Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.409
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 551, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252079

RESUMO

Chemodynamic therapy represents a novel tumor therapeutic modality via triggering catalytic reactions in tumors to yield highly toxic reactive oxygen species (ROS). Nevertheless, low efficiency catalytic ability, potential systemic toxicity and inefficient tumor targeting, have hindered the efficacy of chemodynamic therapy. Herein, a rationally designed catalytic nanoplatform, composed of folate acid conjugated liposomes loaded with copper peroxide (CP) and chloroquine (CQ; a clinical drug) (denoted as CC@LPF), could power maximal tumor cytotoxicity, mechanistically via maneuvering endogenous and exogenous copper for a highly efficient catalytic reaction. Despite a massive autophagosome accumulation elicited by CP-powered autophagic initiation and CQ-induced autolysosomal blockage, the robust ROS, but not aberrant autophagy, underlies the synergistic tumor inhibition. Otherwise, this combined mode also elicits an early onset, above all, long-term high-level existence of immunogenic cell death markers, associated with ROS and aberrant autophagy -triggered endoplasmic reticulum stress. Besides, CC@LPF, with tumor targeting capability and selective tumor cytotoxicity, could elicit intratumor dendritic cells (mainly attributed to CQ) and tumor infiltrating CD8+ T cells, upon combining with PD-L1 therapeutic antibody, further induce significant anti-tumor effect. Collectively, the rationally designed nanoplatform, CC@LPF, could enhance tumor chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment.


Assuntos
Cobre , Imunoterapia , Espécies Reativas de Oxigênio , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Cobre/química , Cobre/farmacologia , Camundongos , Imunoterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Lipossomos/química , Catálise , Autofagia/efeitos dos fármacos , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Cloroquina/farmacologia , Feminino , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
Carbohydr Polym ; 346: 122637, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245502

RESUMO

Tumor vaccines have become a promising approach for cancer treatment by triggering antigen-specific responses against tumors. However, autophagy and immunosuppressive tumor microenvironment (TME) reduce antigen exposure and immunogenicity, which limit the effect of tumor vaccines. Here, we develop fucoidan (Fuc) based chlorin e6 (Ce6)-chloroquine (CQ) self-assembly hydrogels (CCFG) as in situ vaccines. Ce6 triggers immune response in situ by photodynamic therapy (PDT) induced immunogenic cell death (ICD) effect, which is further enhanced by macrophage polarization of Fuc and autophagy inhibition of CQ. In vivo studies show that CCFG effectively enhances antigen presentation under laser irradiation, which induces a powerful in situ vaccine effect and significantly inhibits tumor metastasis and recurrence. Our study provides a novel approach for enhancing tumor immunotherapy and inhibiting tumor recurrence and metastasis.


Assuntos
Autofagia , Vacinas Anticâncer , Clorofilídeos , Cloroquina , Hidrogéis , Imunoterapia , Macrófagos , Fotoquimioterapia , Polissacarídeos , Porfirinas , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/imunologia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Autofagia/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Imunoterapia/métodos , Fotoquimioterapia/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cloroquina/farmacologia , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos Endogâmicos BALB C , Feminino
3.
Int J Nanomedicine ; 19: 6777-6809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983131

RESUMO

Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.


Assuntos
Antineoplásicos , Autofagia , Cloroquina , Neoplasias , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Autofagia/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico
4.
Allergol Immunopathol (Madr) ; 52(4): 97-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970272

RESUMO

INTRODUCTION AND OBJECTIVES: Macrophage-induced inflammation plays a key role in defense against injury and harmful pathogens. Autophagy and the inflammatory response are associated; however, the relationship between the autophagy pathway and lipopolysaccharide (LPS)- induced inflammatory responses remains unknown. We aimed to determine the effect of autophagy on the LPS-induced myeloid differentiation factor 88 (MyD88)/nuclear transcription factor kB (NF-kB) pathway-mediated inflammatory response in RAW264.7 cells. MATERIALS AND METHODS: To determine the effect of autophagy on the LPS-induced inflammatory response, using various in vitro assays, we determined the effect of autophagy inhibitors and inducers on the inflammatory response in RAW264.7 cells. RESULTS: Chloroquine (CQ), an autophagy inhibitor, suppressed pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNFα) in LPS-stimulated RAW264.7 cells. CQ also affected inflammatory mediators such as myeloid differentiation factor 88 and NF-kB in LPS-stimulated RAW264.7 cells. CONCLUSION: This study demonstrated that CQ regulates the LPS-induced inflammatory response in RAW264.7 cells. We propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators using CQ is a promising therapeutic approach for preventing inflammatory injury. CQ serves as a potential therapeutic target for treating various inflammatory diseases.


Assuntos
Cloroquina , Citocinas , Lipopolissacarídeos , Macrófagos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Animais , Camundongos , Cloroquina/farmacologia , Células RAW 264.7 , NF-kappa B/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Citocinas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Inflamação/imunologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo
5.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000565

RESUMO

The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.


Assuntos
Antineoplásicos , Autofagia , Neoplasias , Humanos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/farmacologia
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928131

RESUMO

Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 µM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Cloroquina , Eritrócitos , Hemoglobinas , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Cloroquina/farmacologia , Hemoglobinas/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Trifosfato de Adenosina/metabolismo , Antimaláricos/farmacologia , Caspase 3/metabolismo
7.
Biomater Sci ; 12(15): 3918-3932, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38939985

RESUMO

The thioredoxin system is involved in cancer development and therefore is a promising target for cancer chemotherapy. Thioredoxin reductase (TrxR) is a key component of the thioredoxin (Trx) system, and is overexpressed in many cancers to inhibit apoptosis-related proteins. Alternatively, inhibition of thioredoxin reductase and upregulation of apoptosis factors provide a therapeutic strategy for anti-tumor treatment. In this study, an ultrasound-activatable meso-organosilica nanomedicine was prepared by integrating chloroquine (CQ) into hollow mesoporous organosilica (CQ@MOS). The meso-organosilica nanomedicine can inhibit the activity of thioredoxin reductase, elevate cellular reactive oxygen species (ROS) levels, upregulate the pro-apoptotic factors in the c-Jun N-terminal kinase (JNK) apoptosis pathway and induce autophagy inhibition, further resulting in mitochondrial membrane potential (MMP) depolarization and cellular ATP content decrease, ultimately causing significant damage to tumor cells. Moreover, CQ@MOS can efficiently deliver chloroquine into cancer cells and promote an enhanced sonodynamic effect for effective anti-tumor chemotherapy and sonodynamic therapy. This study may enlighten us on a new anti-tumor strategy and suggest its promising applications in cancer treatments.


Assuntos
Antineoplásicos , Apoptose , Nanomedicina , Tiorredoxina Dissulfeto Redutase , Humanos , Apoptose/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cloroquina/farmacologia , Cloroquina/química , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Animais , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Terapia por Ultrassom
8.
BMC Pharmacol Toxicol ; 25(1): 32, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778384

RESUMO

BACKGROUND: Pruritus, or itching, is a distressing symptom associated with various dermatological and systemic diseases. L-carnitine (ßeta hydroxy-γ-tri methyl amino-butyric acid), is a naturally occurring substance, it controls numerous physiological processes. The present research aims to identify L-carnitine for its anti-pruritic effect via nitric oxide-dependent mechanism. METHODS: Chloroquine-induced pruritus serves as an experimental model to investigate possible therapeutic interventions. In this study, we evaluated the efficacy of L-carnitine in combating oxidative stress, nitric oxide, and inflammatory cytokines in a chloroquine-induced pruritus model. RESULTS: L-carnitine treatment significantly reduced scratching behavior compared to the disease group (***P < 0.001 vs. chloroquine group), indicating its antipruritic potential. The markers of oxidative stress, GST, GSH, Catalase, and LPO were dysregulated in the disease model, but administration of L-carnitine restored GST, GSH, and Catalase levels and decreased LPO levels (***P < 0.001 vs. chloroquine group), thereby alleviating oxidative stress. L-carnitine also reduced nitric oxide synthase (NOS) activity, suggesting that it modulates nitric oxide signaling pathways involved in pruritus. In addition, L-carnitine lowered levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), inflammatory marker nuclear factor kappa B (p-NFκB) and also reduces an inflammatory enzyme, cyclooxygenase-2 (COX-2), determined by ELISA (Enzyme-Linked Immunosorbent Assay) (***P < 0.001 vs. chloroquine group). It downregulates nNOS mRNA expression confirmed by real-time polymerase chain reaction (RT-PCR). CONCLUSION: These findings highlight the therapeutic effects of L-carnitine in alleviating chloroquine-induced pruritus.


Assuntos
Carnitina , Cloroquina , Óxido Nítrico , Estresse Oxidativo , Prurido , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Prurido/tratamento farmacológico , Prurido/induzido quimicamente , Prurido/metabolismo , Óxido Nítrico/metabolismo , Carnitina/farmacologia , Carnitina/uso terapêutico , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Antipruriginosos/uso terapêutico , Antipruriginosos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo
9.
Chem Commun (Camb) ; 60(42): 5514-5517, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38693792

RESUMO

In this study, we propose a novel therapy system composed of UiO-66 nanoparticles, which contain quercetin combined with chloroquine (UQCNP), to achieve dual autophagy-ubiquitination blockade. Through UiO-66 NP drug loading, the solubility of quercetin (a proteasome inhibitor) was improved under physiological conditions, thereby increasing its effective concentration at the tumor site. The cell experiment results showed that UQCNP significantly increased the apoptosis rate of 4T1 cells by 73.6%, which was significantly higher than other groups. Transmission electron microscopy results showed that the autophagosome of cells in the UQCNP treatment group was significantly lower than that in other treatment groups. Moreover, western blot results showed that, compared with other groups, LC3 expression and proteasome activity (p < 0.01), as well as the tumor volume of mice treated with UQCNP (p < 0.01) were significantly reduced. These results indicate that UQCNP achieves effective tumor therapy by blocking the autophagy and proteasome pathways synchronously.


Assuntos
Autofagia , Cloroquina , Nanopartículas , Quercetina , Ubiquitinação , Quercetina/farmacologia , Quercetina/química , Cloroquina/farmacologia , Cloroquina/química , Animais , Autofagia/efeitos dos fármacos , Camundongos , Nanopartículas/química , Ubiquitinação/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Humanos
10.
ACS Appl Mater Interfaces ; 16(20): 26590-26603, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742307

RESUMO

Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Dióxido de Silício/química , Cloroquina/farmacologia , Cloroquina/química , Camundongos Endogâmicos BALB C
11.
Aging (Albany NY) ; 16(9): 7683-7703, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683121

RESUMO

Ferroptosis, an iron-triggered modality of cellular death, has been reported to closely relate to human aging progression and aging-related diseases. However, the involvement of ferroptosis in the development and maintenance of senescent cells still remains elusive. Here, we established a doxorubicin-induced senescent HSkM cell model and found that both iron accumulation and lipid peroxidation increase in senescent cells. Moreover, such iron overload in senescent cells has changed the expression panel of the ferroptosis-response proteins. Interestingly, the iron accumulation and lipid peroxidation does not trigger ferroptosis-induced cell death. Oppositely, senescent cells manifest resistance to the ferroptosis inducers, compared to the proliferating cells. To further investigate the mechanism of ferroptosis-resistance for senescent cells, we traced the iron flux in cell and found iron arrested in lysosome. Moreover, disruption of lysosome functions by chloroquine and LLOMe dramatically triggered the senescent cell death. Besides, the ferroitinophagy-related proteins FTH1/FTL and NCOA4 knockdown also increases the senescent cell death. Thus, we speculated that iron retardation in lysosome of senescent cells is the key mechanism for ferroptosis resistance. And the lysosome is a promising target for senolytic drugs to selectively clear senescent cells and alleviate the aging related diseases.


Assuntos
Senescência Celular , Ferroptose , Ferro , Lisossomos , Ferroptose/efeitos dos fármacos , Humanos , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doxorrubicina/farmacologia , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Linhagem Celular , Cloroquina/farmacologia , Sobrecarga de Ferro/metabolismo , Ferritinas , Oxirredutases
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 470-475, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660854

RESUMO

OBJECTIVE: To investigate the influence of novel CRM1 inhibitor KPT-330 on the autophagy of mantle cell lymphoma (MCL) cells, and effect of KPT-330 on the prolifiration of MCL cells in the presence or absence of autophagy inhibitor. METHODS: CCK-8 assay was used to detect the effect of KPT-330 on MCL cell lines Z-138, Jeko-1, Granta-519, Rec-1. The effect of KPT-330 on autophagy features were determined by detecting acidic vesicular organelles (AVO) by MDC staining under fluorescence microscope and detecting protein expression of LC3B-II assessed by Western blot. Further combined application of lysosomal inhibitor Chloroquine (CQ) was used to observe its effect on the increase of LC3B-Ⅱ caused by KPT-330. CalcuSyn 2.0 software was used to detected the Combination index (CI) of KPT-330 combined with CQ. RESULTS: The proliferation of MCL cell lines (Z-138, Jeko-1, Grant-519, Rec-1) could be inhibited by KPT-330 in a dose-dependent manner (r =0.930, 0.946, 0.691, 0.968 respectively). The number of acidic vesicular organelles (AVO) and the expression of LC3B-II were increased in KPT-330 treated Jeko-1 and Granta-519 cells in a dose-dependent manner (r Jeko-1=0.993, r Granta-519=0.971). LC3B-II protein amounts still increased upon KPT-330 treatment with the existence of lysosomal inhibitor CQ in Jeko-1 and Granta-519 cells, which was higher than CQ or KPT-330 single drug group. The combination of KPT-330 and CQ produced the synergistic effects on cells proliferation inhibition with CalcuSyn 2.0 analysis. CONCLUSION: KPT-330 can inhibit MCL cell proliferation and induce autophagy. KPT-330 combined with autophagy inhibitor CQ could produce synergistic anti MCL effects, providing experimental basis for clinical combination therapy.


Assuntos
Autofagia , Proliferação de Células , Linfoma de Célula do Manto , Linfoma de Célula do Manto/tratamento farmacológico , Humanos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia
13.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664366

RESUMO

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Assuntos
Autofagia , Moléculas de Adesão Celular , Morfolinas , Nectinas , Neoplasias da Bexiga Urinária , Autofagia/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Humanos , Animais , Linhagem Celular Tumoral , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Nus , Cromonas/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427475

RESUMO

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/patologia , Suramina/farmacologia , Suramina/metabolismo , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Prosencéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia
15.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
16.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428312

RESUMO

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Assuntos
Medicamentos de Ervas Chinesas , Ligustrum , Osteoporose , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Osteoporose/tratamento farmacológico , Osteoblastos , Apoptose , Autofagia , Cloroquina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Parasite Immunol ; 46(3): e13030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498004

RESUMO

In previous studies, the inhibitory effect of chloroquine on NLRP3 inflammasome and heme production was documented. This may be employed as a double-bladed sword in schistosomiasis (anti-inflammatory and parasiticidal). In this study, chloroquine's impact on schistosomiasis mansoni was investigated. The parasitic load (worm/egg counts and reproductive capacity index [RCI]), i-Nos/Arg-1 expression, splenomegaly, hepatic insult and NLRP3-immunohistochemical expression were assessed in infected mice after receiving early and late repeated doses of chloroquine alone or dually with praziquantel. By early treatment, the least RCI was reported in dually treated mice (41.48 ± 28.58) with a significant reduction in worm/egg counts (3.50 ± 1.29/2550 ± 479.58), compared with either drug alone. A marked reduction in the splenic index was achieved by prolonged chloroquine administration (alone: 43.15 ± 5.67, dually: 36.03 ± 5.27), with significantly less fibrosis (15 ± 3.37, 14.25 ± 2.22) than after praziquantel alone (20.5 ± 2.65). Regarding inflammation, despite the praziquantel-induced significant decrease in NLRP3 expression, the inhibitory effect was marked after dual and chloroquine administration (liver: 3.13 ± 1.21/3.45 ± 1.23, spleen: 5.7 ± 1.6/4.63 ± 2.41). i-Nos RNA peaked with early/late chloroquine administration (liver: 68.53 ± 1.8/57.78 ± 7.14, spleen: 63.22 ± 2.06/62.5 ± 3.05). High i-Nos echoed with a parasiticidal and hepatoprotective effect and may indicate macrophage-1 polarisation. On the flip side, the chloroquine-induced low Arg-1 seemed to abate immune tolerance and probably macrophage-2 polarisation. Collectively, chloroquine synergised the praziquantel-schistosomicidal effect and minimised tissue inflammation, splenomegaly and hepatic fibrosis.


Assuntos
Doenças dos Roedores , Esquistossomose mansoni , Animais , Camundongos , Cloroquina/farmacologia , Regulação para Baixo , Reposicionamento de Medicamentos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Carga Parasitária , Praziquantel/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esplenomegalia
18.
Mol Cell Endocrinol ; 586: 112196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462123

RESUMO

Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.


Assuntos
Neoplasias Hipofisárias , Ratos , Camundongos , Animais , Neoplasias Hipofisárias/tratamento farmacológico , Linhagem Celular Tumoral , Cloroquina/farmacologia , Temozolomida/farmacologia , Proliferação de Células , Apoptose , Autofagia , Hormônio Adrenocorticotrópico/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
19.
Future Med Chem ; 16(8): 737-749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456272

RESUMO

Aim: To synthesize novel chloroquine analogues and evaluate them for antimicrobial and cytotoxic potential. Methods: Novel analogues were synthesized from chloroquine by nucleophilic substitution reaction at the 4-amino position. Results: Analogue CS1 showed maximum antimicrobial potential (30.3 ± 0.15 mm zone) against Pseudomonas aeruginosa and produced a 19.2 ± 0.21 mm zone against Candida albicans, while CS0 produced no zone at the same concentration. Analogue CS9 has excellent cytotoxic potential (HeLa cell line), showing 100% inhibition (IC50 = 8.9 ± 1.2 µg/ml), compared with CS0 (61.9% inhibition at 30 µg/ml). Conclusion: These synthesized chloroquine analogues have excellent activity against different microbial strains and cervical cancer cell lines (HeLa) compared with their parent molecule.


[Box: see text].


Assuntos
Antineoplásicos , Candida albicans , Cloroquina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Humanos , Candida albicans/efeitos dos fármacos , Cloroquina/farmacologia , Cloroquina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química
20.
Antimicrob Agents Chemother ; 68(5): e0169023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501806

RESUMO

Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.


Assuntos
Trifosfato de Adenosina , Antimaláricos , Transferência Ressonante de Energia de Fluorescência , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Trifosfato de Adenosina/metabolismo , Antimaláricos/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Quinina/farmacologia , Doxiciclina/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA