Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
1.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691186

RESUMO

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Assuntos
Cobre , Espermatogênese , Testículo , Tretinoína , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Tretinoína/farmacologia , Cobre/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Meiose/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
3.
Sci Rep ; 14(1): 8608, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615032

RESUMO

This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 µM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 µM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 µM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.


Assuntos
Cádmio , Cucurbita , Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Sementes
4.
J Environ Manage ; 359: 120956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669883

RESUMO

The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.


Assuntos
Brassica , Cádmio , Cobre , Raízes de Plantas , Transcriptoma , Cádmio/toxicidade , Brassica/genética , Brassica/efeitos dos fármacos , Brassica/metabolismo , Cobre/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Transcriptoma/efeitos dos fármacos , Poluentes do Solo/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos
5.
Chemosphere ; 357: 142092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653396

RESUMO

Climate change further the world's human population increase is a mainstream political issue, and it's critical to search for solutions to produce enough food to feed everyone. Pesticides and fertilizers have been used as an easy solution to prevent pests and increase food production. Nevertheless, their overuse has dangerous effects on the ecosystems and communities. Oxyfluorfen (Oxy) and copper (Cu) based formulations are used as pesticides and widely applied on agricultural fields for crop protection. However, they have shown negative effects on non-target species. So, this work proposes to: a)determine the lethal concentration of Oxy and Cu to the zooplankton, Artemia franciscana, at different temperatures (15 °C, 20 °C and 25 °C); b)understand the biochemical impacts of these chemicals at the different temperatures scenarios, on A. franciscana and c)evaluate the impact of the climate changes, particularly the temperature increase, on this species sensitivity to the tested pesticides. Acute and sub-lethal bioassays with Oxy and Cu were performed at different temperatures to determine the lethal concentration of each chemical and to understand the effects of the compounds at different temperatures on the biochemical profiles of A. franciscana. Results showed an increase in chemicals toxicity with the temperature, and Oxy was revealed to be more noxious to A. franciscana than Cu; at a biochemical level, significant differences were observed among temperatures, with the biggest differences between the organisms exposed to 15 °C and 25 °C. Overall, a decrease in fatty acids (FA) and sugars was observed with the increase in Cu and oxyfluorfen concentrations. Different trends were observed with temperature increase, with FA increase in the organisms exposed to Cu and the opposite was observed in the ones exposed to oxyfluorfen. Sugar content decreases in the organisms exposed to oxyfluorfen with temperature increase and showed a non-linear behaviour in the ones exposed to Control and Cu treatments.


Assuntos
Artemia , Cobre , Éteres Difenil Halogenados , Praguicidas , Temperatura , Animais , Cobre/toxicidade , Éteres Difenil Halogenados/toxicidade , Artemia/efeitos dos fármacos , Praguicidas/toxicidade , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Mudança Climática
6.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436777

RESUMO

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Feminino , Cobre/toxicidade , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Hormônios/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
7.
Environ Sci Pollut Res Int ; 31(10): 15946-15957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308781

RESUMO

Nitrogen forms can affect metal accumulation in plants and tolerance to metals, but a few published studies on the effects on Cu toxicity and Cu accumulation in plants are scarce. Thus, the objective of this study was to evaluate the responses of Liriodendron chinense to different nitrogen forms, by the oxidative stress, antioxidant enzymes system, GSH-AsA cycle, Cu uptake, translocation, and accumulation under Cu stress. We found that Cu-induced growth inhibiting was alleviated by added exclusive NO3--N. Adding N as NH4+-N with or without NO3--N was aggravated as evidenced by significantly elevated malonaldehyde (MDA) and hydrogen peroxide (H2O2) compared to N-Null. Cu exposure and adding NH4+-N inhibited superoxide dismutase activity, but remarkably stimulated the activities of catalase and peroxidase, the efficiency of glutathione-ascorbate (GSH-AsA) cycle, and the activity of glutathione reductase and nitrate reductase, with respect to the control. However, adding exclusive NO3--N progressively restored the alteration of antioxidant to prevent Cu-induced oxidative stress. Additionally, adding exclusive NO3--N significantly promoted the Cu uptake and accumulation in roots, but reduced Cu concentration in leaves, accompanied by the inhibited Cu translocation factor from roots to shoots by 36.7%, when compared with N-Null. Overall, adding NO3--N alleviated its Cu toxicity by preventing Cu-induced oxidative stress and inhibiting Cu translocation from roots to shoots, which provides an effective strategy for phytostabilization in Cu-contaminated lands.


Assuntos
Cobre , Liriodendron , Cobre/toxicidade , Antioxidantes/metabolismo , Nitratos/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Nitrogênio/farmacologia , Raízes de Plantas/metabolismo
8.
Environ Pollut ; 345: 123515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346639

RESUMO

As microplastics (MP) become ubiquitous, their interactions with heavy metals threatens the coral ecosystem. This study aimed to assess the combined toxicity of MP and copper (Cu) in the environment of coral. Goniopora columna was exposed to polyethylene microplastics (PE-MP) combined with Cu2+ at 10, 20, 50, 100, and 300 µg/L for 7 days. Polyp length and adaptability were recorded daily, and coral samples were collected at 1, 3, 5, and 7 days to analyse zooxanthellae density and antioxidant activity. Tissue observations and the analysis of MP and Cu2+ accumulation were conducted on the 7th day. After 1 day of exposure, PE-MP combined with different concentrations of Cu2+ significantly decreased polyp length and adaptability compared with PE-MP alone. Simultaneously, a significant increase in malondialdehyde (MDA) content, lead to coral oxidative stress, which was a combined effect with PE-MP. After 3 days of exposure, PE-MP combined with Cu2+ at >50 µg/L significantly reduced zooxanthellae density, damaging the coral's symbiotic relationship. In antioxidant enzyme activity, superoxide dismutase (SOD) activity decreased significantly after 1 day of exposure. After 3 days of exposure, glutathione peroxidase (GPx) activity significantly increased with Cu2+ at >20 µg/L. After 5 days of exposure, PE-MP combined with different concentrations of Cu2+ significantly reduced catalase (CAT), glutathione (GSH), and glutathione transferase (GST) activity, disrupting the antioxidant enzyme system, and acting antagonistically to PE-MP alone. Tissue observations revealed that the PE-MP combined with Cu2+ at >50 µg/L caused severe mesenteric atrophy, vacuolar, and Cu2+ accumulation in the coral mesenteric compared with PE-MP alone. The results suggest that combined exposure of PE-MP and copper leads to more severe oxidative stress, disruption antioxidant enzyme system, tissue damage, and Cu2+ accumulation, resulting in a significant maladaptation of corals to the environment.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/toxicidade , Antioxidantes/metabolismo , Microplásticos , Plásticos , Ecossistema , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
9.
Environ Toxicol Pharmacol ; 106: 104390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367919

RESUMO

Heavy metals are now persistently present in living things' environments, in addition to their potential toxicity. Therefore, the aim of this study was to utilize D. melanogaster to determine the biological effects induced by different heavy metals including cadmium chloride (CdCl2), copper (II) sulfate pentahydrate (CuSO 4.5 H2O), and silver nitrate (AgNO3). In vivo experiments were conducted utilizing three low and environmentally relevant concentrations from 0.01 to 0.5 mM under single and combined exposure scenarios on D. melanogaster larvae. The endpoints measured included viability, reactive oxygen species (ROS) generation and genotoxic effects using Comet assay and the wing-spot test. Results indicated that tested heavy metals were not toxic in the egg-to adult viability. However, combined exposure (CdCl2+AgNO3 and CdCl2+AgNO3+CuSO 4.5 H2O) resulted in significant genotoxic and unfavorable consequences, as well as antagonistic and/or synergistic effects on oxidative damage and genetic damage.


Assuntos
Poluentes Ambientais , Metais Pesados , Animais , Cádmio , Cobre/toxicidade , Drosophila melanogaster/genética , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Dano ao DNA
10.
Ecotoxicol Environ Saf ; 272: 116035, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309234

RESUMO

A suspension of copper oxide nanoparticles (CuO NPs) is a mixture of dissolved and particulate Cu, the relative proportions of which highly depend on the water chemistry. However, the relationship between different proportions of particulate and dissolved Cu and the overall toxicity of CuO NPs is still unknown. This study investigated the response of Chlorella vulgaris to CuO NPs at varying solution pH and at different tannic acid (TA) additions, with a focus on exploring whether and how dissolved and particulate Cu contribute to the overall toxicity of CuO NPs. The results of the exposure experiments demonstrated the involvement of both dissolved and particulate Cu in inducing toxicity of CuO NPs, and the inhibition of CuO NPs on cell density of Chlorella vulgaris was found to be significantly (p < 0.05) alleviated with increased levels of TA and pH (< 8). Using the independent action model, the contribution to toxicity of particulate Cu was found to be enhanced with increasing pH values and TA concentrations. The toxic unit indicator better (R2 = 0.86, p < 0.001) explained impacts of CuO NPs on micro-algae cells than commonly used mass concentrations (R2 = 0.27-0.77, p < 0.05) across different levels of pH and TA. Overall, our study provides an additivity-based method to improve the accuracy of toxicity prediction through including contributions to toxicity of both dissolved and particulate Cu and through eliminating the uneven distribution of data due to large variations in total Cu, particulate Cu, dissolved Cu, Cu2+ activities, Cu-TA complexes and other Cu-complexes concentrations with varying water chemistry conditions.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Nanopartículas , Polifenóis , Cobre/toxicidade , Cobre/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água , Concentração de Íons de Hidrogênio
11.
Apoptosis ; 29(5-6): 586-604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38324163

RESUMO

Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.


Assuntos
Ferroptose , Homeostase , Humanos , Ferroptose/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Animais , Metais/metabolismo , Metais/toxicidade , Cálcio/metabolismo , Morte Celular Regulada/efeitos dos fármacos , Cobre/metabolismo , Cobre/toxicidade , Zinco/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
12.
Environ Geochem Health ; 46(1): 27, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225481

RESUMO

Toxicity observed in aquatic ecosystems often cannot be explained by the action of a single pollutant. Likewise, evaluation standards formulated by a single effect cannot truly reflect the environmental quality requirements. The study of mixtures is needed to provide environmental relevance and knowledge of combined toxicity. In this study, the embryos of Japanese medaka (Oryzias latipes) were treated with individual and binary mixture of copper (Cu) and cadmium (Cd) until 12 days post-fertilization (dpf). Hatching, mortality, development, histology and gene expression were assessed. Our results showed that the highest concentration mixture of Cd (10 mg/L) and Cu (1 mg/L) affected survival, hatching time and hatching success. Occurrence of uninflated swim bladder was the highest (value) with exposure to 10 mg/L Cd. Swim bladder was commonly over-inflated in a mixture (0.1 mg/L Cd + 1.0 mg/L Cu) exposure. Individuals exposed to the mixture (0.1 Cd + 1.0 Cu mg/L) showed up to a 7.69% increase in swim bladder area compared to the control group. The mixtures containing 0.1 or 10 mg/L Cd, each with 1.0 mg/L Cu resulted in significantly increased of Pbx1b expression, higher than any Cd or Cu alone (p < 0.01). In the co-exposure group (0.1/10 Cd + 1.0 Cu mg/L), Pbx1b expression was found at 12 dpf but not 7 dpf in controls. Higher concentrations of Cd may progressively reduce Pbx1b expression, potentially explaining why 75% of individuals in the 10 mg/L Cd group failed to inflate their swim bladders. Additionally, the swim bladder proved to be a valuable bio-indicator for biological evaluation.


Assuntos
Oryzias , Poluentes Químicos da Água , Humanos , Animais , Cobre/toxicidade , Cádmio/toxicidade , Ecossistema , Bexiga Urinária , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
13.
Environ Sci Pollut Res Int ; 31(10): 16076-16084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240972

RESUMO

The widespread use of copper-based pesticides, while effective in controlling plant diseases, has been identified as a major source of copper contamination in soils. This raises concerns about potential adverse effects on earthworms, key players in soil health and ecosystem function. To inform sustainable pesticide practices, this study aimed to establish copper toxicity thresholds for earthworm avoidance in agricultural soils impacted by copper-based pesticides. We collected 40 topsoil samples (0-5 cm) from orchards and vineyards in the O'Higgins Region of central Chile, and 10 additional soils under native vegetation as background references. A standardized avoidance bioassay using Eisenia fetida assessed the impact of copper-based pesticides on the soils. Total copper concentrations ranged between 23 and 566 mg kg-1, with observed toxic effects on earthworms in certain soils. The effective concentration at 50% (EC50) for total soil copper, determined by Eisenia fetida's avoidance response, was 240 mg kg-1, with a 95% confidence interval of 193-341 mg kg-1. We further compared our EC50 values with existing data from agricultural soils impacted by mining activities. Interestingly, the results revealed a remarkable similarity between the thresholds for earthworm avoidance, regardless of the source of copper contamination. This observation underscores the universality of copper toxicity in agricultural ecosystems and its potential impact on soil biota. This study provides novel insights into copper toxicity thresholds for earthworms in real-world, pesticide-contaminated soils.


Assuntos
Oligoquetos , Praguicidas , Animais , Praguicidas/toxicidade , Cobre/toxicidade , Ecossistema , Solo
14.
Environ Pollut ; 341: 122990, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992950

RESUMO

Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu + efflux protein of the P1B1-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.


Assuntos
Glomeromycota , Micorrizas , Cobre/toxicidade , Adenosina Trifosfatases , Transporte de Íons , Simbiose , Raízes de Plantas
15.
Biol Trace Elem Res ; 202(4): 1711-1721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37474886

RESUMO

Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Ubiquinona/análogos & derivados , Animais , Peroxidação de Lipídeos , Cobre/toxicidade , Galinhas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ferro
16.
Traffic ; 25(1): e12920, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886910

RESUMO

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Assuntos
Degeneração Hepatolenticular , Animais , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Hepatócitos/metabolismo
17.
Mar Environ Res ; 193: 106218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039737

RESUMO

The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 µg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 µg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Cobre/toxicidade , Temperatura , Recifes de Corais
18.
Environ Toxicol Pharmacol ; 105: 104326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000686

RESUMO

Metal discharges in aquatic ecosystems are of concern since they affect different trophic levels, altering the functioning of the aquatic food chain. The metals can interact among them and with other pollutants, resulting in complex mixtures whose effects on biota are unpredictable. The impacts of copper (Cu) and cadmium (Cd), isolated and combined, on the freshwater copepod Notodiaptomus iheringi were assessed in acute and sub-chronic exposures. Species sensitivity distribution (SSD) curves were constructed for both metals. In the acute tests antagonism was observed in mortality, while in sub-chronic, mortality was not affected; however, the eggs produced and percentage of viable eggs were significantly altered. Our data suggest that egg production can be a detoxification route in N. iheringi under Cu and mixture exposure. From the SSD curves, N. iheringi was the most sensitive Brazilian species for Cu and the second most sensitive for Cd.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cádmio/análise , Cobre/toxicidade , Cobre/análise , Zinco/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais , Água Doce
19.
Environ Res ; 241: 117681, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984786

RESUMO

Copper (Cu) is one of the essential micronutrients for plants and has been used extensively in agricultural applications from the past to the present. However, excess copper causes toxic effects such as inhibiting photosynthesis, and disrupting biochemical processes in plants. Nanotechnology applications have offered a critical method for minimizing adverse effects and improving the effectiveness of copper nanoparticles. For this purpose, this study investigated the physiological and biochemical effects of polyvinylpyrrolidone (PVP)-coated Cu nanoparticles (PVP-Cu NP, N1, 100 mg L-1; N2, 400 mg L-1) in Triticum aestivum under alone or combined with salt (S, 150 mM NaCl) and/or drought (D, %10 PEG-6000) stress. Salinity and water deprivation caused 51% and 22% growth retardation in wheat seedlings. The combined stress condition (S + D) resulted in an approximately 3-fold reduction in the osmotic potential of the leaves. PVP-Cu NP treatments to plants under stress, especially N1 dose, were effective in restoring growth rate and regulating water relations. All stress treatments limited gas exchange in stomata and suppressed the maximal quantum yield of PSII (Fv/Fm). More than 50% improvement was observed in stomatal permeability and carbon assimilation rate under S + N1 and S + N2 applications. Examination of OJIP transient parameters revealed that N1 treatments protected photochemical reactions by reducing the dissipated energy flux (DIo/RC) in drought and S + D conditions. Exposure to S and/or D stress caused high hydrogen peroxide (H2O2) accumulation and lipid peroxidation in wheat leaves. The results indicated that S + N1 and S + N2 treatments reduced oxidative damage by stimulating the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Although similar effects were observed at D and S + D conditions with 100 mg L-1 PVP-Cu NP treatments (N1), the curative effect of the N2 dose was not observed. In D + N1 and S + D + N1 groups, AsA regeneration and GSH redox status were maintained by triggering APX, GR, and other enzyme activities belonging to the AsA-GSH cycle. In these groups, N2 treatment did not contribute to the availability of enzymatic and non-enzymatic antioxidants. As a result, this study revealed that N1 dose PVP-Cu NP application was successful in providing stress tolerance and limiting copper-induced adverse effects under all stress conditions.


Assuntos
Antioxidantes , Triticum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cobre/toxicidade , Povidona/farmacologia , Secas , Salinidade , Peróxido de Hidrogênio , Estresse Oxidativo/fisiologia , Cloreto de Sódio/farmacologia
20.
Toxicol In Vitro ; 95: 105766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104743

RESUMO

Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 µg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-ß expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 µg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.


Assuntos
Sulfato de Cobre , Nanopartículas , Animais , Sulfato de Cobre/toxicidade , Fator de Necrose Tumoral alfa , Nanopartículas/toxicidade , Expressão Gênica , Alanina Transaminase/metabolismo , Proteínas de Choque Térmico HSP70 , Lipídeos , Cobre/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA