Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 53(3): 147-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456905

RESUMO

Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a ß/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.


Assuntos
Trifosfato de Adenosina , Klebsiella pneumoniae , Nucleotidiltransferases , Klebsiella pneumoniae/metabolismo , Cristalografia por Raios X , Coenzima A/química , Coenzima A/metabolismo
2.
Annu Rev Biochem ; 92: 351-384, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068769

RESUMO

Thiolases are CoA-dependent enzymes that catalyze the thiolytic cleavage of 3-ketoacyl-CoA, as well as its reverse reaction, which is the thioester-dependent Claisen condensation reaction. Thiolases are dimers or tetramers (dimers of dimers). All thiolases have two reactive cysteines: (a) a nucleophilic cysteine, which forms a covalent intermediate, and (b) an acid/base cysteine. The best characterized thiolase is the Zoogloea ramigera thiolase, which is a bacterial biosynthetic thiolase belonging to the CT-thiolase subfamily. The thiolase active site is also characterized by two oxyanion holes, two active site waters, and four catalytic loops with characteristic amino acid sequence fingerprints. Three thiolase subfamilies can be identified, each characterized by a unique sequence fingerprint for one of their catalytic loops, which causes unique active site properties. Recent insights concerning the thiolase reaction mechanism, as obtained from recent structural studies, as well as from classical and recent enzymological studies, are addressed, and open questions are discussed.


Assuntos
Coenzima A , Cisteína , Coenzima A/química , Coenzima A/metabolismo , Cisteína/metabolismo , Modelos Moleculares , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Domínio Catalítico
3.
Virology ; 578: 61-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473278

RESUMO

A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.


Assuntos
Coenzima A , Vírus do Mosaico do Tabaco , Coenzima A/química , Coenzima A/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nicotiana/metabolismo
4.
New Phytol ; 237(2): 515-531, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062450

RESUMO

Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.


Assuntos
Marchantia , Salicilatos , Coenzima A/química
5.
Nature ; 608(7921): 192-198, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896750

RESUMO

In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.


Assuntos
Coenzima A , Ácido Pantotênico , Fosfatidilinositol 3-Quinase , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proliferação de Células , Coenzima A/biossíntese , Coenzima A/química , Cisteína/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Metabolômica , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Res Microbiol ; 173(4-5): 103940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337986

RESUMO

The phosphopantetheinyl transferases (PPTases) catalyze the post-translational modification of carrier proteins (CPs) from fatty acid synthases (FASs) in primary metabolism and from polyketide synthases (PKSs) and non-ribosomal polypeptide synthases (NRPSs) in secondary metabolism. Based on the conserved sequence motifs and substrate specificities, two types (AcpS-type and Sfp-type) of PPTases have been identified in prokaryotes. We present here that Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, harbors merely one PPTase, namely PptP. Complementation and gene deletion experiments clearly show that PptP can replace the function of Escherichia coli AcpS and is essential for the growth of P. gingivalis. Purified PptP transfers the 4-phosphopantetheine moiety of CoA to inactive apo-acyl carrier protein (ACP) to form holo-ACP, which functions as an active carrier of the acyl intermediates of fatty acid synthesis. Moreover, PptP exhibits broad substrate specificity, modifying all ACP substrates tested and catalyzing the transfer of coenzyme A (CoA) derivatives. The lack of sequence alignment with known PPTases together with phylogenetic analyses revealed PptP as a new class of PPTases. Identification of the new PPTase gene pptP exclusive in Porphyromonas species reveals a potential target for treating P. gingivalis infections.


Assuntos
Porphyromonas , Transferases (Outros Grupos de Fosfato Substituídos) , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/metabolismo , Coenzima A/química , Coenzima A/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Filogenia , Porphyromonas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
Nat Commun ; 12(1): 2511, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947858

RESUMO

Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.


Assuntos
Aminoácidos/química , Domínio Catalítico , Peptídeo Sintases/química , Peptídeos/química , Sideróforos/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Coenzima A/química , Cristalografia por Raios X , Expressão Gênica , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sideróforos/biossíntese , Especificidade por Substrato , Thermobifida/química , Thermobifida/metabolismo
8.
Bioorg Med Chem ; 28(22): 115740, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007553

RESUMO

Coenzyme A (CoA) is a highly selective inhibitor of the mitotic regulatory enzyme Aurora A kinase, with a novel mode of action. Herein we report the design and synthesis of analogues of CoA as inhibitors of Aurora A kinase. We have designed and synthesised modified CoA structures as potential inhibitors, combining dicarbonyl mimics of the pyrophosphate group with a conserved adenosine headgroup and different length pantetheine-based tail groups. An analogue with a -SH group at the end of the pantotheinate tail showed the best IC50, probably due to the formation of a covalent bond with Aurora A kinase Cys290.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Coenzima A/farmacologia , Difosfatos/farmacologia , Desenho de Fármacos , Panteteína/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/metabolismo , Coenzima A/síntese química , Coenzima A/química , Difosfatos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Panteteína/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
9.
Elife ; 92020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885784

RESUMO

NatB is one of three major N-terminal acetyltransferase (NAT) complexes (NatA-NatC), which co-translationally acetylate the N-termini of eukaryotic proteins. Its substrates account for about 21% of the human proteome, including well known proteins such as actin, tropomyosin, CDK2, and α-synuclein (αSyn). Human NatB (hNatB) mediated N-terminal acetylation of αSyn has been demonstrated to play key roles in the pathogenesis of Parkinson's disease and as a potential therapeutic target for hepatocellular carcinoma. Here we report the cryo-EM structure of hNatB bound to a CoA-αSyn conjugate, together with structure-guided analysis of mutational effects on catalysis. This analysis reveals functionally important differences with human NatA and Candida albicans NatB, resolves key hNatB protein determinants for αSyn N-terminal acetylation, and identifies important residues for substrate-specific recognition and acetylation by NatB enzymes. These studies have implications for developing small molecule NatB probes and for understanding the mode of substrate selection by NAT enzymes.


Assuntos
Acetiltransferase N-Terminal B , alfa-Sinucleína , Acetilação , Coenzima A/química , Coenzima A/metabolismo , Humanos , Modelos Moleculares , Acetiltransferase N-Terminal B/antagonistas & inibidores , Acetiltransferase N-Terminal B/química , Acetiltransferase N-Terminal B/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
10.
Nat Prod Rep ; 37(10): 1316-1333, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32582886

RESUMO

Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.


Assuntos
Coenzimas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Catálise , Coenzima A/química , Coenzima A/metabolismo , Coenzimas/síntese química , NADP/química , NADP/metabolismo , Nucleosídeos/metabolismo , Fosfoadenosina Fosfossulfato/química , Fosfoadenosina Fosfossulfato/metabolismo , Fosforilação
11.
Redox Biol ; 28: 101318, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546169

RESUMO

Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.


Assuntos
Aurora Quinase A/química , Aurora Quinase A/metabolismo , Coenzima A/administração & dosagem , Animais , Coenzima A/química , Coenzima A/farmacologia , Cristalografia por Raios X , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Estresse Oxidativo , Fosforilação , Conformação Proteica , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
12.
Biochemistry ; 59(2): 183-196, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31478652

RESUMO

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.


Assuntos
Acetiltransferases/metabolismo , Histona Acetiltransferases/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Coenzima A/química , Ensaios Enzimáticos , Escherichia coli/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Hidrolases , Camundongos Endogâmicos C57BL , Coelhos , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética
13.
Microbiology (Reading) ; 165(11): 1219-1232, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31526453

RESUMO

Nudix hydrolase family proteins hydrolyse toxic by-products of cellular metabolism such as mutagenic nucleoside triphosphates, sugar nucleotides and signalling molecules. We studied the substrate specificities of Nudix hydrolases encoded by rv3672c and rv3040c from Mycobacterium tuberculosis and their respective homologues, msmeg_6185 and msmeg_2327 from M. smegmatis. The rv3672c- and msmeg_6185-encoded proteins (Rv3672 and MSMEG_6185, respectively) showed CoA pyrophosphatase (CoAse) activity that converted acyl-CoA to adenosine-3',5'-diphosphate (3', 5'-ADP) and 4-acyl phosphopantetheine. The efficiencies of Rv3672 and MSMEG_6185 in hydrolysing CoA derivatives were found to be higher than those of the Rv3040 and MSMEG_2327 (encoded by rv3040c and msmeg_2327, respectively). Further, amongst the substrates tested, Rv3672 and MSMEG_6185 used CoA and oxidized CoA as the most preferred substrates. Use of the M. smegmatis model showed that the expression of msmeg_6185 occurs in the log and stationary phases but declines during the late stationary phase and becomes undetectable during hypoxia. The co-culture competition experiments performed between the wild-type and Δmsmeg_6185 strains of M. smegmatis in different carbon sources revealed that the presence of msmeg_6185 provided growth fitness advantage to M. smegmatis, irrespective of the carbon source, implicating its function in regulation for the optimal physiological levels of acyl-CoAs in the cell.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A/metabolismo , Mycobacterium smegmatis/fisiologia , Pirofosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Técnicas de Cocultura , Coenzima A/química , Expressão Gênica , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Pirofosfatases/genética , Estresse Fisiológico , Especificidade por Substrato , Nudix Hidrolases
14.
Biochemistry ; 58(38): 3960-3970, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31469273

RESUMO

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), in most organisms, catalyzes the four-electron reduction of the thioester (S)-HMG-CoA to the primary alcohol (R)-mevalonate, utilizing NADPH as the hydride donor. In some organisms, including the opportunistic lung pathogen Burkholderia cenocepacia, it catalyzes the reverse reaction, utilizing NAD+ as a hydride acceptor in the oxidation of mevalonate. B. cenocepacia HMGR has been previously shown to exist as an ensemble of multiple non-additive oligomeric states, each with different levels of enzymatic activity, suggesting that the enzyme exhibits characteristics of the morpheein model of allostery. We have characterized a number of factors, including pH, substrate concentration, and enzyme concentration, that modulate the structural transitions that influence the interconversion among the multiple oligomers. We have also determined the crystal structure of B. cenocepacia HMGR in the hexameric state bound to coenzyme A and ADP. This hexameric assembly provides important clues about how the transition among oligomers might occur, and why B. cenocepacia HMGR, unique among characterized HMGRs, exhibits morpheein-like behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Estrutura Quaternária de Proteína , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Coenzima A/química , Cristalografia por Raios X , Ensaios Enzimáticos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
15.
Nanoscale ; 11(19): 9270-9275, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31038508

RESUMO

Ratiometric fluorescence imaging can decrease or even eliminate the influences of the microenvironment, localized probe distribution, and instrumental parameters, thereby permitting more accurate monitoring of intracellular molecular events. Therefore, developing ratiometric fluorescent nanoprobes is highly important. In this study, we proposed a distinctive approach by combining solvent extraction with a solvothermal method to synthesize novel biomass-derived carbon-based quantum dots (termed as biomass quantum dots, BQDs) with single-excitation and dual-emission properties, using chlorophyll extracted from pakchoi and polyoxyethylene bisamine as raw materials. The obtained BQDs emit blue and red emissions centered at 488 nm and 678 nm respectively under single 413 nm excitation. Low cytotoxicity and unique optical features make the obtained BQDs potentially useful in bio-application as ratiometric fluorescent probes. Taking advantage of these merits, we employ the obtained BQDs for the near-infrared ratiometric fluorescence detection of coenzyme A (CoA) by the assistance of copper ions. This ratiometric approach shows a good sensitivity and selectivity, and the ratiometric fluorescence imaging of CoA in living cells is also achieved.


Assuntos
Coenzima A/química , Pontos Quânticos/química , Biomassa , Brassica/química , Brassica/metabolismo , Carbono/química , Linhagem Celular Tumoral , Clorofila/química , Coenzima A/metabolismo , Cobre/química , Corantes Fluorescentes/química , Humanos , Microscopia Confocal , Espectroscopia de Luz Próxima ao Infravermelho
16.
ACS Chem Biol ; 13(6): 1610-1620, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712426

RESUMO

Recent studies of hydrogen sulfide (H2S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme FeII persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.


Assuntos
Proteínas de Bactérias/fisiologia , Sulfeto de Hidrogênio/metabolismo , Óxidos de Nitrogênio/metabolismo , Proteínas Repressoras/fisiologia , Sulfetos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Coenzima A/química , Coenzima A/metabolismo , Cisteína/química , Enterococcus faecalis/genética , Feminino , Camundongos Endogâmicos C57BL , Nitritos/metabolismo , Óperon , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sulfurtransferases/genética , Sulfurtransferases/fisiologia , Infecções Urinárias/fisiopatologia
17.
Bioconjug Chem ; 29(4): 1419-1427, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29466855

RESUMO

Pathogenesis, the biological mechanism that leads to the diseased state, of many cancers is driven by interruptions to the role of Myc oncoprotein, a regulator protein that codes for a transcription factor. One of the most significant biological interruptions to Myc protein is noted as its dimerization with Max protein, another important factor of family of transcription factors. Binding of this heterodimer to E-Boxes, enhancer boxes as DNA response element found in some eukaryotes that act as a protein-binding site and have been found to regulate gene expression, are interrupted to regulate cancer pathogenesis. The systemic effectiveness of potent small molecule inhibitors of Myc-Max dimerization has been limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. The potential of gene therapy for targeting Myc can be fully realized by successful synthesis of a smart cargo. We developed a "nuclein" type nanoparticle "siNozyme" (45 ± 5 nm) from nanoassembly of pamitoyl-bioconjugated acetyl coenzyme-A for stable incorporation of chemotherapeutics and biologics to achieve remarkable growth inhibition of human melanoma. Results indicated that targeting transcriptional gene cMyc with siRNA with codelivery of a topoisomerase inhibitor, amonafide caused ∼90% growth inhibition and 95% protein inhibition.


Assuntos
Antineoplásicos/administração & dosagem , Coenzima A/química , Portadores de Fármacos/química , Melanoma/terapia , Naftalimidas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Adenina , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Nanopartículas/química , Naftalimidas/farmacologia , Organofosfonatos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi/métodos
18.
Nano Lett ; 17(12): 7951-7961, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148804

RESUMO

The engineering of living plants for visible light emission and sustainable illumination is compelling because plants possess independent energy generation and storage mechanisms and autonomous self-repair. Herein, we demonstrate a plant nanobionic approach that enables exceptional luminosity and lifetime utilizing four chemically interacting nanoparticles, including firefly luciferase conjugated silica (SNP-Luc), d-luciferin releasing poly(lactic-co-glycolic acid) (PLGA-LH2), coenzyme A functionalized chitosan (CS-CoA) and semiconductor nanocrystal phosphors for longer wavelength modulation. An in vitro kinetic model incorporating the release rates of the nanoparticles is developed to maximize the chemiluminescent lifetimes to exceed 21.5 h. In watercress (Nasturtium officinale) and other species, the nanoparticles circumvent limitations such as luciferin toxicity above 400 µM and colocalization of enzymatic reactions near high adenosine triphosphate (ATP) production. Pressurized bath infusion of nanoparticles (PBIN) is introduced to deliver a mixture of nanoparticles to the entire living plant, well described using a nanofluidic mathematical model. We rationally design nanoparticle size and charge to control localization within distinct tissues compartments with 10 nm nanoparticles localizing within the leaf mesophyll and stomata guard cells, and those larger than 100 nm segregated in the leaf mesophyll. The results are mature watercress plants that emit greater than 1.44 × 1012 photons/sec or 50% of 1 µW commercial luminescent diodes and modulate "off" and "on" states by chemical addition of dehydroluciferin and coenzyme A, respectively. We show that CdSe nanocrystals can shift the chemiluminescent emission to 760 nm enabling near-infrared (nIR) signaling. These results advance the viability of nanobionic plants as self-powered photonics, direct and indirect light sources.


Assuntos
Brassicaceae/metabolismo , Substâncias Luminescentes/química , Nanopartículas/química , Nasturtium/metabolismo , Spinacia oleracea/metabolismo , Brassicaceae/química , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Quitosana/análogos & derivados , Quitosana/química , Quitosana/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismo , Luz , Luciferases/química , Luciferases/metabolismo , Luminescência , Substâncias Luminescentes/metabolismo , Nasturtium/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Radiação , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Spinacia oleracea/química
19.
Org Lett ; 19(8): 1950-1953, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28393528

RESUMO

Several coenzyme A (CoA) analogues are made in a single step under mild conditions via transamidation reactions catalyzed by boric acid in water. This approach offers rapid access to compounds useful for the study of a wide spectrum of enzyme catalyzed reactions, especially processes involving acyl carrier proteins (ACP) of polyketide synthases (PKS), fatty acid synthases (FAS), and nonribosomal peptide synthetases (NRPS). The CoA analogues presented are readily elaborated or extended by precedented reactions for specific applications that may be required.


Assuntos
Ácidos Bóricos/química , Coenzima A/química , Proteína de Transporte de Acila/química , Catálise , Cisteamina/química , Ácido Graxo Sintases/química , Estrutura Molecular , Peptídeo Sintases/química , Policetídeo Sintases/química , Temperatura , Tempo , Água
20.
Biochemistry ; 56(10): 1415-1425, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28230972

RESUMO

Structure-activity relationship studies show that the phenylisoserinyl moiety of paclitaxel (Taxol) is largely necessary for the effective anticancer activity. Several paclitaxel analogues with a variant isoserinyl side chain have improved pharmaceutical properties versus those of the parent drug. To produce the isoserinyl CoAs as intermediates needed for enzyme catalysis on a semibiosynthetic pathway to paclitaxel analogues, we repurposed the adenylation and thiolation domains (Phe-AT) of a nonribosomal peptide synthetase (TycA) so that they would function as a CoA ligase. Twenty-eight isoserine analogue racemates were synthesized by an established procedure based on the Staudinger [2+2] cycloaddition reaction. Phe-AT converted 16 substituted phenylisoserines, one ß-(heteroaryl)isoserine, and one ß-(cyclohexyl)isoserine to their corresponding isoserinyl CoAs. We imagine that these CoA thioesters can likely serve as linchpin biosynthetic acyl donors transferred by a 13-O-acyltransferase to a paclitaxel precursor baccatin III to make drug analogues with better efficacy. It was also interesting to find that an active site mutant [Phe-AT (W227S)] turned over 2-pyridylisoserine and the sterically demanding p-methoxyphenylisoserine substrates to their CoA thioesters, while Phe-AT did not. This mutant is promising for further development to make 3-fluoro-2-pyridylisoserinyl CoA, a biosynthetic precursor of the oral pharmaceutical tesetaxel used for gastric cancers.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Coenzima A/química , Escherichia coli/genética , Peptídeo Sintases/química , Proteínas de Plantas/química , Engenharia de Proteínas , Alcaloides/biossíntese , Alcaloides/síntese química , Antineoplásicos Fitogênicos/síntese química , Brevibacillus/química , Brevibacillus/enzimologia , Domínio Catalítico , Clonagem Molecular , Coenzima A/metabolismo , Escherichia coli/enzimologia , Expressão Gênica , Cinética , Modelos Moleculares , Paclitaxel/biossíntese , Paclitaxel/síntese química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas de Plantas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Taxoides/síntese química , Taxoides/metabolismo , Taxus/química , Taxus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA