Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670200

RESUMO

A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.


Assuntos
Coativador 1 de Receptor Nuclear , PPAR gama , Ligação Proteica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , PPAR gama/metabolismo , PPAR gama/química , Ligantes , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 1 de Receptor Nuclear/química , Peptídeos/química , Peptídeos/metabolismo , Humanos , Rosiglitazona/farmacologia , Correpressor 2 de Receptor Nuclear
2.
J Cell Mol Med ; 28(7): e18171, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
J Neurooncol ; 163(3): 693-705, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37402091

RESUMO

BACKGROUND: Corticosteroid is commonly used before surgery to control cerebral oedema in brain tumours and is frequently continued throughout treatment. Its long-term effect of on the recurrence of WHO-Grade 4 astrocytoma remains controversial. The interaction between corticosteroid, SRC-1 gene and cytotoxic T-cells has never been investigated. METHODS: A retrospective cohort of 36 patients with WHO-Grade 4 astrocytoma were examined for CD8 + T-cell and SRC-1 gene expressions through IHC and qRT-PCR. The impact of corticosteroid on CD8+T-cells infiltration, SRC-1 expression, and tumour recurrence was analyzed. RESULTS: The mean patients age was 47-years, with a male to female ratio 1.2. About 78% [n = 28] of the cases showed reduced or no CD8+T-cell expression while 22% [n = 8] of cases have showed medium to high CD8+T-cell expression. SRC-1 gene was upregulated in 5 cases [14%] and 31 cases [86%] showed SRC-1 downregulation. The average of total days and doses of administered corticosteroid from the preoperative period to the postoperative period was at range of 14-106 days and 41-5028 mg, respectively. There was no significant statistical difference in RFI among tumours expressing high or low CD8+T-cells when corticosteroid was administered in recommended or exceeded doses [p-value = 0.640]. There was a significant statistical difference in RFI between CD8+T-Cell expression and SRC-1 gene dysregulation [p-value = 002]. Tumours with high CD8+T T-cell expression and SRC-1 gene downregulation had late recurrence. CONCLUSIONS: Corticosteroid treatment can directly affect the SRC-1 gene regulation but does not directly influence cytotoxic T-cells infiltration or tumor progression. However, SRC-1 gene downregulation can facilitate late tumor recurrence.


Assuntos
Astrocitoma , Glioblastoma , Coativador 1 de Receptor Nuclear , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Corticosteroides/uso terapêutico , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Astrocitoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Estudos Retrospectivos , Organização Mundial da Saúde , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo
4.
Life Sci ; 320: 121555, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878279

RESUMO

BACKGROUND: Matrix metallopeptidases (MMPs) are critical matrix-degrading molecules and they are frequently overexpressed in degenerative discs. This study aimed to investigate the mechanism for MMP upregulation. METHODS: Immunoblot and RT-qPCR were used for detecting protein and gene expression levels. 4-month-old and 24-month-old C57BL/6 mice were used for evaluating intervertebral disc degeneration (IDD). An ubiquitination assay was used to determine protein modification. Immunoprecipitation and mass spectrometry were used for identifying protein complex members. RESULTS: We identified the elevation of 14 MMPs among 23 members in aged mice with IDD. Eleven of these 14 MMP gene promoters contained a Runx2 (runt-related transcription factor 2) binding site. Biochemical analyses revealed that Runx2 recruited a histone acetyltransferase p300 and a coactivator NCOA1 (nuclear receptor coactivator 1) to assemble a complex, transactivating MMP expression. The deficiency of an E3 ligase called HERC3 (HECT and RLD domain containing E3 ubiquitin-protein ligase 3) resulted in the accumulation of NCOA1 in the inflammatory microenvironment. High throughput screening of small molecules that specifically target the NCOA1-p300 interaction identified a compound SMTNP-191, which showed an inhibitory effect on suppressing MMP expression and attenuating the IDD process in aged mice. CONCLUSION: Our data support a model in which deficiency of HERC3 fails to ubiquitinate NCOA1, leading to the assembly of NCOA1-p300-Runx2 and causing the transactivation of MMPs. These findings offer new insight into inflammation-mediated MMP accumulation and also provide a new therapeutic strategy to retard the IDD process.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Coativador 1 de Receptor Nuclear , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , Metaloproteases/metabolismo , Disco Intervertebral/metabolismo
7.
Hum Pathol ; 135: 65-75, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646185

RESUMO

Recurrent NCOA1/2/3 gene fusions emerged in uterine tumor resembling ovarian sex cord tumor (UTROSCT). More cases are required to consolidate these molecular alterations. In this study, the clinicopathological features and immunostaining profiles were reviewed in 18 UTROSCT. Fluorescence in situ hybridization for dual color break-apart probes of NCOA1, NCOA2, NCOA3, BCOR, YWHAE, PHF1 and JAZF1 were performed on 16 tumors. Eight cases were subjected to targeted next-generation sequencing to detect genomic alterations. We found that the tumors predominantly showed various sex-cord patterns without a recognizable endometrial stromal component. They exhibited a diverse immunohistochemical profile, frequently co-expressing sex cord (calretinin, inhibin, WT1, SF-1, and FOXL2), smooth muscle (SMA, desmin and caldesmon), epithelial (CK) and other markers (CD10 and IFITM1). Fourteen of 16 tumors (87.5%) showed NCOA1-3 gene rearranges, but none had BCOR, YWHAE, PHF1 and JAZF1 fusions. Five tumors contained 6 non-recurrent pathogenic (likely) mutations and one had gains in c-MYC. Our study supports frequent NCOA1-3 rearrangements in UTROSCT. Rare, non-recurrent mutations suggest that these gene rearrangements be potential drivers in tumorigenesis. Detection of gene rearrangements can contribute to the correct interpretation of UTROSCT. However, large comparative studies with molecular tests are required to confirm these findings.


Assuntos
Neoplasias Ovarianas , Tumores do Estroma Gonadal e dos Cordões Sexuais , Neoplasias Uterinas , Feminino , Humanos , Hibridização in Situ Fluorescente , Neoplasias Uterinas/patologia , Tumores do Estroma Gonadal e dos Cordões Sexuais/diagnóstico , Fatores de Transcrição/genética , Rearranjo Gênico , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Coativador 1 de Receptor Nuclear/genética
8.
Int J Surg Pathol ; 31(2): 227-232, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35477326

RESUMO

MEIS1::NCOA1/2 sarcomas are a newly recognized group of exceedingly rare low-grade spindle cell sarcomas that often involve the genitourinary and gynecologic tracts. Due to its deceptively low-grade morphology and the non-specific immunoprofile, these neoplasms may pose a diagnostic challenge by histologically mimicking other entities such as endometrial stromal sarcoma, smooth muscle tumor, or uterine perivascular epithelioid cell tumor (PEComa). Histologically, MEIS1::NCOA1/2 sarcomas typically show spindle cell proliferation with hyperchromatic nuclei and a generalized cytologic uniformity, arranged in short fascicles and exhibiting alternating zones of hypo- and hypercellularity. Among the previously reported cases, molecular analysis revealed the MEIS1::NCOA2 fusion as the most commonly detected fusion gene, whereas the MEIS1::NCOA1 fusion gene has been reported in only a single case that involved kidney. Herein we report the first case of uterine sarcoma harboring the MEIS1::NCOA1 fusion gene that was initially misclassified as low-grade endometrial stromal sarcoma, demonstrating its clinicopathologic features, and highlighting the essential role of molecular pathology to arrive at the accurate diagnosis that may alter disease classification and inform therapy.


Assuntos
Neoplasias do Endométrio , Sarcoma do Estroma Endometrial , Neoplasias Uterinas , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Sarcoma do Estroma Endometrial/diagnóstico , Sarcoma do Estroma Endometrial/genética , Sarcoma do Estroma Endometrial/patologia , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Útero/patologia , Coativador 1 de Receptor Nuclear/genética
9.
J Mol Biol ; 434(24): 167869, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309135

RESUMO

Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.


Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição SOXB1 , Ativação Transcricional , Humanos , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
10.
Life Sci ; 307: 120906, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007610

RESUMO

Targeted therapy is receiving considerable attention from the researchers around the globe owing to the increased drug-resistance and incidences of cancer recurrences. MicroRNAs (miRNAs) exhibits tremendous potential as a candidate for molecular targeted therapy in cancer. Unfortunately, majority of research related to microRNAs are focussed on either a particular miRNA or a set of unrelated miRNAs. There is lack of holistic knowledge on differential co-expression of miRNA clusters in regulating the gene expression under physiological conditions. Previously, we reported the cooperative effect of hsa-miR-23a~27a~24-2 cluster in inducing ER (Endoplasmic Reticulum) stress-mediated apoptotic cell death of HEK cells. In the present study, we have investigated the common anti-cancer effects of individual members of this cluster. Our in silico analysis identified twelve common target genes distributed across three independent clusters. Furthermore, we found NCOA1, NLK, and RAP1B to fall in a single cluster with NCOA1 as a central hub molecule. Prognostic analysis showed profound involvement of these three genes in the breast cancer progression and metastasis. We further demonstrated that alteration in the levels of individual members of miR-23a~27a~24-2 cluster commonly regulates the invasive migration of breast cancer cells by modulating EMT and cytoskeletal pathway proteins. Our results reveal a new insight into the therapeutic potential of individual members of the pro-apoptotic hsa-miR-23a~27a~24-2 cluster family against metastatic breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estresse do Retículo Endoplasmático , Feminino , Humanos , MicroRNAs/metabolismo , Recidiva Local de Neoplasia , Coativador 1 de Receptor Nuclear , Proteínas Serina-Treonina Quinases , Proteínas rap de Ligação ao GTP/metabolismo
11.
Crit Rev Eukaryot Gene Expr ; 32(4): 21-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695662

RESUMO

The regulatory mechanism and function of steroid receptor coactivator-1 (SRC-1) was determined in vitro and the role played in gastric cancer was investigated. The study collected 64 patients with gastric cancer tissue and paracancerous tissue to investigate the clinical patterns of SRC-1 expression in gastric cancer. Quantitative polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, and immunofluorescence staining were used in this study. In patients with gastric cancer, SRC-1 serum expression levels were up-regulated. Over-expression of SRC-1 promoted cell growth and cell metastasis in vitro model of gastric cancer. However, down-regulation of SRC-1 reduced cell growth and cell metastasis in vitro model of gastric cancer. SRC-1 over-expression induced vascular endothelial growth factor C (VEGFC) protein expressions in vitro model by activation of nuclear factor-kappa B (NF-kB) expression. The inhibition of NF-κB reduced the pro-cancer effects of SRC-1 on cell growth and cell metastasis in vitro model of gastric cancer through inhibition of VEGFC expression. These results suggest that SRC-1 promoted cell metastasis of gastric cancer via VEGFC activator by NF-κB. These novel findings may shed further light on the pathogenesis of gastric cancer and on potential precursor markers.


Assuntos
Coativador 1 de Receptor Nuclear/sangue , Receptores de Esteroides , Neoplasias Gástricas , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
12.
J Cutan Pathol ; 49(9): 802-807, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35583270

RESUMO

PRRX::NCOAx-rearranged fibroblastic tumor is a recently described, morphologically distinctive subcutaneous fibroblastic tumor with benign behavior. To date, 12 cases have been reported. Here, we report a new case of PRRX::NCOAx-rearranged fibroblastic tumor showing a prominent pigmented component. The lesion occurred on the shoulder of a 23-year-old male. It was an at least 2.5 cm subcutaneous tumor with a multinodular and plexiform appearance. Morphologically, the tumor was characterized by a variably cellular proliferation of uniform oval to spindle cells arranged in fascicles and cords within a myxocollagenous stroma. Irregular, elongated, dilated vessels were prominent at the periphery of tumor nodules. In addition, nests and clusters of pigment-laden epithelioid and dendritic cells were present. Immunohistochemically, the non-pigmented tumor cells showed patchy positivity for factor XIIIa and focal positivity for S100 protein. The pigmented cells were positive for S100 protein, SOX10, MITF, and a pan-melanocytic cocktail (Melan-A, HMB-45, and tyrosinase). Next-generation RNA sequencing identified an in-frame PRRX1::NCOA1 fusion. In summary, this case highlights a rare pigmented variant of PRRX::NCOAx-rearranged fibroblastic tumor, expanding the morphologic spectrum of this newly described mesenchymal tumor.


Assuntos
Biomarcadores Tumorais , Neoplasias de Tecido Fibroso , Adulto , Biomarcadores Tumorais/genética , Fusão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Coativador 1 de Receptor Nuclear/genética , Proteínas S100/genética , Fatores de Transcrição SOXE/genética , Adulto Jovem
13.
Oncogene ; 41(20): 2846-2859, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35418691

RESUMO

Overexpression of nuclear coactivator steroid receptor coactivator 1 (SRC-1) and aberrant activation of the Hedgehog (Hh) signaling pathway are associated with various tumorigenesis; however, the significance of SRC-1 in colorectal cancer (CRC) and its contribution to the activation of Hh signaling are unclear. Here, we identified a conserved Hh signaling signature positively correlated with SRC-1 expression in CRC based on TCGA database; SRC-1 deficiency significantly inhibited the proliferation, survival, migration, invasion, and tumorigenesis of both human and mouse CRC cells, and SRC-1 knockout significantly suppressed azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC in mice. Mechanistically, SRC-1 promoted the expression of GLI family zinc finger 2 (GLI2), a major downstream transcription factor of Hh pathway, and cooperated with GLI2 to enhance multiple Hh-regulated oncogene expression, including Cyclin D1, Bcl-2, and Slug. Pharmacological blockages of SRC-1 and Hh signaling retarded CRC progression in human CRC cell xenograft mouse model. Together, our studies uncover an SRC-1/GLI2-regulated Hh signaling looping axis that promotes CRC tumorigenesis, offering an attractive strategy for CRC treatment.


Assuntos
Neoplasias Colorretais , Proteínas Hedgehog , Coativador 1 de Receptor Nuclear , Animais , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Coativador 1 de Receptor Nuclear/genética , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo
14.
Biochem Biophys Res Commun ; 588: 75-82, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952473

RESUMO

Germline mutations to the breast cancer 2 (BRCA2) gene have been associated with hereditary breast cancer. In addition to estrogen uptake, BRCA2 expression increases in the S phase of the cell cycle and largely contributes to DNA damage repair associated with DNA replication. However, the role of BRCA2 in estrogen induction remains unclear. An expression plasmid was created to induce BRCA2 activation upon the addition of estradiol by introducing mutations to the binding sequences for the transcription factors USF1, E2F1, and NF-κB within the promoter region of BRCA2. Then, the estrogen receptor (ER) sites of the proteins that interact with BRCA2 upon the addition of estradiol were identified. Both proteins were bound by the helical domain of BRCA2 and activation function-2 of the ER, suggesting that this binding may regulate the transcriptional activity of pS2, a target gene of the estradiol-ER, by suppressing the binding of SRC-1, a coactivator required for activation of the transcription factor.


Assuntos
Proteína BRCA2/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas/genética , Transcrição Gênica , Fator Trefoil-1/genética , Proteína BRCA2/química , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Coativador 1 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Fator Trefoil-1/metabolismo
15.
Toxicol Lett ; 355: 141-149, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864131

RESUMO

Octocrylene (OC) is an extensively prescribed organic ultraviolet B filter used in sunscreen products. Due to its extensive use, a significant level of OC is detected in marine and freshwater environments. Notably, the bioaccumulation of OC in aquatic biota may affect human health. In this study, the effect of OC on metabolism was investigated using the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs). OC promoted adiponectin production during adipogenesis in hBM-MSCs compared to the vehicle-treated control (EC50, 29.6 µM). In target identification, OC directly bound to peroxisome proliferator-activated receptor (PPAR) γ (Ki, 37.8 µM). OC-bound PPARγ also significantly recruited nuclear receptor coactivator proteins SRC-1 (EC50, 54.1 µM) and SRC-2 (EC50, 58.6 µM). In the molecular docking simulation study, the optimal ligand-binding mode of OC suggested that OC is a PPARγ partial agonist. A competitive analysis with a PPARγ full agonist pioglitazone revealed that OC acted as a PPARγ partial agonist. OC altered the gene transcription profile of lipid-metabolism associated enzymes in normal human keratinocytes, primarily exposed human cells after the application of sunscreens. In conclusion, OC is a potential metabolic disrupting obesogen.


Assuntos
Acrilatos/toxicidade , Adipócitos/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Obesidade/induzido quimicamente , PPAR gama/agonistas , Adipócitos/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Domínio Catalítico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Metabolismo dos Lipídeos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Conformação Proteica
16.
J Biol Chem ; 297(6): 101389, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762910

RESUMO

SRY-box 2 (Sox2) is a transcription factor with critical roles in maintaining embryonic stem (ES) cell and adult stem cell functions and in tumorigenesis. However, how Sox2 exerts its transcriptional function remains unclear. Here, we used an in vitro protein-protein interaction assay to discover transcriptional regulators for ES cell core transcription factors (Oct4, Sox2, Klf4, and c-Myc) and identified members of the steroid receptor coactivators (SRCs) as Sox2-specific interacting proteins. The SRC family coactivators have broad roles in transcriptional regulation, but it is unknown whether they also serve as Sox2 coactivators. We demonstrated that these proteins facilitate Sox2 transcriptional activity and act synergistically with p300. Furthermore, we uncovered an acetylation-enhanced interaction between Sox2 and SRC-2/3, but not SRC-1, demonstrating it is Sox2 acetylation that promotes the interaction. We identified putative Sox2 acetylation sites required for acetylation-enhanced interaction between Sox2 and SRC-3 and demonstrated that acetylation on these sites contributes to Sox2 transcriptional activity and recruitment of SRC-3. We showed that activation domains 1 and 2 of SRC-3 both display a preferential binding to acetylated Sox2. Finally, functional analyses in mouse ES cells demonstrated that knockdown of SRC-2/3 but not SRC-1 in mouse ES cells significantly downregulates the transcriptional activities of various Sox2 target genes and impairs ES cell stemness. Taken together, we identify specific SRC family proteins as novel Sox2 coactivators and uncover the role of Sox2 acetylation in promoting coactivator recruitment and Sox2 transcriptional function.


Assuntos
Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Acetilação , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Coativador 1 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/genética , Fatores de Transcrição SOXB1/genética
17.
Acta Neuropathol Commun ; 9(1): 135, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389065

RESUMO

The cIMPACT-NOW Update 7 has replaced the WHO nosology of "ependymoma, RELA fusion positive" by "Supratentorial-ependymoma, C11orf95-fusion positive". This modification reinforces the idea that supratentorial-ependymomas exhibiting fusion that implicates the C11orf95 (now called ZFTA) gene with or without the RELA gene, represent the same histomolecular entity. A hot off the press molecular study has identified distinct clusters of the DNA methylation class of ZFTA fusion-positive tumors. Interestingly, clusters 2 and 4 comprised tumors of different morphologies, with various ZFTA fusions without involvement of RELA. In this paper, we present a detailed series of thirteen cases of non-RELA ZFTA-fused supratentorial tumors with extensive clinical, radiological, histopathological, immunohistochemical, genetic and epigenetic (DNA methylation profiling) characterization. Contrary to the age of onset and MRI aspects similar to RELA fusion-positive EPN, we noted significant histopathological heterogeneity (pleomorphic xanthoastrocytoma-like, astroblastoma-like, ependymoma-like, and even sarcoma-like patterns) in this cohort. Immunophenotypically, these NFκB immunonegative tumors expressed GFAP variably, but EMA constantly and L1CAM frequently. Different gene partners were fused with ZFTA: NCOA1/2, MAML2 and for the first time MN1. These tumors had epigenetic homologies within the DNA methylation class of ependymomas-RELA and were classified as satellite clusters 2 and 4. Cluster 2 (n = 9) corresponded to tumors with classic ependymal histological features (n = 4) but also had astroblastic features (n = 5). Various types of ZFTA fusions were associated with cluster 2, but as in the original report, ZFTA:MAML2 fusion was frequent. Cluster 4 was enriched with sarcoma-like tumors. Moreover, we reported a novel anatomy of three ZFTA:NCOA1/2 fusions with only 1 ZFTA zinc finger domain in the putative fusion protein, whereas all previously reported non-RELA ZFTA fusions have 4 ZFTA zinc fingers. All three cases presented a sarcoma-like morphology. This genotype/phenotype association requires further studies for confirmation. Our series is the first to extensively characterize this new subset of supratentorial ZFTA-fused ependymomas and highlights the usefulness of ZFTA FISH analysis to confirm the existence of a rearrangement without RELA abnormality.


Assuntos
Ependimoma/genética , Proteínas/genética , Neoplasias Supratentoriais/genética , Adolescente , Adulto , Criança , Pré-Escolar , Metilação de DNA/genética , Ependimoma/classificação , Ependimoma/metabolismo , Ependimoma/patologia , Feminino , Fusão Gênica/genética , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Lactente , Masculino , NF-kappa B/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/genética , Fenótipo , Neoplasias Supratentoriais/classificação , Neoplasias Supratentoriais/metabolismo , Neoplasias Supratentoriais/patologia , Transativadores/genética , Fator de Transcrição RelA/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
18.
Pediatr Blood Cancer ; 68(11): e29288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424607

RESUMO

Alveolar rhabdomyosarcoma (ARMS) is associated with PAX3/PAX7-FOXO1 fusion, which confers specific clinic and biologic characteristics with inferior outcomes. A minority of tumors still histologically classified as "true" ARMS lack the canonical PAX-FOXO1 fusion but have new molecular alterations. We present the first case of PAX3-NCOA1 ARMS with clinical data and follow-up in a two-year-old girl with ARMS of the tongue and nodal extension, treated with chemotherapy, hemi glossectomy, lymph node dissection, and brachytherapy to conserve oral function and limit long-term sequelae. Given the rarity of such variant fusion in ARMS, international collaboration is required to evaluate its prognostic value.


Assuntos
Coativador 1 de Receptor Nuclear , Fator de Transcrição PAX3 , Rabdomiossarcoma Alveolar , Língua , Pré-Escolar , Feminino , Humanos , Coativador 1 de Receptor Nuclear/genética , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/terapia , Língua/patologia
19.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203850

RESUMO

Steroid receptor coactivator-1 (SRC-1) is a transcription coactivator playing a pivotal role in mediating a wide range of signaling pathways by interacting with related transcription factors and nuclear receptors. Aberrantly elevated SRC-1 activity is associated with cancer metastasis and progression, and therefore, suppression of SRC-1 is emerging as a promising therapeutic strategy. In this study, we developed a novel SRC-1 degrader for targeted degradation of cellular SRC-1. This molecule consists of a selective ligand for SRC-1 and a bulky hydrophobic group. Since the hydrophobic moiety on the protein surface could mimic a partially denatured hydrophobic region of a protein, SRC-1 could be recognized as an unfolded protein and experience the chaperone-mediated degradation in the cells through the ubiquitin-proteasome system (UPS). Our results demonstrate that a hydrophobic-tagged chimeric molecule is shown to significantly reduce cellular levels of SRC-1 and suppress cancer cell migration and invasion. Together, these results highlight that our SRC-1 degrader represents a novel class of therapeutic candidates for targeting cancer metastasis. Moreover, we believe that the hydrophobic tagging strategy would be widely applicable to develop peptide-based protein degraders with enhanced cellular activity.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Coativador 1 de Receptor Nuclear/metabolismo , Proteólise , Transativadores/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Chaperonas Moleculares/metabolismo , Invasividade Neoplásica , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Histopathology ; 79(6): 997-1003, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34272753

RESUMO

AIMS: PRRX1-NCOA1-rearranged fibroblastic tumour is a recently described, rare mesenchymal tumour. Only four cases have been previously reported. The aim of this article is to report six additional cases of this unusual mesenchymal neoplasm, with an emphasis on its differential diagnosis. METHODS AND RESULTS: The six cases were from three females and three males (age, 20-49 years; median, 42 years). Three tumours were located on the abdominal wall; two from the shoulder/axillary areas, and one on the lateral hip. All presented as slow-growing subcutaneous nodules, ranging from 26 to 55 mm (median, 40 mm). The tumours consisted of circumscribed, variably cellular nodules composed of relatively bland plump spindled to epithelioid cells arranged singly, in cords, and occasionally in nests, embedded in hyalinised and collagenous stroma. Small hypocellular myxoid zones with ropey collagen fibres were present, as were irregularly dilated, gaping, crescent-shaped or staghorn-like thin-walled vessels, best appreciated at the periphery. Immunohistochemistry for CD34, S100, MUC4 and STAT6 was consistently negative. RNA-sequencing revealed PRRX1-NCOA1 fusions in all cases. Of the four cases with limited follow-up (1.5-4 months), none recurred following local surgical excision. CONCLUSIONS: The morphological features of PRRX1-NCOA1-rearranged fibroblastic tumour overlap with those of RB1-deficient soft-tissue tumours, solitary fibrous tumour, and low-grade fibromyxoid sarcoma/sclerosing epithelioid fibrosarcoma. This differential diagnosis can be resolved with a combination of careful morphological study and the application of a panel of immunostains, although molecular genetic study is most definitive. The natural history of PRRX1-NCOA1-rearranged fibroblastic tumour appears to be quite favourable, although longer-term study of a larger number of cases is warranted.


Assuntos
Proteínas de Homeodomínio/genética , Coativador 1 de Receptor Nuclear/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Adulto , Feminino , Rearranjo Gênico , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA