Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Med Rep ; 22(6): 4645-4654, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174611

RESUMO

All­trans retinoic acid (ATRA) and arsenic trioxide (As2O3) are currently first­line treatments for acute promyelocytic leukemia (APL). However, a number of patients with APL are resistant to ATRA but still sensitive to As2O3, and the underlying mechanisms of this remain unclear. In the present study, two­dimensional gel electrophoresis, mass spectrometry and other proteomic methods were applied to screen and identify the differentially expressed proteins between the retinoic acid­sensitive cell lines and drug­resistant cell lines. The results demonstrated that in retinoic acid­resistant NB4­R1 cells, the protein expression of cofilin­1 was markedly increased compared with that in the drug­sensitive NB4 cells. Subsequently, the effects of cofilin­1 on As2O3­induced apoptosis in NB4­R1 cells were further investigated. The results revealed that cell viability was markedly suppressed and apoptosis was increased in the As2O3­treated NB4­R1 cells, with increased expression levels of cleaved­poly (ADP­ribose) polymerase and cleaved­caspase 12. Cofilin­1 expression was significantly decreased at both the mRNA and protein levels in the As2O3­treated group compared with the control. Western blotting further revealed that As2O3 treatment decreased the cytoplasmic cofilin­1 level but increased its expression in the mitochondrion. However, the opposite effects of As2O3 on the cytochrome C distribution were found in NB4­R1 cells. This suggested that As2O3 can induce the transfer of cofilin­1 from the cytoplasm to mitochondria and trigger the release of mitochondrial cytochrome C in NB4­R1 cells. Moreover, cofilin­1 knockdown by its specific short hairpin RNA significantly suppressed As2O3­induced NB4­R1 cell apoptosis and inhibited the release of mitochondrial cytochrome C. Whereas, overexpression of cofilin­1 using a plasmid vector carrying cofilin­1 increased the release of cytochrome C into the cytoplasm from the mitochondria in As2O3­treated NB4­R1 cells. In conclusion, cofilin­1 played a role in As2O3­induced NB4­R1 cell apoptosis and it might be a novel target for APL treatment.


Assuntos
Cofilina 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Promielocítica Aguda/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/metabolismo , Trióxido de Arsênio/uso terapêutico , Morte Celular/efeitos dos fármacos , Cofilina 1/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Mitocôndrias/metabolismo , Óxidos/farmacologia , Proteômica/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores do Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Células Tumorais Cultivadas
2.
Sci Rep ; 10(1): 5207, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251310

RESUMO

Abnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model. Immunofluorescence studies in primary cultures of DRG from YG8R mice showed neurons with fewer and smaller GCs than controls, associated with an inhibition of neurite growth. In frataxin-deficient neurons, we also observed an increase in the filamentous (F)-actin/monomeric (G)-actin ratio (F/G-actin ratio) in axons and GCs linked to dysregulation of two crucial modulators of filamentous actin turnover, cofilin-1 and the actin-related protein (ARP) 2/3 complex. We show how the activation of cofilin is due to the increase in chronophin (CIN), a cofilin-activating phosphatase. Thus cofilin emerges, for the first time, as a link between frataxin deficiency and actin cytoskeleton alterations.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cofilina 1/fisiologia , Ataxia de Friedreich/metabolismo , Cones de Crescimento/ultraestrutura , Proteínas de Ligação ao Ferro/genética , Citoesqueleto de Actina/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Axônios/química , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Gânglios Espinais/patologia , Camundongos , Camundongos Mutantes Neurológicos , Proteínas dos Microfilamentos/metabolismo , Mutação de Sentido Incorreto , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Fosfosserina/metabolismo , Processamento de Proteína Pós-Traducional , Frataxina
3.
Oncol Rep ; 35(5): 2743-54, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936386

RESUMO

Numerous studies have revealed that cofilin-l (CFL1) is associated with cancer cell migration and invasion in various types of tumor tissues. We investigated the roles of CFL1 in vulvar squamous cell carcinoma (VSCC). CFL1 expression was detected in VSCC and normal vulvar tissues using immunohistochemistry and western blotting. The vulvar carcinoma SW962 cell line was transfected with CFL1 small interfering RNA (siRNA) and exposed to periplocoside. We then assessed changes in cell proliferation, apoptosis, invasion and metastasis. We detected changes in CFL1 mRNA and protein expression by RT-PCR and western blotting, and alterations in protein expression of various relevant molecules by western blotting. CFL1 expression was found to be significantly upregulated in the VSCC tissues compared with the normal vulvar tissues by immunohistochemistry and western blotting (P<0.05) and was positively correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, differentiation and lymphatic metastasis (P<0.05). After CFL1 knockdown by siRNA transfection, SW962 cells exhibited a decrease in growth, G1 phase cell cycle arrest, induction of apoptotic, low invasion and metastasis, and disrupted lamellipodium formation. We found that the protein expression of Bcl-xL, cyclin A1, MMP2, MMP9 and STAT3 was decreased, while expression of Bax was increased. Periplocoside inhibited SW962 cell growth, promoted apoptosis, suppressed invasion and migration, and lamellipodium formation. Periplocoside exposure resulted in lower CFL1, Bcl-xL, cyclin A1, MMP2, MMP9 and STAT3 levels, but a higher Bax level compared with the control group. We demonstrated that abnormal CFL1 expression may affect vulvar carcinogenesis and subsequent progression. CFL1 silencing by siRNA significantly inhibited VSCC cell progression, which suggests that CFL1 is a potential therapeutic target for vulvar cancer. Periplocoside, which was utilized in the present study for the clinical treatment of vulvar cancer, showed strong antitumor effects by suppression of CFL1 expression.


Assuntos
Biomarcadores Tumorais/fisiologia , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/metabolismo , Cofilina 1/fisiologia , Neoplasias Vulvares/metabolismo , Adulto , Idoso , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Extensões da Superfície Celular/metabolismo , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Vulvares/tratamento farmacológico , Neoplasias Vulvares/patologia
4.
Proc Natl Acad Sci U S A ; 112(37): E5150-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324884

RESUMO

Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase-, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion.


Assuntos
Cofilina 1/fisiologia , Regulação da Expressão Gênica , Fosfoproteínas Fosfatases/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/metabolismo , Humanos , Proteínas dos Microfilamentos/fisiologia , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais
5.
Biol Psychiatry ; 78(2): 95-106, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24768258

RESUMO

BACKGROUND: Actin depolymerizing proteins of the actin depolymerizing factor (ADF)/cofilin family are essential for actin dynamics, which is critical for synaptic function. Two ADF/cofilin family members, ADF and n-cofilin, are highly abundant in the brain, where they are present in excitatory synapses. Previous studies demonstrated the relevance of n-cofilin for postsynaptic plasticity, associative learning, and anxiety. These studies also suggested overlapping functions for ADF and n-cofilin. METHODS: We performed pharmacobehavioral, electrophysiologic, and electron microscopic studies on ADF and n-cofilin single mutants and double mutants (named ACC mice) to characterize the importance of ADF/cofilin activity for synapse physiology and mouse behavior. RESULTS: The ACC mice, but not single mutants, exhibited hyperlocomotion, impulsivity, and impaired working memory. Hyperlocomotion and impulsive behavior were reversed by methylphenidate, a psychostimulant commonly used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Also, ACC mice displayed a disturbed morphology of striatal excitatory synapses, accompanied by strongly increased glutamate release. Blockade of dopamine or glutamate transmission resulted in normal locomotion. CONCLUSIONS: Our study reveals that ADHD can result from a disturbed balance between excitation and inhibition in striatal circuits, providing novel insights into the mechanisms underlying this neurobehavioral disorder. Our results link actin dynamics to ADHD, suggesting that mutations in actin regulatory proteins may contribute to the etiology of ADHD in humans.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Cofilina 1/fisiologia , Corpo Estriado/ultraestrutura , Destrina/fisiologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Cofilina 1/genética , Cofilina 1/metabolismo , Destrina/genética , Modelos Animais de Doenças , Antagonistas de Dopamina , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores , Glutamatos/metabolismo , Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Masculino , Memória de Curto Prazo/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Atividade Motora/genética , Comportamento de Nidação , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo , Receptores Dopaminérgicos/fisiologia , Substância Negra/metabolismo , Sinapses/ultraestrutura
6.
J Cell Biol ; 206(5): 635-54, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179631

RESUMO

The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132-amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1-dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca(2+) entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca(2+) import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1-dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca(2+) influx and secretory cargo sorting.


Assuntos
Actinas/metabolismo , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Cofilina 1/fisiologia , Cálcio/fisiologia , ATPases Transportadoras de Cálcio/genética , Células HeLa , Humanos , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Via Secretória
7.
Tumour Biol ; 35(4): 3471-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24293394

RESUMO

The aim of this study was to identify candidate single-nucleotide polymorphisms (SNPs) that might play a role in susceptibility to neuroblastoma, elucidate their potential mechanisms, and generate SNP-to-gene-to-pathway hypotheses. A genome-wide association study (GWAS) dataset of neuroblastoma that included 442,976 SNPs from 1,627 neuroblastoma patients and 3,254 control subjects of European descent was used in this study. The identify candidate causal SNPs and pathways (ICSNPathway) analysis was applied to the GWAS dataset. ICSNPathway analysis identified 15 candidate SNPs, 10 genes, and 31 pathways, which revealed 10 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was one wherein SNPrs40401 modulates the role of IL3 in several pathways and conditions, including the stem pathway, asthma (hsa05310), the dendritic cell pathway, and development (0.001 < p < 0.004; 0.001 < FDR < 0.033). The second strongest mechanism identified was that in which rs1048108 and rs16852600 alter the function of BARD1, which negatively regulates developmental process and modulates processes including cell development and programmed cell death (0.001 < p < 0.004; 0.001 < FDR < 0.033). The third mechanism identified was one wherein rs1939212 modulated CFL1, resulting in negative regulation of development, cell death, neural crest cell migration, and apoptosis (0.001 < p < 0.004; 0.001 < FDR < 0.033). By using the ICSNPathway to analyze neuroblastoma GWAS data, 15 candidate SNPs, 10 genes including IL3, BARD1, and CFL, and 31 pathways were identified that might contribute to the susceptibility of patients to neuroblastoma.


Assuntos
Estudo de Associação Genômica Ampla , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Cofilina 1/fisiologia , Humanos , Interleucina-3/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
8.
J Neurosci ; 32(15): 5284-97, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496574

RESUMO

Myelination is a complex process requiring coordination of directional motility and an increase in glial cell size to generate a multilamellar myelin sheath. Regulation of actin dynamics during myelination is poorly understood. However, it is known that myelin thickness is related to the abundance of neuregulin-1 (NRG1) expressed on the axon surface. Here we identify cofilin1, an actin depolymerizing and severing protein, as a downstream target of NRG1 signaling in rat Schwann cells (SCs). In isolated SCs, NRG1 promotes dephosphorylation of cofilin1 and its upstream regulators, LIM kinase (LIMK) and Slingshot-1 phosphatase (SSH1), leading to cofilin1 activation and recruitment to the leading edge of the plasma membrane. These changes are associated with rapid membrane expansion yielding a 35-50% increase in SC size within 30 min. Cofilin1-deficient SCs increase phosphorylation of ErbB2, ERK, focal adhesion kinase, and paxillin in response to NRG1, but fail to increase in size possibly due to stabilization of unusually long focal adhesions. Cofilin1-deficient SCs cocultured with sensory neurons do not myelinate. Ultrastructural analysis reveals that they unsuccessfully segregate or engage axons and form only patchy basal lamina. After 48 h of coculturing with neurons, cofilin1-deficient SCs do not align or elongate on axons and often form adhesions with the underlying substrate. This study identifies cofilin1 and its upstream regulators, LIMK and SSH1, as end targets of a NRG1 signaling pathway and demonstrates that cofilin1 is necessary for dynamic changes in the cytoskeleton needed for axon engagement and myelination by SCs.


Assuntos
Cofilina 1/genética , Cofilina 1/fisiologia , Bainha de Mielina/fisiologia , Neuregulina-1/genética , Neuregulina-1/fisiologia , Células de Schwann/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Western Blotting , Polaridade Celular/genética , Proliferação de Células , Tamanho Celular , Técnicas de Cocultura , Corantes , Feminino , Imunofluorescência , Adesões Focais/genética , Gânglios Espinais/citologia , Quinases Lim/genética , Quinases Lim/fisiologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Microscopia Eletrônica , Bainha de Mielina/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Células de Schwann/ultraestrutura
9.
J Cancer Res Clin Oncol ; 137(9): 1309-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21735353

RESUMO

PURPOSE: Cofilin is a cytoskeletal protein whose overexpression has been associated with aggressiveness in several types of malignancies. Here, we established and optimized a simple semi-quantitative immunohistochemistry (SQ-IHC) method for cofilin quantification in tumor biopsies, and applied it in a retrospective cohort of NSCLC patients aiming at validating the use of cofilin-1 as a prognostic biomarker. METHODS: The SQ-IHC method for cofilin-1 quantification was established and applied in a NSCLC cohort. An archival collection of biopsies from 50 patients with clinicopathological information and 5 years follow-up was accessed. Association between cofilin-1 immunocontent and clinical outcome was assessed using standard Kaplan-Meier mortality curves and the log-rank test. To evaluate the robustness of our findings, three different partitional clustering strategies were used to stratify patients into two groups according to the biomarker expression level (hierarchical clustering, Kmeans and median cutoff). RESULTS: In all the three different partitional clustering we used, survival analysis showed that patient with high cofilin-1 immunocontent had a lower overall survival rate (P < 0.05), and could be used to discriminate between good and bad prognosis. No other correlation was found when the variables age, sex or histological type were tested in association with patients outcome or with cofilin immunocontent. CONCLUSIONS: Our method showed good sensitivity/specificity to indicate the outcome of patients according to their cofilin immunocontent in biological samples. Its application in a retrospective cohort and the results presented here are an important step toward the validation process of cofilin-1 as a prognostic biomarker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Cofilina 1/fisiologia , Neoplasias Pulmonares/diagnóstico , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Cofilina 1/análise , Cofilina 1/metabolismo , Estudos de Coortes , Estudos de Avaliação como Assunto , Feminino , Seguimentos , Humanos , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Sensibilidade e Especificidade , Análise de Sobrevida
10.
Oncogene ; 28(30): 2745-55, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19483720

RESUMO

Excessive adiposity has long been associated with increased incidence of breast cancer in post-menopausal women, and with increased mortality from breast cancer, regardless of the menopausal status. Although adipose tissue-derived estrogen contributes to obesity-associated risk for estrogen receptor (ER)-positive breast cancer, the estrogen-independent impact of adipose tissue on tumor invasion and progression needs to be elucidated. Here, we show that adipose stromal cells (ASCs) significantly stimulate migration and invasion of ER-negative breast cancer cells in vitro and tumor invasion in a co-transplant xenograft mouse model. Our study also identifies cofilin-1, a known regulator of actin dynamics, as a determinant of the tumor-promoting activity of ASCs. The cofilin-1-dependent pathway affects the production of interleukin 6 (IL-6) in ASCs. Depletion of IL-6 from the ASC-conditioned medium abrogated the stimulatory effect of ASCs on the migration and invasion of breast tumor cells. Thus, our study uncovers a link between a cytoskeleton-based pathway in ASCs and the stromal impact on breast cancer cells.


Assuntos
Adipócitos/fisiologia , Neoplasias da Mama/patologia , Interleucina-6/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Cofilina 1/fisiologia , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células Estromais/fisiologia , Transplante Heterólogo , Quinases Associadas a rho/fisiologia
11.
Cancer Res ; 66(17): 8640-7, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951178

RESUMO

A proteomic analysis was pursued to identify new signaling effectors of transforming growth factor beta1 (TGF-beta1) that serve as potential intracellular effectors of its apoptotic action in human prostate cancer cells. The androgen-sensitive and TGF-beta-responsive human prostate cancer cells, LNCaP T beta RII, were used as in vitro model. In response to TGF-beta, significant posttranslational changes in two proteins temporally preceded apoptotic cell death. TGF-beta mediated the nuclear export of prohibitin, a protein involved in androgen-regulated prostate growth, to the cytosol in the LNCaP T beta RII cells. Cofilin, a protein involved in actin depolymerization, cell motility, and apoptosis, was found to undergo mitochondrial translocation in response to TGF-beta before cytochrome c release. Loss-of-function approaches (small interfering RNA) to silence prohibitin expression revealed a modest decrease in the apoptotic response to TGF-beta and a significant suppression in TGF-beta-induced cell migration. Silencing Smad4 showed that the cellular localization changes associated with prohibitin and cofilin action in response to TGF-beta are independent of Smad4 intracellular signaling.


Assuntos
Cofilina 1/fisiologia , Neoplasias da Próstata/fisiopatologia , Proteínas Repressoras/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Di-Hidrotestosterona/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Proibitinas , Proteoma , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA