Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Drug Target ; 32(2): 213-222, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164940

RESUMO

Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Clostridium botulinum , Humanos , Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/uso terapêutico , Botulismo/tratamento farmacológico , Botulismo/prevenção & controle , Clostridium botulinum/metabolismo , Anticorpos Monoclonais , Antivirais/uso terapêutico
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1671-1686, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37707681

RESUMO

Clostridium botulinum C3 exoenzyme (C3bot) exclusively inhibits RhoA, B and C by ADP-ribosylation and is therefore used as a cell-permeable tool for investigating the cellular role of these Rho-GTPases. Rho-GTPases represent a molecular switch integrating different receptor signalling to downstream cascades including transcriptional cascades that regulate various cellular processes, such as regulation of actin cytoskeleton and cell proliferation. C3bot-induced inhibition of RhoA leads to reorganization of the actin cytoskeleton, morphological changes, and inhibition of cell proliferation as well as modulation of inflammatory response. In this study, we characterized the C3bot-mediated effects on a full-thickness skin model exhibiting a psoriasis-like phenotype through the addition of cytokines. Indeed, after the addition of cytokines, a decrease in epidermal thickness, parakeratosis, and induction of IL-6 was detected. In the next step, it was studied whether C3bot caused a reduction in the cytokine-induced psoriasis-like phenotypes. Basal addition of C3bot after cytokine induction of the full-thickness skin models caused less epidermal thinning and reduced IL-6 abundance. Simultaneous basal incubation with cytokines and C3bot, IL-6 abundance was inhibited, but epidermal thickness was only moderately affected. When C3bot was added apically to the skin model, IL-6 abundance was reduced, but no further effects on the psoriasis-like phenotype of the epidermis were observed. In summary, C3bot inhibits the cytokine-induced expression of IL-6 and thus may have an impact on the pro-inflammatory immune response in the psoriasis-like phenotype.


Assuntos
Toxinas Botulínicas , Clostridium botulinum , Psoríase , Humanos , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Toxinas Botulínicas/farmacologia , Interleucina-6/metabolismo , ADP Ribose Transferases , Fenótipo , Proteínas rho de Ligação ao GTP/metabolismo , Psoríase/tratamento farmacológico
3.
Virulence ; 14(1): 2205251, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37157163

RESUMO

Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.


Assuntos
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Lactente , Humanos , Clostridium botulinum/metabolismo , Botulismo/microbiologia , Botulismo/terapia , Virulência , Neurotoxinas/metabolismo , Toxinas Botulínicas/metabolismo
4.
Biochem Biophys Res Commun ; 632: 55-61, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36201881

RESUMO

Clostridium botulinum produces seven botulinum neurotoxin (BoNT) serotypes. In nature, BoNT exists as a part of the progenitor toxin complex (PTC) through associations with neurotoxin associated proteins (NAPs), including nontoxic nonhemagglutinin and hemagglutinin (HA) complex, consists of HA-70, HA-17 and HA-33. Because PTC displays higher oral toxicity than pure BoNTs, NAPs play a critical role in food poisoning. In a previous study, we demonstrated that the NAP complex in mature large-sized PTC (L-PTC) from serotypes C and D concomitantly induced cell death and cytoplasmic vacuolation in the rat intestinal epithelial cell line IEC-6. Here, we found that the serotype D NAP complex induces only cytoplasmic vacuolation in the normal rat kidney cell line NRK-52E without reducing cell viability. NAP complexes from serotype A and B L-PTCs did not affect cell viability or cytoplasmic vacuolation in IEC-6 and NRK-52E cells. Furthermore, we assessed the effect of immature L-PTCs with fewer HA-33/HA-17 trimers (two HA-33 and one HA-17) than mature L-PTCs on cell viability and cytoplasmic vacuolation in IEC-6 and NRK-52E cells. As a result, mature L-PTCs with the maximum number of HA-33/HA-17 trimers displayed the greatest potency. Consequently, the reduction in cell viability and vacuolation induction are related to the number of HA-33/HA-17 trimers in PTC. The discovery of an epithelial cell model where botulinum PTC specifically induces vacuolization may help clarify the unknown cytotoxicity of PTC, which plays an important role in the trans-epithelial transport of the toxin.


Assuntos
Toxinas Botulínicas , Clostridium botulinum , Animais , Ratos , Toxinas Botulínicas/química , Linhagem Celular , Clostridium botulinum/metabolismo , Células Epiteliais/metabolismo , Hemaglutininas/metabolismo , Neurotoxinas , Sorogrupo
5.
Toxins (Basel) ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287979

RESUMO

The protein toxin C3bot from Clostridium botulinum is a mono-ADP-ribosyltransferase that selectively intoxicates monocyte-derived cells such as macrophages, osteoclasts, and dendritic cells (DCs) by cytosolic modification of Rho-A, -B, and -C. Here, we investigated the application of C3bot as well as its non-toxic variant C3botE174Q as transporters for selective delivery of cargo molecules into macrophages and DCs. C3bot and C3botE174Q facilitated the uptake of eGFP into early endosomes of human-monocyte-derived macrophages, as revealed by stimulated emission depletion (STED) super-resolution microscopy. The fusion of the cargo model peptide eGFP neither affected the cell-type selectivity (enhanced uptake into human macrophages ex vivo compared to lymphocytes) nor the cytosolic release of C3bot. Moreover, by cell fractionation, we demonstrated that C3bot and C3botE174Q strongly enhanced the cytosolic release of functional eGFP. Subsequently, a modular system was created on the basis of C3botE174Q for covalent linkage of cargos via thiol-maleimide click chemistry. The functionality of this system was proven by loading small molecule fluorophores or an established reporter enzyme and investigating the cellular uptake and cytosolic release of cargo. Taken together, non-toxic C3botE174Q is a promising candidate for the cell-type-selective delivery of small molecules, peptides, and proteins into the cytosol of macrophages and DCs.


Assuntos
Toxinas Botulínicas , Clostridium botulinum , Humanos , Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Macrófagos/metabolismo , ADP Ribose Transferases/metabolismo , Maleimidas/metabolismo , Compostos de Sulfidrila/metabolismo , Células Dendríticas/metabolismo
6.
Sci Rep ; 12(1): 4980, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322139

RESUMO

Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC297 BoNT/A1, referred to EGFP-A2' and EGFP-RBD', exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBD' to SV2C-LD was determined to be 5.45 µM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2', respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBD' to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2', respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBD'. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.


Assuntos
Toxinas Botulínicas Tipo A , Clostridium botulinum , Toxinas Botulínicas Tipo A/química , Clostridium botulinum/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo
7.
Toxins (Basel) ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918753

RESUMO

Clostridium botulinum C2 toxin is a clostridial binary toxin consisting of actin ADP-ribosyltransferase (C2I) and C2II binding components. Activated C2II (C2IIa) binds to cellular receptors and forms oligomer in membrane rafts. C2IIa oligomer assembles with C2I and contributes to the transport of C2I into the cytoplasm of host cells. C2IIa induces Ca2+-induced lysosomal exocytosis, extracellular release of the acid sphingomyelinase (ASMase), and membrane invagination and endocytosis through generating ceramides in the membrane by ASMase. Here, we reveal that C2 toxin requires the lysosomal enzyme cathepsin B (CTSB) during endocytosis. Lysosomes are a rich source of proteases, containing cysteine protease CTSB and cathepsin L (CTSL), and aspartyl protease cathepsin D (CTSD). Cysteine protease inhibitor E64 blocked C2 toxin-induced cell rounding, but aspartyl protease inhibitor pepstatin-A did not. E64 inhibited the C2IIa-promoted extracellular ASMase activity, indicating that the protease contributes to the activation of ASMase. C2IIa induced the extracellular release of CTSB and CTSL, but not CTSD. CTSB knockdown by siRNA suppressed C2 toxin-caused cytotoxicity, but not siCTSL. These findings demonstrate that CTSB is important for effective cellular entry of C2 toxin into cells through increasing ASMase activity.


Assuntos
Toxinas Botulínicas/metabolismo , Catepsina B/metabolismo , Membrana Celular/enzimologia , Clostridium botulinum/metabolismo , Endocitose , Lisossomos/enzimologia , Animais , Catepsina B/genética , Membrana Celular/microbiologia , Clostridium botulinum/patogenicidade , Cães , Exocitose , Interações Hospedeiro-Patógeno , Lisossomos/genética , Lisossomos/microbiologia , Células Madin Darby de Rim Canino , Esfingomielina Fosfodiesterase/metabolismo
8.
Methods Mol Biol ; 2132: 191-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32306328

RESUMO

Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is the most potent toxin and produced as a complex with non-toxic components. Food-borne botulism is caused by the ingestion of these BoNT complexes. Hemagglutinin (HA), one of the non-toxic components, is known to have lectin (carbohydrate binding) activity and E-cadherin-binding activity. These activities promote the intestinal absorption of BoNT. To elucidate the mechanism of the onset of food-borne botulism, we focused on the role of HA in the intestinal absorption of BoNT. We describe the functional analysis methods for HA, including the expression of recombinant proteins, binding to glycoproteins and epithelial cells, and localization in mouse intestinal tissue.


Assuntos
Caderinas/metabolismo , Clostridium botulinum/metabolismo , Hemaglutininas/farmacologia , Mucosa Intestinal/metabolismo , Adsorção , Animais , Toxinas Botulínicas/metabolismo , Células CACO-2 , Caderinas/química , Linhagem Celular , Clostridium botulinum/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Doenças Transmitidas por Alimentos/microbiologia , Hemaglutininas/química , Hemaglutininas/genética , Humanos , Mucosa Intestinal/microbiologia , Células Madin Darby de Rim Canino , Camundongos , Ligação Proteica/efeitos dos fármacos , Engenharia de Proteínas
9.
J Mol Biol ; 430(24): 5196-5206, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30539762

RESUMO

It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a ß-helix pentarepeat protein from the human pathogen Clostridium botulinum-a homolog of the fluoroquinolone resistance protein MfpA-using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight ß-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable ß-helix since it is structurally homologous to the smallest known ß-helix protein, a four-coil protein that is stable in solution.


Assuntos
Clostridium botulinum/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clostridium botulinum/química , Modelos Moleculares , Biossíntese de Proteínas , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Ribossomos/metabolismo
10.
J Proteome Res ; 17(3): 1120-1128, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29364680

RESUMO

Equine grass sickness (EGS) is a frequently fatal disease of horses, responsible for the death of 1 to 2% of the U.K. horse population annually. The etiology of this disease is currently uncharacterized, although there is evidence it is associated with Clostridium botulinum neurotoxin in the gut. Prevention is currently not possible, and ileal biopsy diagnosis is invasive. The aim of this study was to characterize the fecal microbiota and biofluid metabolic profiles of EGS horses, to further understand the mechanisms underlying this disease, and to identify metabolic biomarkers to aid in diagnosis. Urine, plasma, and feces were collected from horses with EGS, matched controls, and hospital controls. Sequencing the16S rRNA gene of the fecal bacterial population of the study horses found a severe dysbiosis in EGS horses, with an increase in Bacteroidetes and a decrease in Firmicutes bacteria. Metabolic profiling by 1H nuclear magnetic resonance spectroscopy found EGS to be associated with the lower urinary excretion of hippurate and 4-cresyl sulfate and higher excretion of O-acetyl carnitine and trimethylamine-N-oxide. The predictive ability of the complete urinary metabolic signature and using the four discriminatory urinary metabolites to classify horses by disease status was assessed using a second (test) set of horses. The urinary metabolome and a combination of the four candidate biomarkers showed promise in aiding the identification of horses with EGS. Characterization of the metabolic shifts associated with EGS offers the potential of a noninvasive test to aid premortem diagnosis.


Assuntos
Acetilcarnitina/urina , Cresóis/urina , Disbiose/diagnóstico , Hipuratos/urina , Doenças dos Cavalos/diagnóstico , Metilaminas/urina , Ésteres do Ácido Sulfúrico/urina , Acetilcarnitina/sangue , Animais , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Biomarcadores/sangue , Biomarcadores/urina , Clostridium botulinum/metabolismo , Clostridium botulinum/patogenicidade , Cresóis/sangue , Disbiose/sangue , Disbiose/microbiologia , Disbiose/urina , Fezes/microbiologia , Firmicutes/classificação , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Hipuratos/sangue , Doenças dos Cavalos/sangue , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/urina , Cavalos , Espectroscopia de Ressonância Magnética , Metilaminas/sangue , RNA Ribossômico 16S/genética , Ésteres do Ácido Sulfúrico/sangue
11.
Ann Clin Microbiol Antimicrob ; 16(1): 61, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923072

RESUMO

BACKGROUND: Botulism is a potentially fatal infection characterized by progressive muscle weakness, bulbar paralysis, constipation and other autonomic dysfunctions. A recent report suggested that cancer chemotherapy might increase the risk for the intestinal toxemia botulism in both adults and children. CASE PRESENTATION: We report a 5-year-old boy, who developed general muscle weakness, constipation, ptosis and mydriasis during the third induction therapy for relapsed acute myeloid leukemia. He had recent histories of multiple antibiotic therapy for bacteremia and intake of well water at home. Repeated bacterial cultures identified Clostridium botulinum producing botulinum neurotoxin A. Botulinum toxin A was isolated from his stools at 17, 21, and 23 days after the onset. Symptoms were self-limiting, and were fully recovered without anti-botulinum toxin globulin therapy. CONCLUSION: This is the second report of a pediatric case with cancer chemotherapy-associated intestinal toxemia botulism. Our case provides further evidence that the immunocompromised status due to anti-cancer treatments increases the risk for the development of botulism at all ages in childhood.


Assuntos
Botulismo/complicações , Clostridium botulinum/patogenicidade , Intestinos/microbiologia , Leucemia/complicações , Leucemia/tratamento farmacológico , Toxemia/complicações , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Infecções Bacterianas , Toxinas Botulínicas , Toxinas Botulínicas Tipo A/isolamento & purificação , California , Pré-Escolar , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/metabolismo , Tratamento Farmacológico , Fezes/química , Fezes/microbiologia , Humanos , Masculino , Doenças Raras
12.
Aesthet Surg J ; 37(suppl_1): S4-S11, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388718

RESUMO

During the late 1960s and early 1970s, Alan Scott showed that intramuscular injections of botulinum toxin (BoNT) corrected nonaccommodative strabismus without resorting to surgery. The UK doctors who trained with Scott soon realized the significant potential offered by BoNT type A as a therapeutic option for several difficult-to-treat diseases. This led to a collaboration between these pioneering clinicians and the Centre for Applied Microbiology and Research at Porton Down, United Kingdom, and, in turn, to the development and commercialization of abobotulinumtoxinA as Dysport (Dystonia/Porton Down; Ipsen Biopharm Ltd., Wrexham, UK). Dysport was approved in Europe for the treatment of specific dystonias in December 1990 and now has marketing authorizations in 75 countries. Since then, the use of BoNT in therapeutic and aesthetic indications has grown year-on-year, and continues to expand well beyond Scott's initial aim. For example, ongoing trials are assessing potential new indications for BoNT-A, including acne and psoriasis. Furthermore, a growing number of other BoNT products, often termed "biosimilars," together with innovative formulations of well-established BoNT types, are likely to reach the market over the next few years. This review focuses on the history of Dysport to mark the 25th anniversary of its first launch in the United Kingdom.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Técnicas Cosméticas/tendências , Fármacos Neuromusculares/uso terapêutico , Envelhecimento da Pele/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Medicamentos Biossimilares/administração & dosagem , Medicamentos Biossimilares/uso terapêutico , Blefarospasmo/tratamento farmacológico , Toxinas Botulínicas Tipo A/administração & dosagem , Ensaios Clínicos como Assunto , Clostridium botulinum/metabolismo , Músculos Faciais/efeitos dos fármacos , Humanos , Hiperidrose/tratamento farmacológico , Injeções Intramusculares/métodos , Fármacos Neuromusculares/administração & dosagem , Síndrome da Dor Patelofemoral/tratamento farmacológico , Psoríase/tratamento farmacológico , Estrabismo/tratamento farmacológico , Reino Unido
13.
Sci Rep ; 5: 13397, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324071

RESUMO

The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the 'LHn fold' across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors.


Assuntos
Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Células CHO , Clostridium botulinum/classificação , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Sorogrupo , Difração de Raios X
14.
J Biol Chem ; 288(33): 24223-33, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23779108

RESUMO

Botulinum neurotoxins are the most toxic of all compounds. The toxicity is related to a poor zinc endopeptidase activity located in a 50-kDa domain known as light chain (Lc) of the toxin. The C-terminal tail of Lc is not visible in any of the currently available x-ray structures, and it has no known function but undergoes autocatalytic truncations during purification and storage. By synthesizing C-terminal peptides of various lengths, in this study, we have shown that these peptides competitively inhibit the normal catalytic activity of Lc of serotype A (LcA) and have defined the length of the mature LcA to consist of the first 444 residues. Two catalytically inactive mutants also inhibited LcA activity. Our results suggested that the C terminus of LcA might interact at or near its own active site. By using synthetic C-terminal peptides from LcB, LcC1, LcD, LcE, and LcF and their respective substrate peptides, we have shown that the inhibition of activity is specific only for LcA. Although a potent inhibitor with a Ki of 4.5 µm, the largest of our LcA C-terminal peptides stimulated LcA activity when added at near-stoichiometric concentration to three versions of LcA differing in their C-terminal lengths. The result suggested a product removal role of the LcA C terminus. This suggestion is supported by a weak but specific interaction determined by isothermal titration calorimetry between an LcA C-terminal peptide and N-terminal product from a peptide substrate of LcA. Our results also underscore the importance of using a mature LcA as an inhibitor screening target.


Assuntos
Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Domínio Catalítico , Clostridium botulinum/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Calorimetria , Clostridium botulinum/classificação , Estabilidade Enzimática/efeitos dos fármacos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Sorotipagem , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/metabolismo , Temperatura
15.
PLoS One ; 8(1): e54517, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349915

RESUMO

BACKGROUND: The C3bot1 protein (~23 kDa) from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa) from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.


Assuntos
ADP Ribose Transferases/genética , Clostridium botulinum/genética , Macrófagos , Proteínas Recombinantes de Fusão/genética , ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Transporte Biológico/genética , Células Cultivadas , Clostridium botulinum/enzimologia , Clostridium botulinum/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Escherichia coli , Humanos , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/enzimologia , Monócitos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
16.
J Biol Chem ; 287(40): 33607-14, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22869371

RESUMO

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys(165), a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys(165) modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys(165) was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys(165) is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys(165). The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Clostridium botulinum/metabolismo , Cisteína/química , Domínio Catalítico , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/química , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteína 25 Associada a Sinaptossoma/química , Zinco/química
17.
Infect Immun ; 80(8): 2886-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665374

RESUMO

Clostridium botulinum types C and D cause animal botulism by the production of serotype-specific or mosaic botulinum neurotoxin (BoNT). The D/C mosaic BoNT (BoNT/DC), which is produced by the isolate from bovine botulism in Japan, exhibits the highest toxicity to mice among all BoNTs. In contrast, rats appeared to be very resistant to BoNT/DC in type C and D BoNTs and their mosaic BoNTs. We attempted to characterize the enzymatic and receptor-binding activities of BoNT/DC by comparison with those of type C and D BoNTs (BoNT/C and BoNT/D). BoNT/DC and D showed similar toxic effects on cerebellar granule cells (CGCs) derived from the mouse, but the former showed less toxicity to rat CGCs. In recombinant murine-derived vesicle-associated membrane protein (VAMP), the enzymatic activities of both BoNTs to rat isoform 1 VAMP (VAMP1) were lower than those to the other VAMP homologues. We then examined the physiological significance of gangliosides as the binding components for types C and D, and mosaic BoNTs. BoNT/DC and C were found to cleave an intracellular substrate of PC12 cells upon the exogenous addition of GM1a and GT1b gangliosides, respectively, suggesting that each BoNT recognizes a different ganglioside moiety. The effect of BoNT/DC on glutamate release from CGCs was prevented by cholera toxin B-subunit (CTB) but not by a site-directed mutant of CTB that did not bind to GM1a. Bovine adrenal chromaffin cells appeared to be more sensitive to BoNT/DC than to BoNT/C and D. These results suggest that a unique mechanism of receptor binding of BoNT/DC may differentially regulate its biological activities in animals.


Assuntos
Toxinas Botulínicas/toxicidade , Clostridium botulinum/metabolismo , Neurotoxinas/toxicidade , Glândulas Suprarrenais/citologia , Animais , Toxinas Botulínicas/classificação , Toxinas Botulínicas/metabolismo , Bovinos , Cerebelo/citologia , Células Cromafins/efeitos dos fármacos , Feminino , Gangliosídeos/metabolismo , Camundongos , Neurotoxinas/classificação , Neurotoxinas/metabolismo , Células PC12 , Ligação Proteica , Ratos , Proteínas Recombinantes , Especificidade da Espécie
18.
FEMS Immunol Med Microbiol ; 63(1): 35-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21635567

RESUMO

Clostridium botulinum serotype C strains produce a neurotoxin (BoNT) along with nontoxic proteins, including nontoxic nonhemagglutinin and three hemagglutinin subcomponents, HA-70, HA-33 and HA-17, to form a large toxin complex (L-TC). While L-TCs produced by serotype C strains usually exhibit hemagglutination (HA) activity via HA-33 binding to sialic acid on erythrocytes, serotype C strain Yoichi (C-Yoichi) L-TC exhibited neither HA nor binding activity towards erythrocytes, probably due to a C-terminal truncation of the HA-33 protein. However, here, we demonstrate that C-Yoichi L-TC newly showed full HA and binding activity towards neuraminidase-treated erythrocytes that was completely inhibited in the presence of galactose (Gal) or lactose (Lac). Binding of C-Yoichi L-TC to rat small intestine epithelial cells (IEC-6) treated with neuraminidase was also significantly enhanced compared with untreated IEC-6 cells. Similarly, the HA-33/HA-17 complex isolated from C-Yoichi L-TC also bound to neuraminidase-treated IEC-6 cells. The binding activity of both L-TC and HA-33/HA-17 was inhibited in the presence of Gal or Lac. Additionally, C-Yoichi L-TC adsorbed tightly to a lactose-affinity gel column. These results strongly suggest that the unusual recognition of the Gal moiety on the cells could be due to a variation and/or a truncation in the C-terminal-half of the unique C-Yoichi HA-33 protein.


Assuntos
Toxinas Botulínicas/metabolismo , Clostridium botulinum/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Eritrócitos/metabolismo , Galactose/metabolismo , Hemaglutininas/metabolismo , Ligação Proteica , Ratos
19.
J Biol Chem ; 286(17): 15067-72, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21378164

RESUMO

The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Membrana Celular/metabolismo , Clostridium botulinum/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Hidrólise , Camundongos , Neurônios/metabolismo , Neurotoxinas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA