Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.167
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720423

RESUMO

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Técnicas de Cocultura , Fibroblastos , Doenças Pulmonares Intersticiais , Macrófagos Alveolares , Escleroderma Sistêmico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Fibroblastos/metabolismo , Células HEK293 , Interleucina-10/metabolismo , Interleucina-10/genética , Pulmão/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/etiologia , Macrófagos Alveolares/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/etiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/complicações , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adulto , Idoso
2.
Biochem Biophys Res Commun ; 710: 149884, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598901

RESUMO

In the clinical setting, chemotherapy is the most widely used antitumor treatment, however, chemotherapy resistance significantly limits its efficacy. Reduced drug influx is a key mechanism of chemoresistance, and inhibition of the complexity of the tumor microenvironment (TME) may improve chemotherapy drug influx and therapeutic efficiency. In the current study, we identified that the major extracellular matrix protein collagen I is more highly expressed in lung cancer tissues than adjacent tissues in patients with lung cancer. Furthermore, Kaplan-Meier analysis suggested that COL1A1 expression was negatively correlated with the survival time of patients with lung cancer. Our previous study demonstrated that miR-29a inhibited collagen I expression in lung fibroblasts. Here, we investigated the effect of miR-29a on collagen I expression and the cellular behavior of lung cancer cells. Our results suggest that transfection with miR-29a could prevent Lewis lung carcinoma (LLC) migration by downregulating collagen I expression, but did not affect the proliferation, apoptosis, and cell cycle of LLC cells. In a 3D tumoroid model, we demonstrated that miR-29a transfection significantly increased cisplatin (CDDP) permeation and CDDP-induced cell death. Furthermore, neutral lipid emulsion-based miR-29a delivery improved the therapeutic effect of cisplatin in an LLC spontaneous tumor model in vivo. In summary, this study shows that targeting collagen I expression in the TME contributes to chemotherapy drug influx and improves therapeutic efficacy in lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Permeabilidade , Microambiente Tumoral
3.
Mol Biol Rep ; 51(1): 449, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536562

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS: To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS: Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Proteína Wnt1 , Humanos , Colágeno Tipo I/genética , Sequenciamento do Exoma , Mutação/genética , Osteogênese Imperfeita/genética , Proteína Wnt1/genética
4.
J Bone Miner Res ; 39(2): 177-189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477760

RESUMO

Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.


Assuntos
Osso e Ossos , Colágeno Tipo I , Modelos Animais de Doenças , Osteogênese Imperfeita , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/genética , Animais , Camundongos , Osso e Ossos/patologia , Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoclastos/metabolismo , Osteoclastos/patologia , Puberdade , Osteoblastos/metabolismo , Osteoblastos/patologia , Biomarcadores/metabolismo , Osteogênese
5.
Chem Biol Drug Des ; 103(1): e14421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230771

RESUMO

Dihydromyricetin (DHM) is a bioactive flavonoid extracted from Hovenia dulcis, which has various activities. In the present study, the molecular mechanism of dihydromyricetin (DHM) in relieving liver cirrhosis was investigated through network pharmacology and experimental verification. The cell model was induced by TGF-ß1 activating the human hepatic stellate cell line (HSC; LX-2). The protein levels of α-SMA, collagen I, and collagen III and pathway-related proteins within LX-2 cells were detected using Western blot. EdU staining was conducted to detect cell proliferation. Immunofluorescence staining was performed to detect the expression levels of α-SMA and collagen I. Next, the drug targets of DHM were screened from the PubChem database. The differentially expressed genes in the liver cirrhosis dataset GSE14323 were identified. The expression of the identified drug targets in LX-2 cells was verified using qRT-PCR. The results showed that TGF-ß1 treatment notably increased LX-2 cell viability, promoted cell proliferation, and elevated α-SMA, collagen I, and collagen III protein contents. DHM treatment could partially eliminate TGF-ß1 effects, as evidenced by the inhibited cell viability and proliferation and reduced α-SMA, collagen I, and collagen III contents. After network pharmacology analysis, nine differentially expressed target genes (MMP2, PDGFRB, PARP1, BCL2L2, ABCB1, TYR, CYP2E1, SQSTM1, and IL6) in liver cirrhosis were identified. According to qRT-PCR verification, DHM could inhibit the expression of MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, and IL6, and enhance ABCB1 expression levels within LX-2 cells. Moreover, DHM inhibited mTOR and MAPK signaling pathways in TGF-ß1-induced HSCs. In conclusion, DHM could inhibit HSC activation, which may be achieved via acting on MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, IL6, and ABCB1 genes and their downstream signaling pathways, including mTOR and MAPK signaling pathway.


Assuntos
Flavonóis , Metaloproteinase 2 da Matriz , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Interleucina-6/metabolismo , Farmacologia em Rede , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Proteína Sequestossoma-1/metabolismo , Cirrose Hepática/tratamento farmacológico , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
6.
J Nutr Biochem ; 125: 109565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176621

RESUMO

Various endogenous and exogenous stimuli can result in an inflammatory response and collagen deposition in the liver, which affect liver function and increase the risk of developing liver cirrhosis and cancer. Rice bran, the main by-product of rice milling, contains various nutrients which possess hepatoprotective activities. In this study, we investigated the effects of rice bran on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Mice were fed a rice-bran-containing diet (10% rice bran w/w) or a standard diet with or without an injection of 20% CCl4 to induce liver fibrosis. Our results showed that feeding a rice-bran-containing diet could alleviate CCl4-induced liver damage, collagen deposition, and expressions of fibrosis-related genes, including α-smooth muscle actin (α-SMA), collagen 1a2 (COL1A2), and transforming growth factor-ß (TGF-ß) in liver tissues. Moreover, consumption of rice bran enhanced phase II detoxification and antioxidant gene expressions, including Gsta3, Gstp1, Catalase, SOD1, SOD2, and SOD3. Treatment with γ-oryzanol, the major bioactive compound in rice bran, decreased the sensitivity of hepatic stellate cells (HSCs) to TGF-ß1-induced α-SMA, COL1A2, and phosphorylated smad2 expressions. In conclusion, a rice-bran-containing diet may have beneficial effects on liver fibrogenesis through increased antioxidant and detoxification activities. γ-Oryzanol, the major bioactive compound of rice bran, can inhibit activation of HSCs.


Assuntos
Antioxidantes , Oryza , Fenilpropionatos , Animais , Camundongos , Antioxidantes/metabolismo , Oryza/metabolismo , Células Estreladas do Fígado/metabolismo , Transdução de Sinais , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Dieta , Tetracloreto de Carbono/toxicidade
7.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070276

RESUMO

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Assuntos
Osteonectina , Ligamento Periodontal , Animais , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Camundongos Knockout , Osteonectina/genética , Osteonectina/metabolismo
8.
Int J Biol Macromol ; 257(Pt 2): 128728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092101

RESUMO

Trichinellosis is a zoonotic parasitic disease that poses threats to human health, the meat industry, food safety, and huge financial losses. The critical stage of Trichinella spiralis (T. spiralis) infection is the invasion of intestinal larvae into the host's intestinal epithelial cells (IECs). T. spiralis Cathepsin B (TsCB) specifically interacts with IECs to facilitate the invasion of larvae. This study aims to look at how TsCB affects mouse IECs. TsCB was successfully cloned, expressed, and characterized, demonstrating its natural cysteine protease hydrolysis activity. A total of 140 proteins that interact with rTsCB were identified by GST pull-down combined with LC-MS/MS, including type I collagen, an essential component of the host's intestinal epithelial barrier system and intimately related to intestinal epithelial damage. TsCB transcription and expression levels rise, whereas type I collagen in the host's intestinal mucosa declines when the T. spiralis larvae invaded. Besides, it was discovered that TsCB bound to and degraded type I collagen of the host's intestine. This research can serve as a foundation for clarifying how T. spiralis invades the host's intestinal barrier and might provide information on potential targets for the creation of novel treatments to treat parasite illnesses.


Assuntos
Trichinella spiralis , Triquinelose , Animais , Camundongos , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Catepsina B/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Intestinos , Triquinelose/metabolismo , Triquinelose/parasitologia , Larva/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Helminto/metabolismo
9.
Curr Eye Res ; 49(2): 150-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921272

RESUMO

PURPOSE: To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor ß1 (TGF-ß1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS: HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-ß1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS: TGF-ß1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-ß1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-ß1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS: Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-ß1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-ß1 and IL-6 protein level after 24 h.


Assuntos
Interleucina-6 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Rosa Bengala/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Gene ; 895: 148002, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979948

RESUMO

BACKGROUND: Rotator cuff tears (RCTs) are culprit of shoulder pain and dysfunction. Tendon-bone interface (TBI) mal-healing is an essential contributor to retear after RCTs. Consequently, present project was conducted to investigate the role of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on TBI healing. METHOD: Young BMSCs (Y-BMSCs) and Aged BMSCs (A-BMSCs) were isolated from Young (3-month-old) and old (24-month-old) SD rats, and their-derived exosomes (A-BMSCs-exo and Y-BMSCs-exo) were identified. RCTs model was established, and A-BMSCs-exo and Y-BMSCs-exo were injected at the rotator cuff using hydrogel as a vehicle. Pathological changes of TBI were observed by HE, Sirius Red and Oil Red O staining. Western blotting and RT-qPCR were applied to assess the expression of extracellular matrix (ECM)-, tendon cell (TCs)-, osteogenic-, tendon-derived stem cell (TDSCs)- and angiogenic-associated proteins and mRNAs in TBI. RESULT: Y-BMSCs exhibited increased activity, osteogenic and lipogenic abilities than A-BMSCs. After A-BMSCs-exo and Y-BMSCs-exo treatment, TBI displayed massive sharpey's fibers growing along the tendon longitudinally, and a collagen fiber-chondrocyte migration zone forming a typical tendon-noncalcified fibrocartilage-calcified fibrocartilage-bone structure. A-BMSCs-exo and Y-BMSCs-exo significantly upregulated the expression of collagen Col I/II/III, Aggrecan, TNMD, SCX, Runx2, OPN, CD45, Sox2, CD31 and VEGFR2 in TBI. In vitro, A-BMSCs-exo and Y-BMSCs-exo significantly enhanced the activity of TCs and TDSCs, TDSCs stemness, and reduced the osteogenic and lipogenic capacity of TDSCs. The effect of Y-BMSCs-exo was significantly stronger than that of A-BMSCs-exo. CONCLUSION: BMSCs-derived exosomes facilitate ECM remodeling, osteogenic differentiation, angiogenesis, and stemness of TDSCs, thereby accelerating TBI healing in RCTs, with better outcomes using young individual-derived BMSCs.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Ratos , Animais , Lesões do Manguito Rotador/terapia , Ratos Sprague-Dawley , Tendões , Colágeno Tipo I/genética
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(12): 1523-1532, 2023 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-38130197

RESUMO

Objective: To investigate whether the Runx2 gene can induce the differentiation of human amniotic mesenchymal stem cells (hAMSCs) to ligament fibroblasts in vitro and promote the tendon-bone healing in rabbits. Methods: hAMSCs were isolated from the placentas voluntarily donated from healthy parturients and passaged, and then identified by flow cytometric identification. Adenoviral vectors carrying Runx2 gene (Ad-Runx2) and empty vector adenovirus (Ad-NC) were constructed and viral titer assay; then, the 3rd generation hAMSCs were transfected with Ad-Runx2 (Ad-Runx2 group) or Ad-NC (Ad-NC group). The real-time fluorescence quantitative PCR and Western blot were used to detect Runx2 gene and protein expression to verify the effectiveness of Ad-Runx2 transfection of hAMSCs; and at 3 and 7 days after transfection, real-time fluorescence quantitative PCR was further used to detect the expressions of ligament fibroblast-related genes [vascular endothelial growth factor (VEGF), collagen type Ⅰ, Fibronectin, and Tenascin-C]. The hAMSCs were used as a blank control group. The hAMSCs, hAMSCs transfected with Ad-NC, and hAMSCs were mixed with Matrigel according to the ratio of 1 : 1 and 1 : 2 to construct the cell-scaffold compound. Cell proliferation was detected by cell counting kit 8 (CCK-8) assay, and the corresponding cell-scaffold compound with better proliferation were taken for subsequent animal experiments. Twelve New Zealand white rabbits were randomly divided into 4 groups of sham operation group (Sham group), anterior cruciate ligament reconstruction group (ACLR group), anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-NC-scaffold compound group (Ad-NC group), and anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-Runx2-scaffold compound group (Ad-Runx2 group), with 3 rabbits in each group. After preparing the ACL reconstruction model, the Ad-NC group and the Ad-Runx2 group injected the optimal hAMSCs-Matrigel compunds into the bone channel correspondingly. The samples were taken for gross, histological (HE staining and sirius red staining), and immunofluorescence staining observation at 1 month after operation to evaluate the inflammatory cell infiltration as well as collagen and Tenascin-C content in the ligament tissues. Results: Flow cytometric identification of the isolated cells conformed to the phenotypic characteristics of MSCs. The Runx2 gene was successfully transfected into hAMSCs. Compared with the Ad-NC group, the relative expressions of VEGF and collagen type Ⅰ genes in the Ad-Runx2 group significantly increased at 3 and 7 days after transfection ( P<0.05), Fibronectin significantly increased at 3 days ( P<0.05), and Tenascin-C significantly increased at 3 days and decreased at 7 days ( P<0.05). CCK-8 detection showed that there was no significant difference ( P>0.05) in the cell proliferation between groups and between different time points after mixed culture of two ratios. So the cell-scaffold compound constructed in the ratio of 1∶1 was selected for subsequent experiments. Animal experiments showed that at 1 month after operation, the continuity of the grafted tendon was complete in all groups; HE staining showed that the tissue repair in the Ad-Runx2 group was better and there were fewer inflammatory cells when compared with the ACLR group and the Ad-NC group; sirius red staining and immunofluorescence staining showed that the Ad-Runx2 group had more collagen typeⅠ and Ⅲ fibers, tending to form a normal ACL structure. However, the fluorescence intensity of Tenascin-C protein was weakening when compared to the ACLR and Ad-NC groups. Conclusion: Runx2 gene transfection of hAMSCs induces directed differentiation to ligament fibroblasts and promotes tendon-bone healing in reconstructed anterior cruciate ligament in rabbits.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Gravidez , Feminino , Humanos , Coelhos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fibronectinas/metabolismo , Colágeno Tipo I/genética , Tenascina/metabolismo , Colágeno/metabolismo , Ligamento Cruzado Anterior/cirurgia , Tendões/metabolismo , Fibroblastos/metabolismo
12.
Front Endocrinol (Lausanne) ; 14: 1267252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027129

RESUMO

Objective: Osteogenesis imperfecta (OI) is a rare genetic disorder. Clinical severity is heterogeneous. The purpose of this study was to investigate the genetic characteristics of a fetus with OI by whole exome sequencing (WES) and identify the cause of the disease. Methods: In this study, a fetus with osteogenic dysplasia was referred to our hospital. DNA was extracted from the aborted fetal tissue and peripheral blood of the parents. To identify the pathogenic genes, we conducted the trio-WES using DNA. A de novo variant in the COL1A1 gene is suspected to be the cause of the OI phenotype. We used Sanger sequencing for validation and various bioinformatics methods (such as SIFT, PolyPhen2, Mutation Taster, conservative analysis, SWISS Model, glycosylation site prediction, and I-Mutant 2.0) for analysis. Results: Both WES and Sanger sequencing identified a novel de novo variant of COL1A1 (c. 1309G>A, p. Gly437Ser) in a fetus with OI. Bioinformatic analysis showed that the affected residue, p. Gly437, was highly conserved in multiple species and predicted that the variant was deleterious and may have an impact on protein function. This variant is present in highly conserved glycine residues of Gly-X-Y sequence repeats of the triple helical region of the collagen type I α chain, which may be the cause of OI. Conclusion: This study revealed that the c.1309G>A (p. Gly437Ser) variant in the COL1A1 gene may be the genetic cause of fetal OI in this case. The discovery of this variant enriched the variation spectrum of OI. WES improves the accurate diagnosis of fetal OI, and doctors can provide patients with appropriate genetic counseling.


Assuntos
Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I/genética , DNA
13.
Genes (Basel) ; 14(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003005

RESUMO

Osteogenesis imperfecta (OI), also known as brittle bone disease, belongs to a rare heterogeneous group of inherited connective tissue disorders. In experienced prenatal centers, severe cases of OI can be suspected before birth from the first trimester prenatal ultrasound screening. In this article, we describe a case report of OI suspected at the 26th week of gestation and the patient's outcomes in infancy one year after birth, as well as compare our case to other prenatally or soon-after-birth suspected and/or diagnosed OI clinical case reports in the literature. This case was managed by a multidisciplinary team. In this clinical case, OI was first suspected when prenatal ultrasound revealed asymmetric intrauterine growth restriction and skeletal dysplasia features. The diagnosis was confirmed after birth using COL1A1 gene variant detection via exome sequencing; the COL1A1 gene variant causes OI types I-IV. The familial history was negative for both pregnancy-related risk factors and genetic diseases. At one year old, the patient's condition remains severe with bisphosphonate therapy.


Assuntos
Osteogênese Imperfeita , Gravidez , Feminino , Humanos , Lactente , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Diagnóstico Pré-Natal , Retardo do Crescimento Fetal
14.
Sci Rep ; 13(1): 16932, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805556

RESUMO

Collagen type I α 2 (COL1A2) is a major component of collagen type I. Recently, abnormal COL1A2 expression has been reported in human cancers. However, the specific role and mechanism of COL1A2 in colon adenocarcinoma (COAD) remain unclear. We performed the pan-cancer analysis of COL1A2 expression in 33 types of human cancers from TIMER database and integrated data combined TCGA with GTEx. The prognostic values of COL1A2 for 17 cancer types of interest were estimated from GEPIA database. The results showed that COL1A2 was significantly upregulated in COAD tissues and that higher COL1A2 expression predicted unfavorable prognosis for patients with COAD. Next, COL1A2-related functional pathways in COAD were analyzed with TCGA data using R package. Additionally, we constructed a ceRNA network that LINC00638/hsa-miR-552-3p axis served as a potential regulatory pathway of COL1A2 in COAD. Furthermore, our findings showed that COL1A2 positively associated with immune infiltration and that tumor immune escape might be involved in COL1A2-mediated carcinogenesis in COAD. For the first time, we constructed a ceRNA prediction network of COL1A2 and explored the association of COL1A2 with tumor immune microenvironment remodeling. The findings may advance our understanding of the pathogenesis mechanism in COAD and paves the way for further cancer therapeutics.


Assuntos
Adenocarcinoma , Neoplasias do Colo , MicroRNAs , Humanos , Neoplasias do Colo/genética , Colágeno Tipo I/genética , Adenocarcinoma/genética , Carcinogênese , Prognóstico , Microambiente Tumoral/genética , MicroRNAs/genética
15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(5): 876-885, 2023 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-37807743

RESUMO

OBJECTIVE: To establish a visual reporting system for evaluating the activity of collagen Ⅰ α 1 chain (COL1A1) gene promoter in immortalized human hepatic stellate cells, so as to estimate the activation status of the cells and provide a new cell model for the screening and study of anti-hepatic fibrosis drugs. METHODS: The promoter sequence of human COL1A1 was amplified from the genomic DNA of human hepatocarcinoma cell line HepG2. Based on the pLVX-AcGFP1-N1 plasmid, the recombinant plasmid pLVX-COL1A1-enhanced green fluorescent protein (EGFP) was constructed, in which the enhanced green fluorescent protein gene expression was regulated by the COL1A1 promoter. The monoclonal cell line was acquired by stably transfecting pLVX-COL1A1-EGFP into the immortalized human hepatic stellate cell line LX-2 by the lentivirus packaging system and screening. The cell line was treated with transforming growth factor-ß1 (TGF-ß1) or co-treated with TGF-ß1 and drugs with potential anti-hepatic fibrosis effects. The EGFP fluorescence intensity in cells was analyzed by the fluorescence microscope and ImageJ 1.49 software using a semi-quantitative method. The COL1A1 and EGFP mRNA were detected by reverse transcription real-time quantitative PCR (RT-qPCR), and corresponding proteins were detected by Western blot. RESULTS: The recombinant plasmid pLVX-COL1A1-EGFP with the expression of EGFP regulated by COL1A1 promoter was successfully constructed. Kozak sequence was added to enhance the expression of EGFP, which was identified by double digestion and sequencing. The LX-2 monoclonal cell line LX-2-CE stably transfected with pLVX-COL1A1-EGFP was obtained. After co-treatment with TGF-ß1 and 5 µmol/L dihydrotanshinone Ⅰ with potential anti-hepatic fibrosis effect for 24 h, the total fluorescence intensity and the average fluorescence intensity of LX-2-CE were lower than those in TGF-ß1 single treatment group (P < 0.05), the intracellular mRNA and protein levels of COL1A1 and EGFP were also lower than those in the TGF-ß1 single treatment group (P < 0.05). CONCLUSION: A reporter system for estimating activation of hepatic stellate cells based on COL1A1 promoter regulated EGFP expression is successfully constructed, which could visually report the changes in COL1A1 expression, one of the activation-related markers of hepatic stellate cells, in vitro. It provides a new cell model for the screening and study of anti-hepatic fibrosis drugs.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , RNA Mensageiro/metabolismo
16.
Eur J Med Genet ; 66(11): 104857, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758164

RESUMO

Pathogenic variants in SPARC cause a rare autosomal recessive form of osteogenesis imperfecta (OI), classified as OI type XVII, which was first reported in 2015. Only six patient cases with this specific form of OI have been reported to date. The SPARC protein plays a crucial role in the calcification of collagen in bone, synthesis of the extracellular matrix, and the regulation of cell shape. In this case report, we describe the phenotype of two patients with SPARC-related OI, including a patient with two novel pathogenic variants in the SPARC gene. Targeted Next Generation Sequencing revealed new compound heterozygous variants (c.484G > A p.(Glu162Lys)) and c.496C > T p.(Arg166Cys)) in one patient and a homozygous nonsense pathogenic variant (c.145C > T p.(Gln49*)) in the other. In line with previously reported cases, the two OI patients presented delayed motor development, muscular weakness, scoliosis, and multiple fractures. Interestingly, our study reports for the first time the occurrence of dentinogenesis imperfecta. The study also reports the effectiveness of bisphosphonate treatment for OI type XVII. This article enhances the genetic, clinical, therapeutic, and radiological understanding of SPARC-related OI.


Assuntos
Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Mutação , Fenótipo , Homozigoto , Osso e Ossos/patologia , Colágeno Tipo I/genética , Osteonectina/genética
17.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762688

RESUMO

Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.


Assuntos
Queloide , Humanos , Animais , Silibina/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR , Colágeno , Colágeno Tipo I/genética , Mamíferos
18.
Acta Biochim Pol ; 70(3): 525-532, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672715

RESUMO

OBJECTIVE: This paper was to investigate the effect of circ_PWWP2A-mediated miR-27b-3p/GATA3 axis on idiopathic pulmonary fibrosis (IPF). METHODS: circ_PWWP2A expression in lung fibroblasts MLg2908 induced by different concentrations of TGF-ß was detected. The relationship between circ_PWWP2A or GATA3 and miR-27b-3p was analyzed by RNA immunoprecipitation and dual-luciferin reporter assay. The proliferation of MLg2908 cells was determined by MTT. GATA3, α-SMA, Collagen-I, and Collagen-III in cells were detected by RT-qPCR and Western blot. The rat model of IPF induced by bleomycin (BLM) was constructed and treated with circ_PWWP2A siRNA injection. HE and Masson staining were of utility to evaluate the pathological conditions of rat lung tissue, and circ_PWWP2A, miR-27b-3p, and GATA3 levels in lung tissues were detected by RT-qPCR. Immunohistochemistry was used to detect the staining of α-SMA, collagen I, and collagen III in the lung tissues of rats. RESULTS: circ_PWWP2A in MLg2908 cells induced by TGF-ß decreased in a concentration-dependent manner. MLg2908 cells transfected with circ_PWWP2A siRNA were induced by 5 ng/ml TGF-ß, decreasing circ_PWWP2A and GATA3 levels, increasing miR-27b-3p expression, and suppressing cell proliferation. The targeting relationship between circ_PWWP2A and miR-27b-3p, as well as miR-27b-3p and GATA3, was confirmed. Depleting miR-27b-3p reduced the inhibitory effect of circ_PWWP2A down-regulation on the proliferation of TGF-ß-treated MLg2908 cells, accompanied by increased expression of α-SMA, Collagen 1, and Collagen 3, and increased expression of GATA3. The in vivo results showed that BLM-induced fibrosis in rat lung tissue was obvious, accompanied by increased expression of circ_PWWP2A and GATA3, decreased expression of miR-27b-3p, and deepened staining of α-SMA, collagen I, and collagen III, but circ_PWWP2A siRNA could improve these phenomena. CONCLUSION: Silencing circ_PWWP2A can inhibit the proliferation of lung fibroblasts induced by TGF-ß through the miR-27b-3p/GATA3 axis, and reduce BLM-induced pulmonary fibrosis in rats, which may be a potential therapeutic target for IPF.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Ratos , Proliferação de Células/genética , Colágeno Tipo I/genética , Fibroblastos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Pulmão , MicroRNAs/genética
19.
Zhonghua Nei Ke Za Zhi ; 62(7): 841-849, 2023 Jul 01.
Artigo em Chinês | MEDLINE | ID: mdl-37394854

RESUMO

Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) µg/mg vs. (0.974±0.060) µg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) µg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.


Assuntos
Canabinoides , Fibrose Pulmonar , Camundongos , Masculino , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo III/metabolismo , Colágeno Tipo III/farmacologia , Hidroxiprolina/análise , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Canabinoides/efeitos adversos , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Colágeno/efeitos adversos , Colágeno/metabolismo , Inflamação/patologia , RNA Mensageiro/metabolismo
20.
Mol Cell Endocrinol ; 576: 111996, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406985

RESUMO

BACKGROUND: Myocardial interstitial fibrosis is an important manifestation of diabetic heart disease, and insulin resistance is one of the mechanisms of myocardial interstitial fibrosis. Some studies have found that miR-543 is associated with insulin resistance, but whether it plays a role in diabetic myocardial interstitial fibrosis remains unclear. This study aimed to investigate the role of miR-543 in diabetic myocardial interstitial fibrosis. METHODS: The combination of high glucose and high insulin was used to establish an insulin-resistant myocardial fibroblast model. The expression levels of miR-543, α-SMA, collagen Ⅰ, collagen Ⅲ and PTEN were detected. Cell proliferation and migration were detected. Luciferase reporter gene assay was used to verify the targeting relationship between miR-543 and PTEN. RESULTS: The expression of miR-543 was up-regulated in myocardial fibroblasts with insulin resistance, which was consistent with the results of bioinformatics analysis. The proliferation and migration levels of myocardial fibroblasts in insulin-resistant states were increased, and the expression levels of α-SMA, collagen Ⅰ and collagen Ⅲ were also increased. Inhibition of miR-543 expression could reverse the above changes. Target gene prediction and dual luciferase reporter assay demonstrated that miR-543 could bind to the 3'UTR region of PTEN. Moreover, the effect of miR-543 on insulin-resistant myocardial fibroblasts is mediated by targeting PTEN. CONCLUSIONS: Inhibition of miR-543 can reduce myocardial fibroblast-myofibroblast transformation and collagen expression in insulin-resistant states by targeting PTEN.


Assuntos
Resistência à Insulina , Insulinas , MicroRNAs , Proliferação de Células/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrose , Resistência à Insulina/genética , Insulinas/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA