Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727298

RESUMO

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Assuntos
Clozapina , Mitocôndrias , Humanos , Clozapina/farmacologia , Clozapina/análogos & derivados , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Células HL-60 , Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Metabólica
2.
Sci Rep ; 14(1): 11402, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762561

RESUMO

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Assuntos
Clozapina , Dependovirus , Ingestão de Alimentos , Região Hipotalâmica Lateral , Estudo de Prova de Conceito , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Ratos , Ingestão de Alimentos/efeitos dos fármacos , Região Hipotalâmica Lateral/efeitos dos fármacos , Dependovirus/genética , Masculino , Exenatida/farmacologia , Humanos
3.
Neurosci Lett ; 832: 137805, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38705453

RESUMO

BACKGROUND CONTEXT: The medial prefrontal cortex (mPFC) has been implicated in modulating anxiety and depression. Manipulation of Drd1 neurons in the mPFC resulted in variable neuronal activity and, consequently, strikingly different behaviors. The acute regulation of anxiety- and depression-like behaviors by Drd1 neurons, a major neuronal subtype in the mPFC, has not yet been investigated. PURPOSE: The purpose of this study was to investigate whether acute manipulation of Drd1 neurons in the mPFC affects anxiety- and depression-like behaviors. STUDY DESIGN: Male Drd1-Cre mice were injected with an adeno-associated virus (AAV) expressing hM3DGq or hM4DGi. Clozapine-n-oxide (CNO, 1 mg/kg, i.p.) was injected 30 min before the behavioral tests. METHODS: Male Drd1-Cre mice were injected with AAV-Ef1α-DIO-hM4DGi-mCherry-WPRE-pA, AAV-Ef1α-DIO-hM3DGq-mCherry-WPRE-pA or AAV-Ef1α-DIO-mCherry-WPRE-pA. Three weeks later, whole-cell recordings after CNO (5 µM) were applied to the bath were used to validate the functional expression of hM4DGi and hM3DGq. Four groups of mice underwent all the behavioral tests, and after each of the tests, the mice were allowed to rest for 3-4 days. CNO (1 mg/kg) was injected intraperitoneally 30 min before the behavior test. Anxiety-like behaviors were evaluated by the open field test (OFT), the elevated plus maze test (EPMT), and the novelty-suppressed feeding test (NSFT). Depression-like behaviors were evaluated by the sucrose preference test (SPT) and force swimming test (FST). For all experiments, coronal sections of the targeted brain area were used to confirm virus expression. RESULTS: Whole-cell recordings from brain slices demonstrated that infusions of CNO (5 µM) into mPFC slices dramatically increased the firing activity of hM3DGq-mCherry+ neurons and abolished the firing activity of hM4DGi-mCherry+ neurons. Acute chemogenetic activation of Drd1 neurons in the mPFC increased the time spent in the central area in the OFT, increased the time spent in the open arms in the EMPT, decreased the latency to bite the food in the NSFT, increased the sucrose preference in the SPT, and decreased the immobility time in the FST. Acute chemogenetic inhibition of Drd1 neurons in the mPFC decreased the time spent in the central area in the OFT, decreased the time spent in the open arms in the EMPT, increased the latency to bite the food in the NSFT, decreased the sucrose preference in the SPT, and increased the immobility time in the FST. CONCLUSIONS: The present study showed that acute activation of Drd1 neurons in the mPFC produced rapid anxiolytic- and antidepressant-like effects, and acute inhibition had the opposite effect, revealing that Drd1 neurons in the mPFC bidirectionally regulate anxiety- and depression-like behaviors. CLINICAL SIGNIFICANCE: The findings of the present study regarding the acute effects of stimulating Drd1 neurons in the mPFC on anxiety and depression suggest that Drd1 neurons in the mPFC are a focus for the treatment of anxiety disorders and depression.


Assuntos
Ansiedade , Depressão , Córtex Pré-Frontal , Receptores de Dopamina D1 , Animais , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Comportamento Animal/fisiologia , Clozapina/análogos & derivados , Clozapina/farmacologia
4.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673899

RESUMO

According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.


Assuntos
Clozapina/análogos & derivados , Neurônios Dopaminérgicos , Comportamento Social , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Humanos , Clozapina/farmacologia , Núcleos da Rafe/metabolismo , Comportamento Animal , Dopamina/metabolismo , Camundongos Endogâmicos C57BL
5.
Eur J Neurosci ; 59(10): 2715-2731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494604

RESUMO

In a changing environment, animals must process spatial signals in a flexible manner. The rat hippocampal formation projects directly upon the retrosplenial cortex, with most inputs arising from the dorsal subiculum and terminating in the granular retrosplenial cortex (area 29). The present study examined whether these same projections are required for spatial working memory and what happens when available spatial cues are altered. Consequently, injections of iDREADDs were made into the dorsal subiculum of rats. In a separate control group, GFP-expressing adeno-associated virus was injected into the dorsal subiculum. Both groups received intracerebral infusions within the retrosplenial cortex of clozapine, which in the iDREADDs rats should selectively disrupt the subiculum to retrosplenial projections. When tested on reinforced T-maze alternation, disruption of the subiculum to retrosplenial projections had no evident effect on the performance of those alternation trials when all spatial-cue types remained present and unchanged. However, the same iDREADDs manipulation impaired performance on all three alternation conditions when there was a conflict or selective removal of spatial cues. These findings reveal how the direct projections from the dorsal subiculum to the retrosplenial cortex support the flexible integration of different spatial cue types, helping the animal to adopt the spatial strategy that best meets current environmental demands.


Assuntos
Hipocampo , Ratos Long-Evans , Memória Espacial , Animais , Masculino , Ratos , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Sinais (Psicologia) , Clozapina/farmacologia , Clozapina/análogos & derivados , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia
6.
Free Radic Biol Med ; 212: 384-402, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38182072

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.


Assuntos
Clozapina , Ferroptose , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Camundongos , Humanos , Animais , Rotenona/toxicidade , Neurônios Dopaminérgicos/metabolismo , Clozapina/farmacologia , Clozapina/metabolismo , Fármacos Neuroprotetores/farmacologia , Neuroblastoma/metabolismo , Síndromes Neurotóxicas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ferro/metabolismo , Óxidos/metabolismo , Óxidos/farmacologia
7.
Redox Biol ; 67: 102915, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866162

RESUMO

Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein ß and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.


Assuntos
Clozapina , Lipossarcoma , Humanos , Animais , Camundongos , NADPH Oxidases/metabolismo , Adipogenia , Espécies Reativas de Oxigênio/metabolismo , Clozapina/farmacologia , Clozapina/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Lipossarcoma/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768378

RESUMO

Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia.


Assuntos
Clozapina , Neuroblastoma , Fármacos Neuroprotetores , Adulto , Humanos , Camundongos , Animais , Clozapina/farmacologia , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Ácido Glutâmico/toxicidade , Técnicas de Cultura de Células , Neuroblastoma/tratamento farmacológico , Regulação Alostérica
9.
Biomed Pharmacother ; 160: 114327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736280

RESUMO

The striatal dopamine D2 receptor (D2R) is generally accepted to be involved in positive symptoms of schizophrenia and is a main target for clinically used antipsychotics. D2R are highly expressed in the striatum, where they form heteromers with the adenosine A2A receptor (A2AR). Changes in the density of A2AR-D2R heteromers have been reported in postmortem tissue from patients with schizophrenia, but the degree to which A2R are involved in schizophrenia and the effect of antipsychotic drugs is unknown. Here, we examine the effect of exposure to three prototypical antipsychotic drugs on A2AR-D2R heteromerization in mammalian cells using a NanoBiT assay. After 16 h of exposure, a significant increase in the density of A2AR-D2R heteromers was found with haloperidol and aripiprazole, but not with clozapine. On the other hand, clozapine, but not haloperidol or aripiprazole, was associated with a significant decrease in A2AR-D2R heteromerization after 2 h of treatment. Computational binding models of these compounds revealed distinctive molecular signatures that explain their different influence on heteromerization. The bulky tricyclic moiety of clozapine displaces TM 5 of D2R, inducing a clash with A2AR, while the extended binding mode of haloperidol and aripiprazole stabilizes a specific conformation of the second extracellular loop of D2R that enhances the interaction with A2AR. It is proposed that an increase in A2AR-D2R heteromerization is involved in the extrapyramidal side effects (EPS) of antipsychotics and that the specific clozapine-mediated destabilization of A2AR-D2R heteromerization can explain its low EPS liability.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Dopamina , Clozapina/farmacologia , Antipsicóticos/farmacologia , Receptores de Dopamina D2/metabolismo , Aripiprazol , Adenosina/farmacologia , Mamíferos
10.
Int J Psychiatry Clin Pract ; 27(3): 257-263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36576216

RESUMO

OBJECTIVE: This study sought to compare pre-intervention patient characteristics and post-intervention outcomes in a naturalistic sample of adolescent inpatients with treatment-resistant psychotic symptoms who received either electroconvulsive therapy (ECT) or clozapine. METHODS: Data of adolescents with schizophrenia/schizoaffective disorder receiving ECT or clozapine were retrospectively collected from two tertiary-care psychiatry-teaching university hospitals. Subscale scores of the Positive and Negative Symptom Scale (PANSS) factors were calculated according to the five-factor solution. Baseline demographics, illness characteristics, and post-intervention outcomes were compared. RESULTS: There was no significant difference between patients receiving ECT (n = 13) and clozapine (n = 66) in terms of age, sex, and the duration of hospital stay. The ECT group more commonly had higher overall illness and aggression severity. Smoking was less frequent in the clozapine group. Baseline resistance/excitement symptom severity was significantly higher in the ECT group, while positive, negative, affect, disorganisation, and total symptom scores were not. Both interventions provided a significant reduction in PANSS scores with large effect sizes. CONCLUSION: Both ECT and clozapine yielded high effectiveness rates in adolescents with treatment-resistant schizophrenia/schizoaffective disorder. Youth receiving ECT were generally more activated than those who received clozapine.


Assuntos
Antipsicóticos , Clozapina , Eletroconvulsoterapia , Esquizofrenia , Adolescente , Humanos , Clozapina/farmacologia , Clozapina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/diagnóstico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia Resistente ao Tratamento , Eletroconvulsoterapia/métodos , Eletroconvulsoterapia/psicologia , Estudos Retrospectivos , Resultado do Tratamento
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 161-166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308551

RESUMO

Clozapine is an atypical neuroleptic used to manage treatment-resistant schizophrenia which is known to inhibit cardiac hERG/KV11.1 potassium channels, a pharmacological property associated with increased risk of potentially fatal Torsades de Pointes (TdP) and sudden cardiac death (SCD). Yet, the long-standing clinical practice of clozapine does not show a consistent association with increased incidence of TdP, although SCD is considerably higher among schizophrenic patients than in the general population. Here, we have established the inhibitory profile of clozapine at the seven cardiac ion currents proposed by the ongoing comprehensive in vitro pro-arrhythmia (CiPA) initiative to better predict new drug cardio-safety risk. We found that clozapine inhibited all CiPA currents tested with the following rank order of potency: KV11.1 > NaV1.5 (late current) ≈ CaV1.2 ≈ NaV1.5 (peak current) ≈ KV7.1 > KV4.3 > Kir2.1 (outward current). Half-maximal inhibitory concentrations (IC50) at the repolarizing KV11.1 and KV7.1 channels, and at the depolarizing CaV1.2 and NaV1.5 channels fell within a narrow half-log 3-10 µM concentration range, suggesting that mutual compensation could explain the satisfactory arrhythmogenic cardio-safety profile of clozapine. Although the IC50 values determined herein using an automated patch-clamp (APC) technique are at the higher end of clozapine plasmatic concentrations at target therapeutic doses, this effective antipsychotic appears prone to distribute preferentially into the cardiac tissue, which supports the clinical relevance of our in vitro pharmacological findings.


Assuntos
Antipsicóticos , Clozapina , Torsades de Pointes , Humanos , Antipsicóticos/farmacologia , Clozapina/farmacologia , Canais de Potássio Éter-A-Go-Go , Canais Iônicos , Torsades de Pointes/induzido quimicamente , Arritmias Cardíacas , Proteínas de Ligação a DNA , Canal de Potássio ERG1
12.
World J Biol Psychiatry ; 24(4): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35904423

RESUMO

OBJECTIVES: Recently, the expression changes of microRNAs (miRNAs) in the serum exosomes (EXO) of schizophrenia (SCZ) have been reported. The aim of this study was to investigate the global expression changes of miRNA derived from the plasma EXO of patients with treatment-resistant schizophrenia (TRS) and the effects of clozapine on miRNA expression. METHODS: Global miRNA expression changes in plasma EXO between TRS and controls were studied using microarray analysis. Then, miRNA expressions among TRS, non-TRS, and controls were confirmed with quantitative qPCR experiments. We also studied changes in EXO miRNA expression with in-vitro SH-SY5Y cells. RESULTS: A microarray for miRNA expression analysis (nine controls vs. nine patients with TRS) revealed 13 up- and 18 downregulated miRNAs that were relevant to neuronal and brain development based on gene ontology analysis. Of those, upregulated miR-675-3p expression was successfully validated in the same cohort by qPCR experiments. Conversely, miR-675-3p expression levels were significantly decreased in the non-TRS cohort (50 controls vs. 50 patients without TRS without clozapine treatment). CONCLUSIONS: We identified global miRNA changes in plasma EXO derived from patients with SCZ that were relevant to neuronal functions, among which, hsa-miR-675-3p expression was upregulated by clozapine treatment.


Assuntos
Clozapina , Exossomos , MicroRNAs , Neuroblastoma , Esquizofrenia , Humanos , Clozapina/farmacologia , Clozapina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neuroblastoma/metabolismo , MicroRNAs/genética
13.
Cell Signal ; 99: 110449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031090

RESUMO

Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.


Assuntos
Antipsicóticos , Clozapina , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Anti-Inflamatórios/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Quimiocinas , Clozapina/farmacologia , Clozapina/uso terapêutico , Dopamina , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Dopaminérgicos/metabolismo
14.
Chem Res Toxicol ; 35(6): 1001-1010, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35575633

RESUMO

The atypical antipsychotic drugs, quetiapine and clozapine, are associated with idiosyncratic drug reactions (such as agranulocytosis or neutropenia) that are thought to involve reactive metabolites. Neutrophil myeloperoxidase (MPO) metabolism of quetiapine is not well-studied, but is metabolized by cytochrome P450. Based on structural similarity to clozapine, we hypothesized that quetiapine can be metabolized by MPO and that there is overlap between cytochrome P450 and MPO metabolism of quetiapine. The interaction of quetiapine and clozapine with MPO and MPO chlorination activity was studied using UV-vis spectrophotometry. The metabolites were characterized using liquid chromatography-mass spectrometry (LC-MS), and electron paramagnetic resonance (EPR) spectroscopy was used for detecting drug-catalyzed glutathione oxidation. In the presence of quetiapine, MPO compound II accumulated for about 7.5 min, whereas in the presence of clozapine, MPO compound II was not observed as it was rapidly reduced back to the resting state. Increasing quetiapine concentrations resulted in a decrease in MPO chlorination activity, while the opposite result was found in the case of clozapine. UV-vis spectral studies showed no change when quetiapine was oxidized in the absence and presence of chloride anion (Cl-, to catalyze chlorination reactions). Significant changes, however, were observed in the same assay with clozapine, where Cl- appeared to hinder the rate of clozapine metabolism. The MPO-catalyzed hydroxylated and dealkylated metabolites of quetiapine and hydroxylated metabolites of clozapine were observed from the LC-MS analyses, particularly when Cl- was included in the reaction. In addition, hydroxylated, dealkylated, and a proposed sulfoxide metabolite of quetiapine were also observed in the reaction catalyzed by human microsomes/NADPH. Lastly, compared to quetiapine, clozapine metabolism by MPO/H2O2 and glutathione produced more glutathionyl radicals using EPR spin trapping. In conclusion, MPO/H2O2/Cl- was shown to metabolize quetiapine to S-oxidation and P450-like dealkylation products, and quetiapine metabolites were generally less reactive than clozapine.


Assuntos
Clozapina , Clozapina/metabolismo , Clozapina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Desmetilação , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio , Neutrófilos/metabolismo , Peroxidase/metabolismo , Fumarato de Quetiapina
15.
Psychopharmacology (Berl) ; 239(8): 2503-2514, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35435461

RESUMO

RATIONALE: Though numerous studies demonstrate the superiority of clozapine (CLZ) for treatment of persistent psychotic symptoms that are characteristic of treatment-refractory schizophrenia (TRS), what remains unknown are the neural and molecular mechanisms underlying CLZ's efficacy. Recent work implicates increased corticostriatal functional connectivity as a marker of response to non-CLZ, dopamine (DA) D2-receptor blocking antipsychotic drugs. However, it is undetermined whether this connectivity finding also relates to CLZ's unique efficacy, or if response to CLZ is associated with changes in striatal DA functioning. OBJECTIVE: In a cohort of 22 individuals with TRS, we examined response to CLZ in relation to the following: (1) change in corticostriatal functional connectivity; and (2) change in a magnetic resonance-based measure of striatal tissue iron (R2'), which demonstrates utility as a proxy measure for elements of DA functioning. METHODS: Participants underwent scanning while starting CLZ and after 12 weeks of CLZ treatment. We used both cortical and striatal regions of interest to examine changes in corticostriatal interactions and striatal R2' in relation to CLZ response (% reduction of psychotic symptoms). RESULTS: We first found that response to CLZ was associated with an increase in corticostriatal connectivity between the dorsal caudate and regions of the frontoparietal network (P < 0.05, corrected). Secondly, we observed no significant changes in striatal R2' across CLZ treatment. CONCLUSION: Overall, these results indicate that changes in corticostriatal networks without gross shifts in striatal DA functioning underlies CLZ response. Our results provide novel mechanistic insight into response to CLZ treatment.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Clozapina/farmacologia , Clozapina/uso terapêutico , Humanos , Ferro/uso terapêutico , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia Resistente ao Tratamento
16.
Br J Pharmacol ; 179(14): 3675-3692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088415

RESUMO

BACKGROUND AND PURPOSE: Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABAA receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunit-containing GABAA receptors. The purpose of this study is to investigate the effects of tricyclic compounds on α5 subunit-containing receptor subtypes. EXPERIMENTAL APPROACH: Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABAA receptor subtypes by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings. KEY RESULTS: The antipsychotic drugs clozapine and chlorpromazine exerted functional inhibition on multiple GABAA receptor subtypes, including those containing α5-subunits. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in α5 GABAA receptor subunits and demonstrate differential usage of this and the orthosteric sites by these ligands. CONCLUSION AND IMPLICATIONS: Despite high molecular and functional similarities among the tested ligands, they reduce GABA currents by differential usage of allosteric and orthosteric sites. The chlorpromazine site we describe here is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology. Further studies in defined subtypes are needed to substantiate mechanistic links between the therapeutic effects of clozapine and its action on certain GABAA receptor subtypes.


Assuntos
Antipsicóticos , Clozapina , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Clorpromazina/farmacologia , Clozapina/farmacologia , Humanos , Ligantes , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
17.
BMC Pharmacol Toxicol ; 23(1): 8, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033194

RESUMO

BACKGROUND: Patients with liver diseases often have some form of anemia. Hematological dyscrasias are known side effects of antipsychotic drug medication and the occurrence of agranulocytosis under clozapine is well described. However, the sex-dependent impact of clozapine and haloperidol on erythrocytes and symptoms like anemia, and its association with hepatic iron metabolism has not yet been completely clarified. Therefore, in the present study, we investigated the effect of both antipsychotic drugs on blood parameters and iron metabolism in the liver of male and female Sprague Dawley rats. METHODS: After puberty, rats were treated orally with haloperidol or clozapine for 12 weeks. Blood count parameters, serum ferritin, and liver transferrin bound iron were determined by automated counter. Hemosiderin (Fe3+) was detected in liver sections by Perl's Prussian blue staining. Liver hemoxygenase (HO-1), 5'aminolevulinate synthase (ALAS1), hepcidin, heme-regulated inhibitor (HRI), cytochrome P4501A1 (CYP1A1) and 1A2 (CYP1A2) were determined by Western blotting. RESULTS: We found anemia with decreased erythrocyte counts, associated with lower hemoglobin and hematocrit, in females with haloperidol treatment. Males with clozapine medication showed reduced hemoglobin and increased red cell distribution width (RDW) without changes in erythrocyte numbers. High levels of hepatic hemosiderin were found in the female clozapine and haloperidol medicated groups. Liver HRI was significantly elevated in male clozapine medicated rats. CYP1A2 was significantly reduced in clozapine medicated females. CONCLUSIONS: The characteristics of anemia under haloperidol and clozapine medication depend on the administered antipsychotic drug and on sex. We suggest that anemia in rats under antipsychotic drug medication is a sign of an underlying liver injury induced by the drugs. Changing hepatic iron metabolism under clozapine and haloperidol may help to reduce these effects of liver diseases.


Assuntos
Antipsicóticos , Clozapina , Síndrome Metabólica , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Eritrócitos , Feminino , Haloperidol/farmacologia , Humanos , Ferro/metabolismo , Fígado , Masculino , Síndrome Metabólica/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Neuropsychopharmacology ; 47(4): 857-865, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34654906

RESUMO

Circuit manipulation has been a staple technique in neuroscience to identify how the brain functions to control complex behaviors. Chemogenetics, including designer receptors exclusively activated by designer drugs (DREADDs), have proven to be a powerful tool for the reversible modulation of discrete brain circuitry without the need for implantable devices, thereby making them especially useful in awake and unrestrained animals. This study used a DREADD approach to query the role of the nucleus accumbens (NAc) in mediating the interoceptive effects of 1.0 g/kg ethanol (i.g.) in rhesus monkeys (n = 7) using a drug discrimination procedure. After training, stereotaxic surgery was performed to introduce an AAV carrying the human muscarinic 4 receptor DREADD (hM4Di) bilaterally into the NAc. The hypothesis was that decreasing the output of the NAc by activation of hM4Di with the DREADD actuator, clozapine-n-oxide (CNO), would potentiate the discriminative stimulus effect of ethanol (i.e., a leftward shift the ethanol dose discrimination curve). The results showed individual variability shifts of the ethanol dose-response determination under DREADD activation. Characterization of the expression and function of hM4Di with MRI, immunohistochemical, and electrophysiological techniques found the selectivity of NAc transduction was proportional to behavioral effect. Specifically, the proportion of hM4Di expression restricted to the NAc was associated with the potency of the discriminative stimulus effects of ethanol. Together, these experiments highlight the NAc in mediating the interoceptive effects of ethanol, provide a framework for validation of chemogenetic tools in primates, and underscore the importance of robust within-subjects examination of DREADD expression for interpretation of behavioral findings.


Assuntos
Clozapina , Etanol , Animais , Encéfalo , Clozapina/farmacologia , Etanol/farmacologia , Macaca mulatta , Núcleo Accumbens
19.
Pharmacogenomics ; 23(1): 5-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787483

RESUMO

Aim: To explore possible differences in genome-wide methylation between schizophrenia patients who consume various antipsychotics. Methods: We compared DNA methylation in leukocytes between the following cohorts: clozapine (n = 19) versus risperidone (n = 19), clozapine (n = 12) versus olanzapine (n = 12), clozapine (n = 9) versus quetiapine (n = 9) and clozapine (n = 33) versus healthy controls (n = 33). Subjects were matched for age, sex, ethnicity, smoking status and leukocyte proportions. Results: No single CpG site reached genome-wide significance for clozapine versus risperidone/olanzapine/quetiapine. For clozapine versus quetiapine, one significantly differentially methylated region was found - ch5: 176797920-176798049 (fwer = 0.075). Clozapine versus healthy controls yielded thousands of significantly differentially methylated CpG sites. Conclusions: Establishing antipsychotic induced genome-wide methylation patterns will further elucidate the biological and clinical effects of antipsychotic administration.


Assuntos
Antipsicóticos/farmacologia , Metilação de DNA , Esquizofrenia/tratamento farmacológico , Adulto , Antipsicóticos/uso terapêutico , Clozapina/farmacologia , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumarato de Quetiapina/farmacologia , Esquizofrenia/genética , Adulto Jovem
20.
Neurotherapeutics ; 19(1): 342-351, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862591

RESUMO

Expression of inhibitory designer receptors exclusively activated by designer drugs (DREADDs) on excitatory hippocampal neurons in the hippocampus represents a potential new therapeutic strategy for drug-resistant epilepsy. To overcome the limitations of the commonly used DREADD agonist clozapine, we investigated the efficacy of the novel DREADD ligand JHU37160 in chemogenetic seizure suppression in the intrahippocampal kainic acid (IHKA) mouse model for temporal lobe epilepsy (TLE). In addition, seizure-suppressing effects of chemogenetics were compared to the commonly used anti-epileptic drug (AED), levetiracetam (LEV). Therefore, an adeno-associated viral vector was injected in the sclerotic hippocampus of IHKA mice to induce expression of a tagged inhibitory DREADD hM4Di or only a tag (control) specifically in excitatory neurons using the CamKIIα promoter. Subsequently, animals were treated with LEV (800 mg/kg), clozapine (0.1 mg/kg), and DREADD ligand JHU37160 (0.1 mg/kg) and the effect on spontaneous seizures was investigated. Clozapine and JHU37160-mediated chemogenetic treatment both suppressed seizures in DREADD-expressing IHKA mice. Clozapine treatment suppressed seizures up to 34 h after treatment, and JHU37160 effects lasted for 26 h after injection. Moreover, both compounds reduced the length of seizures that did occur after treatment up to 28 h and 18 h after clozapine and JHU37160, respectively. No seizure-suppressing effects were found in control animals using these ligands. Chemogenetic seizure treatment suppressed seizures during the first 30 min after injection, and seizures remained suppressed during 8 h following treatment. Chemogenetics thus outperformed effects of levetiracetam (p < 0.001), which suppressed seizure frequency with a maximum of 55 ± 9% for up to 1.5 h (p < 0.05). Only chemogenetic and not levetiracetam treatment affected the length of seizures after treatment (p < 0.001). These results show that the chemogenetic therapeutic strategy with either clozapine or JHU37160 effectively suppresses spontaneous seizures in the IHKA mouse model, confirming JHU37160 as an effective DREADD ligand. Moreover, chemogenetic therapy outperforms the effects of levetiracetam, indicating its potential to suppress drug-resistant seizures.


Assuntos
Clozapina , Ácido Caínico , Animais , Clozapina/farmacologia , Modelos Animais de Doenças , Ácido Caínico/toxicidade , Levetiracetam/uso terapêutico , Ligantes , Camundongos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA