transmission electron micrographs of roots and leaves revealed that roots and chloroplasts of 5 nm (Fe3O4) NPs-treated plants of all concentrations were drastically affected. CONCLUSIONS: The size and concentration of nanoparticles are key factors affecting plant growth and development. The results of this study demonstrated that the toxicity of (Fe3O4) NPs was clearly influenced by size and concentration. Further investigations are needed to elucidate more about NP toxicity in plants, especially at the molecular level.


Assuntos
Nanopartículas Metálicas , Nicotiana/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Relação Dose-Resposta a Droga , Compostos Férricos/farmacologia , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , Brotos de Planta/efeitos dos fármacos , Nicotiana/metabolismo , Nicotiana/ultraestrutura
10.
Genes (Basel) ; 10(5)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121980

RESUMO

Hemp is a Pb-tolerant and Pb-accumulating plant and the study of its tolerance mechanisms could facilitate the breeding of hemp with enhanced Pb tolerance and accumulation. In the present study, we took advantage of sequential window acquisition of all theoretical mass spectra (SWATH) technology to study the difference in proteomics between the leaves of Pb-tolerant seed-type hemp variety Bamahuoma (BM) and the Pb-sensitive fiber-type hemp variety Yunma 1 (Y1) under Pb stress (3 g/kg soil). A total of 63 and 372 proteins differentially expressed under Pb stress relative to control conditions were identified with liquid chromatography electro spray ionization tandem mass spectrometry in BM and Y1, respectively; with each of these proteins being classified into 14 categories. Hemp adapted to Pb stress by: accelerating adenosine triphosphate (ATP) metabolism; enhancing respiration, light absorption and light energy transfer; promoting assimilation of intercellular nitrogen (N) and carbon (C); eliminating reactive oxygen species; regulating stomatal development and closure; improving exchange of water and CO2 in leaves; promoting intercellular transport; preventing aggregation of unfolded proteins; degrading misfolded proteins; and increasing the transmembrane transport of ATP in chloroplasts. Our results provide an important reference protein and gene information for future molecular studies into the resistance and accumulation of Pb in hemp.


Assuntos
Cannabis/genética , Cloroplastos/genética , Chumbo/toxicidade , Proteômica , Trifosfato de Adenosina/genética , Cannabis/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cromatografia Líquida , Espectrometria de Massas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética
11.
Ecotoxicol Environ Saf ; 175: 118-127, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30897410

RESUMO

Combined effects of cadmium (Cd) and acid rain on physiological characteristics in Eleocarpus glabripetalus seedlings were investigated under controlled conditions. The single Cd treatment and the combined Cd and acid rain treatment increased growth at low Cd concentrations, while decreased growth and photosynthesis at high Cd2+ concentrations. A low Cd2+ concentration (50 mg kg-1) combined with different acid rain treatments increased the seedling biomass. A high Cd2+ concentration (100 mg kg-1) under different acid rain treatments significantly decreased the biomass, the Fe content, chlorophyll fluorescence and photosynthetic parameters. Relative electric conductivity, malondialdehyde (MDA) content and peroxidase (POD) activity were increased while the reduced glutathione (GSH) content and catalase (CAT) activity were significantly lower at high Cd2+ concentration under acid rain. The results indicated that the combination of a high concentration of Cd2+ and acid rain aggravated the toxic effect of Cd2+ or acid rain alone on the growth and physiological parameters of E. glabripetalus due to serious damage to the chloroplast structure. These results provide novel insights into the combined effects of Cd2+and acid rain on woody plants and might also serve as a guide to evaluate forest restoration and biological safety in areas with Cd2+and acid rain pollution.


Assuntos
Chuva Ácida/efeitos adversos , Cádmio/efeitos adversos , Elaeocarpaceae/fisiologia , Poluição Ambiental/efeitos adversos , Plântula/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Florestas , Glutationa/metabolismo , Malondialdeído/metabolismo , Oxirredução , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia
12.
BMC Plant Biol ; 19(1): 17, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626336

RESUMO

BACKGROUND: Despite increasing characterization of DEAD-box RNA helicases (RHs) in chloroplast gene expression regulation at posttranscriptional levels in plants, their functional roles in growth responses of crops, including rice (Oryza sativa), to abiotic stresses are yet to be characterized. In this study, rice OsRH58 (LOC_Os01g73900), a chloroplast-localized DEAD-box RH, was characterized for its expression patterns upon stress treatment and its functional roles using transgenic Arabidopsis plants under normal and abiotic stress conditions. RESULTS: Chloroplast localization of OsRH58 was confirmed by analyzing the expression of OsRH58-GFP fusion proteins in tobacco leaves. Expression of OsRH58 in rice was up-regulated by salt, drought, or heat stress, whereas its expression was decreased by cold, UV, or ABA treatment. The OsRH58-expressing Arabidopsis plants were taller and had more seeds than the wild type under favorable conditions. The transgenic plants displayed faster seed germination, better seedling growth, and a higher survival rate than the wild type under high salt or drought stress. Importantly, levels of several chloroplast proteins were increased in the transgenic plants under salt or dehydration stress. Notably, OsRH58 harbored RNA chaperone activity. CONCLUSIONS: These findings suggest that the chloroplast-transported OsRH58 possessing RNA chaperone activity confers stress tolerance by increasing translation of chloroplast mRNAs.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA Helicases DEAD-box/metabolismo , Secas , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Estresse Fisiológico
13.
Plant Biotechnol J ; 17(3): 638-649, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30144344

RESUMO

The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide-insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low-level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co-transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high-throughput genetic transformation of plants and algae.


Assuntos
Chlamydomonas/efeitos dos fármacos , Edição de Genes/métodos , Resistência a Herbicidas/genética , Herbicidas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Sulfadiazina , Chlamydomonas/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Marcadores Genéticos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Plantas Geneticamente Modificadas/genética
14.
Environ Int ; 123: 273-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553200

RESUMO

The exposure of polycyclic aromatic hydrocarbons (PAHs) can cause wheat leaf chlorosis. Thus, we hypothesize that chloroplast inner structure damage is the reason for leaf chlorosis. This study was conducted with the wheat seedlings exposed to Hoagland nutrient solution containing 1.0 mg L-1 phenanthrene for 9 days. Subcellular observation showed that chloroplast turns round and loses its structural integrity. Herein, iTRAQ (isobaric tag for relative and absolute quantification) was applied to analyze the changes of protein profile in chloroplast exposed to phenanthrene. A total of 517 proteins are identified, 261 of which are up-regulated. Eight proteins related with thylakoid (the structural component of chloroplast) are down-regulated and the expression of related genes further confirms the proteomic results through real-time PCR under phenanthrene treatment, suggesting that the thylakoid destruction is the reason for chloroplast deformation. Four proteins related with envelope and stroma are up-regulated, and this is the reason why chloroplast remains round. This study is useful in discussing the carcinogenic and teratogenic effects of PAHs in plant cells in the environment, and provides necessary knowledge for improving crop resistance to PAH pollution.


Assuntos
Cloroplastos/efeitos dos fármacos , Fenantrenos/toxicidade , Triticum/efeitos dos fármacos , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteoma , Plântula , Triticum/ultraestrutura
15.
Int J Mol Sci ; 19(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423885

RESUMO

Aluminum (Al) toxicity and drought are two major constraints on plant growth in acidic soils, negatively affecting crop performance and yield. Genotypic differences in the effects of Al/low pH and polyethyleneglycol (PEG) induced drought stress, applied either individually or in combination, were studied in Tibetan wild (XZ5, drought-tolerant; XZ29, Al-tolerant) and cultivated barley (Al-tolerant Dayton; drought-tolerant Tadmor). Tibetan wild barley XZ5 and XZ29 had significantly higher H⁺-ATPase, Ca2+Mg2+-ATPase, and Na⁺K⁺-ATPase activities at pH 4.0+Al+PEG than Dayton and Tadmor. Moreover, XZ5 and XZ29 possessed increased levels in reduced ascorbate and glutathione under these conditions, and antioxidant enzyme activities were largely stimulated by exposure to pH 4.0+PEG, pH 4.0+Al, and pH 4.0+Al+PEG, compared to a control and to Dayton and Tadmor. The activity of methylglyoxal (MG) was negatively correlated with increased levels of glyoxalase (Gly) I and Gly II in wild barley. Microscopic imaging of each genotype revealed DNA damage and obvious ultrastructural alterations in leaf cells treated with drought or Al alone, and combined pH 4.0+Al+PEG stress; however, XZ29 and XZ5 were less affected than Dayton and Tadmor. Collectively, the authors findings indicated that the higher tolerance of the wild barley to combined pH 4.0+Al+PEG stress is associated with improved ATPase activities, increased glyoxalase activities, reduced MG, and lower reactive oxygen species levels (like O2- and H2O2) due to increased antioxidant enzyme activities. These results offer a broad comprehension of the mechanisms implicated in barley's tolerance to the combined stress of Al/low pH and drought, and may provide novel insights into the potential utilization of genetic resources, thereby facilitating the development of barley varieties tolerant to drought and Al/low pH stress.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Alumínio/toxicidade , Antioxidantes/metabolismo , Secas , Hordeum/enzimologia , Hordeum/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Dano ao DNA , Hordeum/anatomia & histologia , Hordeum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Lactoilglutationa Liase/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Polietilenoglicóis/farmacologia , Aldeído Pirúvico/metabolismo , Superóxidos/metabolismo
16.
Ecotoxicol Environ Saf ; 161: 497-506, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29913418

RESUMO

Titanium dioxide nanoparticles (n-TiO2) have been used in numerous applications, which results in their release into aquatic ecosystems and impact algal populations. A possible toxic mechanism of n-TiO2 on algae is via the disruption of the photosynthetic biochemical pathways, which yet remains to be demonstrated. In this study, Chlorella pyrenoidosa was exposed to different concentrations (0, 0.1, 1, 5, 10, and 20 mg/L) of a type of anatase n-TiO2, and the physiological, biochemical, and molecular responses involved in photosynthesis were investigated. The 96 h half growth inhibition concentration (IC50) of the n-TiO2 to algae was determined to be 9.1 mg/L. A variety of cellular and sub-cellular damages were observed, especially the blurry lamellar structure of thylakoids, indicating the n-TiO2 impaired the photosynthetic function of chloroplasts. Malondialdehyde (MDA) and glutathione disulfide (GSSG) significantly increased while the glutathione (GSH) content decreased. This implies the increased consumption of GSH by the increased intracellular oxidative stress upon n-TiO2 was insufficient to eliminate the lipid peroxidation. The contents of photosynthetic pigments, including chlorophyll a (Chl a) and phycobiliproteins (PBPs) in the exposed algal cells increased along with the up-regulation of genes encoding Chl a and photosystem II (PS II), which could be explained by a compensatory effect to overcome the toxicity induced by the n-TiO2. On the other hand, the photosynthetic activity was significantly inhibited, indicating the impairment on the photosynthesis via damaging the reaction center of PS II. In addition, lower productions of adenosine triphosphate (ATP) and glucose, together with the change of gene expressions suggested that the n-TiO2 disrupted the material and energy metabolisms in the photosynthesis. These findings support a paradigm shift of the toxic mechanism of n-TiO2 from physical and oxidative damages to metabolic disturbances, and emphasize the threat to the photosynthesis of algae in contaminated areas.


Assuntos
Chlorella/efeitos dos fármacos , Nanopartículas/toxicidade , Fotossíntese/efeitos dos fármacos , Titânio/toxicidade , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Chlorella/ultraestrutura , Clorofila A/metabolismo , Cloroplastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo
17.
Biomed Res Int ; 2018: 1615968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29750147

RESUMO

Beryllium (Be) could be a threatening heavy metal pollutant in the agroecosystem that may severely affect the performance of crops. The present study was conducted to evaluate the toxic effects of Be (0, 100, 200, and 400 µM) on physiological, ultrastructure, and biochemical attributes in hydroponically grown six-day-old seedlings of two cultivars of Brassica napus L., one tolerant (ZS 758, black seeded) and one sensitive (Zheda 622, yellow seeded). Higher Be concentrations reduced the plant growth, biomass production, chlorophyll contents, and the total soluble protein contents. A significant accumulation of ROS (H2O2, OH-) and MDA contents was observed in a dose-dependent manner. Antioxidant enzymatic activities including SOD, POD, GR, APX, and GSH (except CAT) were enhanced with the increase in Be concentrations in both cultivars. Relative transcript gene expression of above-mentioned antioxidant enzymes further confirmed the alterations induced by Be as depicted from higher involvement in the least susceptible cultivar ZS 758 as compared to Zheda 622. The electron microscopic study showed that higher level of Be (400 µM) greatly damaged the leaf mesophyll and root tip cells. More damage was observed in cultivar Zheda 622 as compared to ZS 758. The damage in leaf mesophyll cells was highlighted as the disruption in cell wall, immature nucleus, damaged mitochondria, and chloroplast structures. In root tip cells, disruption in Golgi bodies and damage in cell wall were clearly noticed. As a whole, the present study confirmed that more inhibitory effects were recorded in yellow seeded Zheda 622 as compared to black seeded ZS 758 cultivar, which is regarded as more sensitive cultivar.


Assuntos
Antioxidantes/metabolismo , Berílio/toxicidade , Brassica napus/efeitos dos fármacos , Plântula/efeitos dos fármacos , Sementes/efeitos dos fármacos , Biomassa , Brassica napus/metabolismo , Núcleo Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Malondialdeído/metabolismo , Meristema/efeitos dos fármacos , Meristema/metabolismo , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Sementes/metabolismo
18.
Plant Biotechnol J ; 16(2): 628-637, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28733985

RESUMO

High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.


Assuntos
Nicotiana/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/efeitos dos fármacos , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/metabolismo , Folhas de Planta/genética , Nicotiana/genética
19.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28183730

RESUMO

Ca2+ is a second messenger in many physiological and phytopathological processes. Peroxisomes are subcellular compartments with an active oxidative and nitrosative metabolism. Previous studies have demonstrated that peroxisomal nitric oxide (NO) generation is dependent on Ca2+ and calmodulin (CaM). Here, we used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein (CFP) containing a type 1 peroxisomal-targeting signal motif (PTS1; CFP-PTS1), which enables peroxisomes to be visualized in vivo, and also used a cell-permeable fluorescent probe for Ca2+ Analysis by confocal laser-scanning microscopy (CLSM) enabled us to visualize the presence of endogenous Ca2+ in the peroxisomes of both roots and guard cells. The presence of Ca2+ in peroxisomes and the import of CFP-PTS1 are drastically disrupted by both CaM antagonist and glutathione (GSH). Furthermore, the activity of three peroxisomal enzymes (catalase, glycolate oxidase and hydroxypyruvate reductase) containing PTS1 was clearly affected in these conditions, with a decrease of between 41 and 51%. In summary, data show that Ca2+ and CaM are strictly necessary for protein import and normal functionality of peroxisomal enzymes, including antioxidant and photorespiratory enzymes, as well as for NO production.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Peroxissomos/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/farmacologia , Óxido Nítrico/farmacologia , Peroxissomos/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos
20.
Molecules ; 22(10)2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065548

RESUMO

Cadmium is a well-known elicitor of melatonin synthesis in plants, including rice. However, the mechanisms by which cadmium induces melatonin induction remain elusive. To investigate whether cadmium influences physical integrities in subcellular organelles, we treated tobacco leaves with either CdCl2 or AlCl3 and monitored the structures of subcellular organelles-such as chloroplasts, mitochondria, and the endoplasmic reticulum (ER)-using confocal microscopic analysis. Unlike AlCl3 treatment, CdCl2 (0.5 mM) treatment significantly disrupted chloroplasts, mitochondria, and ER. In theory, the disruption of chloroplasts enabled chloroplast-expressed serotonin N-acetyltransferase (SNAT) to encounter serotonin in the cytoplasm, leading to the synthesis of N-acetylserotonin followed by melatonin synthesis. In fact, the disruption of chloroplasts by cadmium, not by aluminum, gave rise to a huge induction of melatonin in rice leaves, which suggests that cadmium-treated chloroplast disruption plays an important role in inducing melatonin in plants by removing physical barriers, such as chloroplast double membranes, allowing SNAT to gain access to the serotonin substrate enriched in the cytoplasm.


Assuntos
Cádmio/farmacologia , Cloroplastos/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Melatonina/metabolismo , Mitocôndrias/metabolismo , Nicotiana/metabolismo , Oryza/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Cloroplastos/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA