Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 114(12): 2907-2919, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28853155

RESUMO

The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L-1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Análise do Fluxo Metabólico/métodos , Riboflavina/biossíntese , Acetato de Sódio/metabolismo , Acetona/isolamento & purificação , Reatores Biológicos/microbiologia , Butanóis/isolamento & purificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Simulação por Computador , Meios de Cultura/metabolismo , Etanol/isolamento & purificação , Fermentação , Modelos Biológicos , Riboflavina/isolamento & purificação
2.
J Biosci Bioeng ; 122(3): 364-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27012376

RESUMO

This article aims to validate the use of calorimetry to measure the growth of anaerobic microbes. It has been difficult to monitor the growth of strict anaerobes while maintaining optimal growth conditions. Traditionally, optical density and ATP concentration are usually used as measures of the growth of anaerobic microbes. However, to take these measurements it is necessary to extract an aliquot of the culture, which can be difficult while maintaining anaerobic conditions. In this study, calorimetry was used to continuously and nondestructively measure the heat generated by the growth of anaerobic microbes as a function of time. Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium cellulovorans were used as representative anaerobic microbes. Using a multiplex isothermal calorimeter, we observed that peak time (tp) of C. acetobutylicum heat evolution increased as the inoculation rate decreased. This strong correlation between the inoculation rate and tp showed that it was possible to measure the growth rate of anaerobic microbes by calorimetry. Overall, our results showed that there is a very good correlation between heat evolution and optical density/ATP concentration, validating the use of the method.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Calorimetria/métodos , Temperatura Alta , Trifosfato de Adenosina/metabolismo , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/crescimento & desenvolvimento , Clostridium beijerinckii/metabolismo , Clostridium cellulovorans/crescimento & desenvolvimento , Clostridium cellulovorans/metabolismo
3.
Microb Cell Fact ; 13: 139, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25231163

RESUMO

BACKGROUND: Clostridium acetobutylicum fermentations are promising for production of commodity chemicals from heterogeneous biomass due to the wide range of substrates the organism can metabolize. Much work has been done to elucidate the pathways for utilization of aldoses, but little is known about metabolism of more oxidized substrates. Two oxidized hexose derivatives, gluconate and galacturonate, are present in low cost feedstocks, and their metabolism will contribute to overall metabolic output of these substrates. RESULTS: A complete metabolic network for glucose, gluconate, and galacturonate utilization was generated using online databases, previous studies, genomic context, and experimental data. Gluconate appears to be metabolized via the Entner-Doudoroff pathway, and is likely dehydrated to 2-keto-3-deoxy-gluconate before phosphorylation to 2-keto-3-deoxy-6-P-gluconate. Galacturonate appears to be processed via the Ashwell pathway, converging on a common metabolite for gluconate and galacturonate metabolism, 2-keto-3-deoxygluconate. As expected, increasingly oxidized substrates resulted in increasingly oxidized products with galacturonate fermentations being nearly homoacetic. Calculations of expected ATP and reducing equivalent yields and experimental data suggested galacturonate fermentations were reductant limited. Galacturonate fermentation was incomplete, which was not due solely to product inhibition or the inability to utilize low concentrations of galacturonate. Removal of H2 and CO2 by agitation resulted in faster growth, higher cell densities, formation of relatively more oxidized products, and higher product yields for cultures grown on glucose or gluconate. In contrast, cells grown on galacturonate showed reduced growth rates upon agitation, which was likely due to loss in reductant in the form of H2. The growth advantage seen on agitated glucose or gluconate cultures could not be solely attributed to improved ATP economics, thereby indicating other factors are also important. CONCLUSIONS: The metabolic network presented in this work should facilitate similar reconstructions in other organisms, and provides a further understanding of the pathways involved in metabolism of oxidized feedstocks and carbohydrate mixtures. The nearly homoacetic fermentation during growth on galacturonate indicates further optimization of this and related organisms could provide a route to an effective biologically derived acetic acid production platform. Furthermore, the pathways could be targeted to decrease production of undesirable products during fermentations of heterogeneous biomass.


Assuntos
Clostridium acetobutylicum/metabolismo , Fermentação , Hexoses/metabolismo , Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Reatores Biológicos/microbiologia , Carbono/farmacologia , Dióxido de Carbono/metabolismo , Cromatografia Líquida de Alta Pressão , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Ácidos Hexurônicos/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
4.
Appl Microbiol Biotechnol ; 98(13): 5915-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676748

RESUMO

Solvent screening for in situ liquid extraction of products from acetone-butanol-ethanol (ABE) fermentation was carried out, taking into account biological parameters (biocompatibility, bioavailability, and product yield) and extraction performance (partition coefficient and selectivity) determined in real fermentation broth. On the basis of different solvent characteristics obtained from literature, 16 compounds from different chemical families were selected and experimentally evaluated for their extraction capabilities in a real ABE fermentation broth system. From these compounds, nine potential solvents were also tested for their biocompatibility towards Clostridium acetobutylicum. Moreover, bioavailability and differences in substrate consumption and total n-butanol production with respect to solvent-free fermentations were quantified for each biocompatible solvent. Product yield was enhanced in the presence of organic solvents having higher affinity for butanol and butyric acid. Applying this methodology, it was found that the Guerbet alcohol 2-butyl-1-octanol presented the best extracting characteristics (the highest partition coefficient (6.76) and the third highest selectivity (644)), the highest butanol yield (27.4 %), and maintained biocompatibility with C. acetobutylicum.


Assuntos
Acetona/isolamento & purificação , Butanóis/isolamento & purificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Etanol/isolamento & purificação , Solventes/química , Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/efeitos dos fármacos , Etanol/metabolismo , Fermentação , Programas de Rastreamento , Solventes/isolamento & purificação , Solventes/toxicidade
5.
Metab Eng ; 18: 1-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23541907

RESUMO

Clostridium acetobutylicum was metabolically engineered to produce a biofuel consisting of an isopropanol/butanol/ethanol mixture. For this purpose, different synthetic isopropanol operons were constructed and introduced on plasmids in a butyrate minus mutant strain (C. acetobutylicum ATCC 824 Δcac15ΔuppΔbuk). The best strain expressing the isopropanol operon from the thl promoter was selected from batch experiments at pH 5. By further optimizing the pH of the culture, a biofuel mixture with almost no by-products was produced at a titer, a yield and productivity never reached before, opening the opportunities to develop an industrial process for alternative biofuels with Clostridial species. Furthermore, by performing in vivo and in vitro flux analysis of the synthetic isopropanol pathway, this flux was identified to be limited by the [acetate](int) and the high Km of CoA-transferase for acetate. Decreasing the Km of this enzyme using a protein engineering approach would be a good target for improving isopropanol production and avoiding acetate accumulation in the culture medium.


Assuntos
2-Propanol/metabolismo , Biocombustíveis , Butanóis/metabolismo , Clostridium acetobutylicum , Etanol/metabolismo , Engenharia Metabólica , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Concentração de Íons de Hidrogênio , Óperon/genética , Plasmídeos/genética
6.
Methods ; 61(3): 269-76, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23523702

RESUMO

Clostridium acetobutylicum (Cac) is an anaerobic, endospore-forming, Gram-positive bacterium with tremendous promise for use as a biocatalyst for the production of fuels and solvents. Cac proteomic sample preparation for shotgun analysis typically involves a multitude of reagents for harsh lysis conditions and to maintain protein solubility. We describe a protein extraction and preparation method for Cac that is compatible with proteomic shotgun analysis using isobaric labeling approaches. The method is applied to the analysis of Cac grown under butanol stress and labeled using iTRAQ 4-plex reagents. This method relies on the use of calcium carbonate to facilitate lysis by sonication and a commercially available kit to remove detergents prior to labeling. This workflow resulted in the identification and quantitation of 566 unique proteins using ProteinPilot software with a false discovery rate of 0.01% for peptide matches and 0.70% for protein matches. Ninety-five proteins were found to have statistically higher expression levels in butanol-stressed Cac as compared to non-stressed Cac. Sixty-one proteins were found to have statistically lower expression levels in stressed versus non-stressed cells. This method may be applicable to other Gram-positive organisms.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Clostridium acetobutylicum/química , Peptídeos/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Butanóis/farmacologia , Carbonato de Cálcio/química , Cromatografia Líquida , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Fermentação , Anotação de Sequência Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteoma/química , Proteoma/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem , Fluxo de Trabalho
7.
Methods Mol Biol ; 985: 85-101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23417800

RESUMO

The biochemical composition of a cell is very complex and dynamic. It varies greatly among different organisms and environmental conditions. Inclusion of proper cell composition data is critical for accurate genome-scale metabolic flux modeling using flux balance analysis (FBA). However, determining cell composition experimentally is currently time-consuming and resource intensive. In this chapter, a method for predicting cell composition using a genome-scale model and "easy to measure" culture data (e.g., glucose uptake rate, and specific growth rate) is presented. The method makes use of a genetic algorithm for nonlinear optimization of a biomass equation (a mathematical description of cell composition). As a case study, the method was used to optimize a biomass equation for Escherichia coli MG1655 under multiple growth environments. The availability of experimentally determined (13)C flux data allowed a direct comparison with FBA predicted fluxes through the TCA cycle. Results showed dramatic improvement upon optimization of the biomass equation. In a second case study, biomass equation optimization was also applied to Clostridium acetobutylicum, an organism with less available biochemical cell composition data in the literature. The method produced a biomass equation highly similar to one determined experimentally for the closely related Gram-positive Bacillus subtilis.


Assuntos
Clostridium acetobutylicum/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Modelos Genéticos , Trifosfato de Adenosina/metabolismo , Algoritmos , Metabolismo dos Carboidratos , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Oxigênio/metabolismo , Software
8.
Biotechnol Bioeng ; 109(11): 2746-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22627864

RESUMO

Acetone-butanol-ethanol (ABE) fermentation with a hyper-butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed-batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid-liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed-batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n-butanol production from glucose.


Assuntos
1-Butanol/metabolismo , Clostridium acetobutylicum/metabolismo , Acetona/metabolismo , Clostridium acetobutylicum/crescimento & desenvolvimento , Meios de Cultura/química , Etanol/metabolismo , Fermentação , Gases/isolamento & purificação , Glucose/metabolismo , Fatores de Tempo
9.
Microbiology (Reading) ; 158(Pt 7): 1918-1929, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22556358

RESUMO

Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.


Assuntos
Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Ferro/metabolismo , Proteínas Repressoras/deficiência , Anaerobiose , Proteínas de Bactérias , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/fisiologia , Perfilação da Expressão Gênica , Análise em Microsséries , Mutagênese Insercional , Estresse Oxidativo , Riboflavina/metabolismo
10.
Enzyme Microb Technol ; 50(3): 165-72, 2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22305171

RESUMO

An assessment of both the growth and the metabolism of acidogenic cells Clostridium acetobutylicum DSM 792 is reported in the paper. Tests were carried out in a CSTR under controlled pH conditions. Cultures were carried out using a semi-synthetic medium supplemented with lactose as carbon source. Acids and solvents, that represent products of the ABE process, have been purposely added in controlled amounts to the culture medium to investigate their effects on the product yields. The mass fractional yield of biomass and products were expressed as a function of the specific growth rate taking into account the Pirt model. The maximum ATP yield and the maintenance resulted 29.1 g(DM)/mol(ATP) and 0.012 mol(ATP)/g(DM)h, respectively. Quantitative features of the C. acetobutylicum growth model were in good agreement with experimental results. The model proposes as a tool to estimate the mass fractional yield even for fermentations carried out under conditions typical of the solventogenesis.


Assuntos
Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Butiratos/metabolismo , Clostridium acetobutylicum , Lactose/metabolismo , Modelos Biológicos , Solventes/metabolismo , Acetatos/farmacologia , Biomassa , Reatores Biológicos , Biotecnologia/métodos , Butiratos/farmacologia , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Solventes/farmacologia
11.
Metab Eng ; 13(4): 426-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21296183

RESUMO

To improve the aero- and solvent tolerance of the solvent-producing Clostridium acetobutylicum, glutathione biosynthetic capability was introduced into C. acetobutylicum DSM1731 by cloning and over-expressing the gshAB genes from Escherichia coli. Strain DSM1731(pITAB) produces glutathione, and shows a significantly improved survival upon aeration and butanol challenge, as compared with the control. In addition, strain DSM1731(pITAB) exhibited an improved butanol tolerance and an increased butanol production capability, as compared with the recombinant strains with only gshA or gshB gene. These results illustrated that introducing glutathione biosynthetic pathway, which is redundant for the metabolism of C. acetobutylicum, can increase the robustness of the host to achieve a better solvent production.


Assuntos
Butanóis/metabolismo , Clostridium acetobutylicum , Engenharia Genética , Glutationa , Organismos Geneticamente Modificados , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Glutationa/biossíntese , Glutationa/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Organismos Geneticamente Modificados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA