Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Biochemistry ; 63(7): 913-925, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38471967

RESUMO

Several anaerobic bacterial species, including the Gram-negative oral bacterium Fusobacterium nucleatum, ferment lysine to produce butyrate, acetate, and ammonia. The second step of the metabolic pathway─isomerization of ß-l-lysine to erythro-3,5-diaminohexanoate─is catalyzed by the adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme, lysine 5,6-aminomutase (5,6-LAM). Similar to other AdoCbl-dependent enzymes, 5,6-LAM undergoes mechanism-based inactivation due to loss of the AdoCbl 5'-deoxyadenosyl moiety and oxidation of the cob(II)alamin intermediate to hydroxocob(III)alamin. Herein, we identified kamB and kamC, two genes responsible for ATP-dependent reactivation of 5,6-LAM. KamB and KamC, which are encoded upstream of the genes corresponding to α and ß subunits of 5,6-LAM (kamD and kamE), co-purified following coexpression of the genes in Escherichia coli. KamBC exhibited a basal level of ATP-hydrolyzing activity that was increased 35% in a reaction mixture that facilitated 5,6-LAM turnover with ß-l-lysine or d,l-lysine. Ultraviolet-visible (UV-vis) spectroscopic studies performed under anaerobic conditions revealed that KamBC in the presence of ATP/Mg2+ increased the steady-state concentration of the cob(II)alamin intermediate in the presence of excess ß-l-lysine. Using a coupled UV-visible spectroscopic assay, we show that KamBC is able to reactivate 5,6-LAM through exchange of the damaged hydroxocob(III)alamin for AdoCbl. KamBC is also specific for 5,6-LAM as it had no effect on the rate of substrate-induced inactivation of the homologue, ornithine 4,5-aminomutase. Based on sequence homology, KamBC is structurally distinct from previously characterized B12 chaperones and reactivases, and correspondingly adds to the list of proteins that have evolved to maintain the cellular activity of B12 enzymes.


Assuntos
Transferases Intramoleculares , Lisina , Lisina/metabolismo , Transferases Intramoleculares/metabolismo , Cobamidas/metabolismo , Trifosfato de Adenosina
2.
J Biol Chem ; 299(9): 105109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517695

RESUMO

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Assuntos
Cobamidas , Metilmalonil-CoA Mutase , Modelos Moleculares , Chaperonas Moleculares , Cobamidas/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Isomerases/química , Isomerases/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Cupriavidus/química , Cupriavidus/enzimologia , Estrutura Quaternária de Proteína , Domínio Catalítico , Coenzimas/metabolismo
3.
Adv Healthc Mater ; 12(25): e2300835, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37070155

RESUMO

Vitamin B12 (cobalamin) is essential for human health and its deficiency results in anemia and neurological damage. Vitamin B12 exists in different forms with various bioactivity but most sensors are unable to discriminate between them. Here, a whole-cell agglutination assay that is specific for adenosylcobalamin (AboB12), which is one of two bioactive forms, is reported. This biosensor consists of Escherichia coli that express the AdoB12 specific binding domain of CarH at their surface. In the presence of AdoB12, CarH forms tetramers, which leads to specific bacterial cell-cell adhesions and agglutination. These CarH tetramers disassemble upon green light illumination such that reversion of the bacterial aggregation can serve as internal quality control. The agglutination assay has a detection limit of 500 nм AdoB12, works in protein-poor biofluids such as urine, and has high specificity to AdoB12 over other forms of vitamin B12 as also demonstrated with commercially available supplements. This work is a proof of concept for a cheap and easy-to-readout AdoB12 sensor that can be implemented at the point-of-care to monitor high-dose vitamin B12 supplementation.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Humanos , Proteínas de Bactérias/química , Cobamidas/química , Cobamidas/metabolismo , Vitamina B 12/metabolismo , Bactérias/metabolismo
4.
Sci Rep ; 12(1): 17175, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229494

RESUMO

Cobamides (Cbas) are coenzymes used by cells across all domains of life, but de novo synthesis is only found in some bacteria and archaea. Five enzymes assemble the nucleotide loop in the alpha phase of the corrin ring. Condensation of the activated ring and nucleobase yields adenosyl-Cba 5'-phosphate, which upon dephosphorylation yields the biologically active coenzyme (AdoCba). Base activation is catalyzed by a phosphoribosyltransferase (PRTase). The structure of the Salmonella enterica PRTase enzyme (i.e., SeCobT) is well-characterized, but archaeal PRTases are not. To gain insights into the mechanism of base activation by the PRTase from Methanocaldococcus jannaschii (MjCobT), we solved crystal structures of the enzyme in complex with substrate and products. We determined several structures: (i) a 2.2 Å structure of MjCobT in the absence of ligand (apo), (ii) structures of MjCobT bound to nicotinate mononucleotide (NaMN) and α-ribazole 5'-phosphate (α-RP) or α-adenylyl-5'-phosphate (α-AMP) at 2.3 and 1.4 Å, respectively. In MjCobT the general base that triggers the reaction is an aspartate residue (Asp 52) rather than a glutamate residue (E317) as in SeCobT. Notably, the dimer interface in MjCobT is completely different from that observed in SeCobT. Finally, entry PDB 3L0Z does not reflect the correct structure of MjCobT.


Assuntos
Cianobactérias , Euryarchaeota , Monofosfato de Adenosina , Archaea/metabolismo , Ácido Aspártico , Cobamidas/metabolismo , Cristalografia por Raios X , Cianobactérias/metabolismo , Euryarchaeota/metabolismo , Glutamatos , Ligantes , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosfatos/metabolismo
5.
Chemistry ; 28(65): e202202196, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35974426

RESUMO

The X-ray structures of coenzyme B12 (AdoCbl)-dependent eliminating isomerases complexed with adenosylmethylcobalamin (AdoMeCbl) have been determined. As judged from geometries, the Co-C bond in diol dehydratase (DD) is not activated even in the presence of substrate. In ethanolamine ammonia-lyase (EAL), the bond is elongated in the absence of substrate; in the presence of substrate, the complex likely exists in both pre- and post-homolysis states. The impacts of incorporating an extra CH2 group are different in the two enzymes: the DD active site is flexible, and AdoMeCbl binding causes large conformational changes that make DD unable to adopt the catalytic state, whereas the EAL active site is rigid, and AdoMeCbl binding does not induce significant conformational changes. Such flexibility and rigidity of the active sites might reflect the tightness of adenine binding. The structures provide good insights into the basis of the very low activity of AdoMeCbl in these enzymes.


Assuntos
Etanolamina Amônia-Liase , Propanodiol Desidratase , Etanolamina Amônia-Liase/química , Etanolamina Amônia-Liase/metabolismo , Propanodiol Desidratase/química , Propanodiol Desidratase/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Cinética
6.
Mol Microbiol ; 118(3): 191-207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785499

RESUMO

Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.


Assuntos
Etanolamina Amônia-Liase , Salmonella enterica , Trifosfato de Adenosina/metabolismo , Cobamidas/metabolismo , Etanolamina/metabolismo , Etanolamina Amônia-Liase/genética , Etanolamina Amônia-Liase/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhimurium/metabolismo
7.
mBio ; 13(4): e0179322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880884

RESUMO

Acinetobacter baumannii is an opportunistic pathogen typically associated with hospital-acquired infections. Our understanding of the metabolism and physiology of A. baumannii is limited. Here, we report that A. baumannii uses ethanolamine (EA) as the sole source of nitrogen and can use this aminoalcohol as a source of carbon and energy if the expression of the eutBC genes encoding ethanolamine ammonia-lyase (EAL) is increased. A strain with an ISAba1 element upstream of the eutBC genes efficiently used EA as a carbon and energy source. The A. baumannii EAL (AbEAL) enzyme supported the growth of a strain of Salmonella lacking the entire eut operon. Remarkably, the growth of the above-mentioned Salmonella strain did not require the metabolosome, the reactivase EutA enzyme, the EutE acetaldehyde dehydrogenase, or the addition of glutathione to the medium. Transmission electron micrographs showed that when Acinetobacter baumannii or Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 synthesized AbEAL, the protein localized to the cell membrane. We also report that the A. baumannii genome encodes all of the enzymes needed for the assembly of the nucleotide loop of cobamides and that it uses these enzymes to synthesize different cobamides from the precursor cobinamide and several nucleobases. In the absence of exogenous nucleobases, the most abundant cobamide produced by A. baumannii was cobalamin. IMPORTANCE Acinetobacter baumannii is a Gram-negative bacterium commonly found in soil and water. A. baumannii is an opportunistic human pathogen, considered by the CDC to be a serious threat to human health due to the multidrug resistance commonly associated with this bacterium. Knowledge of the metabolic capabilities of A. baumannii is limited. The importance of the work reported here lies in the identification of ethanolamine catabolism occurring in the absence of a metabolosome structure. In other bacteria, this structure protects the cell against damage by acetaldehyde generated by the deamination of ethanolamine. In addition, the ethanolamine ammonia-lyase (EAL) enzyme of this bacterium is unique in that it does not require a reactivase enzyme to remain active. Importantly, we also demonstrate that the A. baumannii genome encodes the functions needed to assemble adenosylcobamide, the coenzyme of EAL, from the precursor cobinamide.


Assuntos
Acinetobacter baumannii , Etanolamina Amônia-Liase , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Carbono/metabolismo , Cobamidas/metabolismo , Etanolamina/metabolismo , Etanolamina Amônia-Liase/genética , Etanolamina Amônia-Liase/metabolismo , Etanolaminas/metabolismo , Humanos , Salmonella typhimurium/genética
8.
Methods Enzymol ; 669: 151-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644170

RESUMO

Adenosylcobalamin- (AdoCbl) dependent enzyme reactions involved the transfer of hydrogen atoms between the 5'-carbon of the coenzyme and the substrates and products of the reaction. Tritium and deuterium kinetic isotope effect measurements are, therefore, a valuable tool to probe the mechanisms of AdoCbl-dependent enzymes, as they can provide information about the reaction pathway and the rate-determining step. Furthermore, if the intrinsic kinetic isotope effect can be isolated, information on the nature of the transition state associated with hydrogen transfer can be obtained. In this chapter I present methods for the preparation of isotopically-labeled AdoCbl and their use in rapid chemical quench experiments that allow isotope effects on specific steps in the reaction to be isolated. These techniques are illustrated with examples from my laboratory's studies on the AdoCbl dependent enzyme, glutamate mutase.


Assuntos
Cobamidas , Isótopos , Cobamidas/metabolismo , Hidrogênio/metabolismo , Cinética
9.
Methods Enzymol ; 668: 125-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589191

RESUMO

Cobamides (Cbas) are the largest coenzymes known and are used by cells in all domains of life. These molecules are characterized by a central cobalt-containing tetrapyrrole ring with two opposing axial ligands on the α and ß faces of the ring. All biologically active forms of Cbas have a 5'-deoxyadenosyl group as the upper (Coß) ligand that is covalently attached to the cobalt ion of the ring. In contrast, the lower ligand is a nucleobase of diverse chemical structure; however, nucleobases are usually derivatives of benzimidazole or purine. Phenol and p-cresol can also serve as the nucleobase, but they cannot form a coordination bond with the cobalt ion of the ring because they lack a free pair of electrons. The Cba incorporating 5,6-dimethylbenzimidazole (DMB) is known as cobalamin (Cbl), and the coenzymic form of cobalamin is known as adenosylcobalamin (AdoCbl). A common vitamer of cobalamin has a cyano group as the upper ligand. This vitamer is known as cyanocobalamin (CNCbl), which is commercially marketed as vitamin B12. Here, we describe a combination of chemical hydrolysis of cobalamin with the enzymatic dephosphorylation of the resulting α-R-3'-phosphate to yield α-R, which we enzymically convert to the pathway intermediate α-R-5'-phosphate (α-RP). The methods describe herein can be readily scaled up to generate large amounts of α-RP.


Assuntos
Fosfatos , Vitamina B 12 , Cobalto/química , Cobamidas/química , Cobamidas/metabolismo , Coenzimas , Ligantes , Ribonucleosídeos , Vitamina B 12/metabolismo , Vitaminas
10.
Methods Enzymol ; 668: 181-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589194

RESUMO

Adenosylcobalamin (AdoCbl) or coenzyme B12-dependent enzymes catalyze intramolecular group-transfer reactions and ribonucleotide reduction in a wide variety of organisms from bacteria to animals. They use a super-reactive primary-carbon radical formed by the homolysis of the coenzyme's Co-C bond for catalysis and thus belong to the larger class of "radical enzymes." For understanding the general mechanisms of radical enzymes, it is of great importance to establish the general mechanism of AdoCbl-dependent catalysis using enzymes that catalyze the simplest reactions-such as diol dehydratase, glycerol dehydratase and ethanolamine ammonia-lyase. These enzymes are often called "eliminases." We have studied AdoCbl and eliminases for more than a half century. Progress has always been driven by the development of new experimental methodologies. In this chapter, we describe our investigations on these enzymes, including their metabolic roles, gene cloning, preparation, characterization, activity assays, and mechanistic studies, that have been conducted using a wide range of biochemical and structural methodologies we have developed.


Assuntos
Etanolamina Amônia-Liase , Animais , Cobamidas/química , Cobamidas/metabolismo , Etanolamina Amônia-Liase/química , Etanolamina Amônia-Liase/metabolismo , Glicerol , Hidroliases , Fosfotreonina/análogos & derivados
11.
Methods Enzymol ; 668: 349-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589201

RESUMO

Coenzyme B12 is one of the most complex cofactors found in nature and synthesized de novo by certain groups of bacteria. Although its use in various enzymatic reactions is well characterized, only recently an unusual light-sensing function has been ascribed to coenzyme B12. It has been reported that the coenzyme B12 binding protein CarH, found in the carotenoid biosynthesis pathway of several thermostable bacteria, binds to the promoter region of DNA and suppresses transcription. To overcome the harmful effects of light-induced damage in the cells, CarH releases DNA in the presence of light and promotes transcription and synthesis of carotenoids, thereby working as a photoreceptor. CarH is able to achieve this by exploiting the photosensitive nature of the CoC bond between the adenosyl moiety and the cobalt atom in the coenzyme B12 molecule. Extensive structural and spectroscopy studies provided a mechanistic understanding of the molecular basis of this unique light-sensitive reaction. Most studies on CarH have used the ortholog from the thermostable bacterium Thermus thermophilus, due to the ease with which it can be expressed and purified in high quantities. In this chapter we give an overview of this intriguing class of photoreceptors and report a step-by-step protocol for expression, purification and spectroscopy experiments (both static and time-resolved techniques) employed in our laboratory to study CarH from T. thermophilus. We hope the contents of this chapter will be of interest to the wider coenzyme B12 community and apprise them of the potential and possibilities of using coenzyme B12 as a light-sensing probe in a protein scaffold.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Cobamidas/química , Cobamidas/genética , Cobamidas/metabolismo , DNA/metabolismo , Fosfotreonina/análogos & derivados , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Vitamina B 12/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(48): 30412-30422, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199623

RESUMO

Cobalamin is a complex organometallic cofactor that is processed and targeted via a network of chaperones to its dependent enzymes. AdoCbl (5'-deoxyadenosylcobalamin) is synthesized from cob(II)alamin in a reductive adenosylation reaction catalyzed by adenosyltransferase (ATR), which also serves as an escort, delivering AdoCbl to methylmalonyl-CoA mutase (MCM). The mechanism by which ATR signals that its cofactor cargo is ready (AdoCbl) or not [cob(II)alamin] for transfer to MCM, is not known. In this study, we have obtained crystallographic snapshots that reveal ligand-induced ordering of the N terminus of Mycobacterium tuberculosis ATR, which organizes a dynamic cobalamin binding site and exerts exquisite control over coordination geometry, reactivity, and solvent accessibility. Cob(II)alamin binds with its dimethylbenzimidazole tail splayed into a side pocket and its corrin ring buried. The cosubstrate, ATP, enforces a four-coordinate cob(II)alamin geometry, facilitating the unfavorable reduction to cob(I)alamin. The binding mode for AdoCbl is notably different from that of cob(II)alamin, with the dimethylbenzimidazole tail tucked under the corrin ring, displacing the N terminus of ATR, which is disordered. In this solvent-exposed conformation, AdoCbl undergoes facile transfer to MCM. The importance of the tail in cofactor handover from ATR to MCM is revealed by the failure of 5'-deoxyadenosylcobinamide, lacking the tail, to transfer. In the absence of MCM, ATR induces a sacrificial cobalt-carbon bond homolysis reaction in an unusual reversal of the heterolytic chemistry that was deployed to make the same bond. The data support an important role for the dimethylbenzimidazole tail in moving the cobalamin cofactor between active sites.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cinética , Modelos Biológicos , Conformação Molecular , Complexos Multiproteicos , Ligação Proteica , Relação Estrutura-Atividade
13.
Biochemistry ; 59(10): 1124-1136, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32125848

RESUMO

ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.


Assuntos
Corrinoides/metabolismo , Listeria monocytogenes/enzimologia , Aciltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/ultraestrutura , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cobalto/química , Cobamidas/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Mutação , Transferases/metabolismo
14.
Biochemistry ; 58(35): 3683-3690, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31419122

RESUMO

The first-order reaction kinetics of the cryotrapped 1,1,2,2-2H4-aminoethanol substrate radical intermediate state in the adenosylcobalamin (B12)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella enterica serovar Typhimurium are measured over the range of 203-225 K by using time-resolved, full-spectrum electron paramagnetic resonance spectroscopy. The studies target the fundamental understanding of the mechanism of EAL, the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. Incorporation of 2H into the hydrogen transfer that follows the substrate radical rearrangement step in the substrate radical decay reaction sequence leads to an observed 1H/2H isotope effect of approximately 2 that preserves, with high fidelity, the idiosyncratic piecewise pattern of rate constant versus inverse temperature dependence that was previously reported for the 1H-labeled substrate, including a monoexponential regime (T ≥ 220 K) and two distinct biexponential regimes (T = 203-219 K). In the global kinetic model, reaction at ≥220 K proceeds from the substrate radical macrostate, S•, and at 203-219 K along parallel pathways from the two sequential microstates, S1• and S2•, that are distinguished by different protein configurations. Decay from S•, or S1• and S2•, is rate-determined by radical rearrangement (1H) or by contributions from both radical rearrangement and hydrogen transfer (2H). Non-native direct decay to products from S1• is a consequence of the free energy barrier to the native S1• → S2• protein configurational transition. At physiological temperatures, this is averted by the fast protein configurational dynamics that guide the S1• → S2• transition.


Assuntos
Deutério/química , Etanolamina Amônia-Liase , Etanolaminas/química , Etanolaminas/metabolismo , Catálise/efeitos dos fármacos , Cobamidas/metabolismo , Cobamidas/farmacologia , Temperatura Baixa , Deutério/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Entropia , Etanolamina Amônia-Liase/química , Etanolamina Amônia-Liase/efeitos dos fármacos , Etanolamina Amônia-Liase/metabolismo , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Salmonella enterica/enzimologia , Salmonella typhimurium/enzimologia
15.
J Am Chem Soc ; 141(30): 12139-12146, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31274303

RESUMO

The 5'-deoxyadenosyl radical (5'-dAdo·) abstracts a substrate H atom as the first step in radical-based transformations catalyzed by adenosylcobalamin-dependent and radical S-adenosyl-l-methionine (RS) enzymes. Notwithstanding its central biological role, 5'-dAdo· has eluded characterization despite efforts spanning more than a half-century. Here, we report generation of 5'-dAdo· in a RS enzyme active site at 12 K using a novel approach involving cryogenic photoinduced electron transfer from the [4Fe-4S]+ cluster to the coordinated S-adenosylmethionine (SAM) to induce homolytic S-C5' bond cleavage. We unequivocally reveal the structure of this long-sought radical species through the use of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies with isotopic labeling, complemented by density-functional computations: a planar C5' (2pπ) radical (∼70% spin occupancy); the C5'(H)2 plane is rotated by ∼37° (experiment)/39° (DFT) relative to the C5'-C4'-(C4'-H) plane, placing a C5'-H antiperiplanar to the ribose-ring oxygen, which helps stabilize the radical against elimination of the 4'-H. The agreement between φ from experiment and in vacuo DFT indicates that the conformation is intrinsic to 5-dAdo· itself, and not determined by its environment.


Assuntos
Desoxiadenosinas/química , Adenosilmetionina Descarboxilase/química , Adenosilmetionina Descarboxilase/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Desoxiadenosinas/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico
16.
J Am Chem Soc ; 140(41): 13205-13208, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30282455

RESUMO

A sophisticated intracellular trafficking pathway in humans is used to tailor vitamin B12 into its active cofactor forms, and to deliver it to two known B12-dependent enzymes. Herein, we report an unexpected strategy for cellular retention of B12, an essential and reactive cofactor. If methylmalonyl-CoA mutase is unavailable to accept the coenzyme B12 product of adenosyltransferase, the latter catalyzes homolytic scission of the cobalt-carbon bond in an unconventional reversal of the nucleophilic displacement reaction that was used to make it. The resulting homolysis product binds more tightly to adenosyltransferase than does coenzyme B12, facilitating cofactor retention. We have trapped, and characterized spectroscopically, an intermediate in which the cobalt-carbon bond is weakened prior to being broken. The physiological relevance of this sacrificial catalytic activity for cofactor retention is supported by the significantly lower coenzyme B12 concentration in patients with dysfunctional methylmalonyl-CoA mutase but normal adenosyltransferase activity.


Assuntos
Cobamidas/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Carbono/química , Domínio Catalítico , Cobalto/química , Cobamidas/química , Fibroblastos/metabolismo , Humanos , Metilmalonil-CoA Mutase/metabolismo , Estrutura Molecular
17.
J Biol Chem ; 293(46): 17888-17905, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262667

RESUMO

Newly discovered bacterial photoreceptors called CarH sense light by using 5'-deoxyadenosylcobalamin (AdoCbl). They repress their own expression and that of genes for carotenoid synthesis by binding in the dark to operator DNA as AdoCbl-bound tetramers, whose light-induced disassembly relieves repression. High-resolution structures of Thermus thermophilus CarHTt have provided snapshots of the dark and light states and have revealed a unique DNA-binding mode whereby only three of four DNA-binding domains contact an operator comprising three tandem direct repeats. To gain further insights into CarH photoreceptors and employing biochemical, spectroscopic, mutational, and computational analyses, here we investigated CarHBm from Bacillus megaterium We found that apoCarHBm, unlike monomeric apoCarHTt, is an oligomeric molten globule that forms DNA-binding tetramers in the dark only upon AdoCbl binding, which requires a conserved W-X9-EH motif. Light relieved DNA binding by disrupting CarHBm tetramers to dimers, rather than to monomers as with CarHTt CarHBm operators resembled that of CarHTt, but were larger by one repeat and overlapped with the -35 or -10 promoter elements. This design persisted in a six-repeat, multipartite operator we discovered upstream of a gene encoding an Spx global redox-response regulator whose photoregulated expression links photooxidative and general redox responses in B. megaterium Interestingly, CarHBm recognized the smaller CarHTt operator, revealing an adaptability possibly related to the linker bridging the DNA- and AdoCbl-binding domains. Our findings highlight a remarkable plasticity in the mode of action of B12-based CarH photoreceptors, important for their biological functions and development as optogenetic tools.


Assuntos
Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , DNA Bacteriano/metabolismo , Fotorreceptores Microbianos/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus megaterium , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regiões Operadoras Genéticas , Fotorreceptores Microbianos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Raios Ultravioleta
18.
Biochemistry ; 57(34): 5076-5087, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30071718

RESUMO

ATP:Co(I)rrinoid adenosyltransferases (ACATs) are involved in de novo adenosylcobamide (AdoCba) biosynthesis and in salvaging complete and incomplete corrinoids from the environment. The ACAT enzyme family is comprised of three classes of structurally and evolutionarily distinct proteins (i.e., CobA, PduO, and EutT). The structure of EutT is unknown, and an understanding of its mechanism is incomplete. The Salmonella enterica EutT ( SeEutT) enzyme is the best-characterized member of its class and is known to be a ferroprotein. Here, we report the identification and initial biochemical characterization of an enzyme representative of a new class of EutTs that does not require a metal ion for activity. In vivo and in vitro evidence shows that the metal-free EutT homologue from Listeria monocytogenes ( LmEutT) has ACAT activity and that, unlike other ACATs, the biologically active form of LmEutT is a tetramer. In vitro studies revealed that LmEutT was more efficient than SeEutT and displayed positive cooperativity. LmEutT adenosylated cobalamin, but not cobinamide, showed specificity for ATP and 2'-deoxyATP and released a triphosphate byproduct. Bioinformatics analyses suggest that metal-free EutT ACATs are also present in other Firmicutes.


Assuntos
Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Firmicutes/enzimologia , Listeria monocytogenes/enzimologia , Metais/metabolismo , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biologia Computacional , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Homologia de Sequência
19.
Mol Microbiol ; 110(2): 239-261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098062

RESUMO

Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coá´½-(á´½-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).


Assuntos
Cobamidas/metabolismo , Nucleotídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/genética , Rhodobacter capsulatus/genética , Rhodobacter sphaeroides/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Serina/metabolismo , Treonina/metabolismo
20.
Biochemistry ; 57(30): 4478-4495, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29950091

RESUMO

Cobamides (Cbas) are synthesized by many archaea, but some aspects of Cba biosynthesis in these microorganisms remain unclear. Here, we demonstrate that open reading frame MM2060 in the archaeum Methanosarcina mazei strain Gö1 encodes a bifunctional enzyme with l-threonine- O-3-phosphate (l-Thr-P) decarboxylase (EC 4.1.1.81) and l-Thr kinase activities (EC 2.7.1.177). In Salmonella enterica, where Cba biosynthesis has been extensively studied, the activities mentioned above are encoded by separate genes, namely, cobD and pduX, respectively. The activities associated with the MM2060 protein ( MmCobD) were validated in vitro and in vivo. In vitro, MmCobD used ATP and l-Thr as substrates and generated ADP, l-Thr-P, and ( R)-1-aminopropan-2-ol O-phosphate as products. Notably, MmCobD has a 111-amino acid C-terminal extension of unknown function, which contains a putative metal-binding motif. This C-terminal domain alone did not display activity either in vivo or in vitro. Although the C-terminal MmCobD domain was not required for l-Thr-P decarboxylase or l-Thr kinase activities in vivo, its absence negatively affected both activities. In vitro results suggested that this domain may have a regulatory or substrate-gating role. When purified under anoxic conditions, MmCobD displayed Michaelis-Menten kinetics and had a 1000-fold higher affinity for ATP and a catalytic efficiency 1300-fold higher than that of MmCobD purified under oxic conditions. To the best of our knowledge, MmCobD is the first example of a new class of l-Thr-P decarboxylases that also have l-Thr kinase activity. An archaeal protein with l-Thr kinase activity had not been identified prior to this work.


Assuntos
Proteínas Arqueais/metabolismo , Vias Biossintéticas , Carboxiliases/metabolismo , Cobamidas/metabolismo , Methanosarcina/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Carboxiliases/química , Carboxiliases/genética , Cobamidas/genética , Methanosarcina/química , Methanosarcina/genética , Fases de Leitura Aberta , Proteínas Quinases/química , Proteínas Quinases/genética , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA