RESUMO
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Assuntos
Fármacos Antiobesidade , Regulação do Apetite , Colecistocinina , Obesidade , Humanos , Animais , Obesidade/tratamento farmacológico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Regulação do Apetite/efeitos dos fármacos , Grelina/farmacologia , Grelina/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Peptídeo YY/farmacologia , Peptídeo YY/uso terapêutico , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêuticoRESUMO
BACKGROUND: There are no drugs on the market that can reverse or slow Alzheimer's disease (AD) progression. A protease-resistant Cholecystokinin (CCK) analogue used in this study is based on the basic structure of CCK, which further increases the stability of the peptide fragment and prolongs its half-life in vivo. We observed a neuroprotective effect of CCK-8L in APPswe/PS1dE9 (APP/PS1) AD mice. However, its corresponding mechanisms still need to be elucidated. OBJECTIVE: This study examined CCK-8L's neuroprotective effects in enhancing cognitive impairment by regulating mitochondrial dynamics through AMPK/Drp1 pathway in the APP/PS1 AD mice. METHODS: Behavioural tests are applied to assess competence in cognitive functions. Transmission electron microscopy (TEM) was performed to observe the ultrastructure of mitochondria of hippocampal neurons, Immunofluorescent staining was employed to assay for Aß1-42, APP, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and dynamin-related protein1 (Drp1). CRISPR/Cas9 was utilized for targeted knockout of the CCKB receptor (CCKBR) in the mouse APP/PS1 hippocampal CA1 region. A model of lentiviral vector-mediated overexpression of APP in N2a cells was constructed. RESULTS: In vivo, experiments revealed that CCK analogue and liraglutide significantly alleviated cognitive deficits in APP/PS1 mice, reduced Aß1-42 expression, and ameliorated l damage, which is associated with CCKBR activation in the hippocampal CA1 region of mice. In vitro tests showed that CCK inhibited mitochondrial fission and promoted fusion through AMPK/Drp1 pathway. CONCLUSIONS: CCK analogue ameliorates cognitive deficits and regulates mitochondrial dynamics by activating the CCKB receptor and the AMPK/Drp1 pathway in AD mice.
Assuntos
Doença de Alzheimer , Colecistocinina , Disfunção Cognitiva , Dinâmica Mitocondrial , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colecistocinina/análogos & derivados , Colecistocinina/farmacologia , Colecistocinina/uso terapêutico , Cognição , Disfunção Cognitiva/tratamento farmacológico , Dinaminas/efeitos dos fármacos , Dinaminas/metabolismo , Camundongos Transgênicos , Dinâmica Mitocondrial/efeitos dos fármacosRESUMO
The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].
Assuntos
Ingestão de Alimentos , Grelina , Camundongos , Animais , Grelina/farmacologia , Ingestão de Alimentos/fisiologia , Clusterina/farmacologia , Colecistocinina/farmacologia , Estômago , Comportamento AlimentarRESUMO
AIM: The nocebo effect, such as nausea and vomiting, is one of the major reasons patients discontinue therapy. The underlying mechanisms remain unknown due to a lack of reliable experimental models. The goal of this study was to develop a new animal model of nocebo-related nausea by combining observational learning and Pavlovian conditioning paradigms. METHODS: Male Sprague-Dawley rats with nitroglycerin-induced migraine were given 0.9% saline (a placebo) or LiCl (a nausea inducer) following headache relief, according to different paradigms. RESULTS: Both strategies provoked nocebo nausea responses, with the conditioning paradigm having a greater induction impact. The superposition of two mechanisms led to a further increase in nausea responses. A preliminary investigation of the underlying mechanism revealed clearly raised peripheral and central cholecystokinin (CCK) levels, as well as specific changes in the 5-hydroxytryptamine and cannabinoid systems. Brain networks related to emotion, cognition, and visceral sense expressed higher c-Fos-positive neurons, including the anterior cingulate cortex (ACC), insula, basolateral amygdala (BLA), thalamic paraventricular nucleus (PVT), hypothalamic paraventricular nucleus (PVN), nucleus tractus solitarius (NTS), periaqueductal gray (PAG), and dorsal raphe nucleus-dorsal part (DRD). We also found that nausea expectances in the model could last for at least 12 days. CONCLUSION: The present study provides a useful experimental model of nocebo nausea that might be used to develop potential molecular pathways and therapeutic strategies for nocebo.
Assuntos
Efeito Nocebo , Núcleo Solitário , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Núcleo Solitário/metabolismo , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Náusea/induzido quimicamente , Náusea/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Gastrin and CCK (cholecystokinin), gut hormones first secreted after postprandial stages, share the C-terminal amino acids and some types of receptors to be stimulated. Both types of hormone-secreting cells are typical open-type cells which detect foods and their digested elements in the lumen and regulate the secretion of gastric acid and digestive enzymes, gut motility, and satiety. Gastrin cell granules are characterized by their heterogenous ultrastructure within the cell, while CCK cell granules show a uniform ultrastructural figure. Gastrin cells are equipped with peptone receptor GPR92, amino acid receptor GPRC6A, and a Ca-sensing receptor. In addition to nutrient receptors, the release of CCK is regulated by a unique negative feedback mechanism. Development of an antibody for CCK-specific receptor (CCK-1R) has revealed its exact localization throughout the body, but specific antibodies against CCK-2R remain unavailable. Gastrin affects differentiation and proliferation-including cancer cells, while CCK possesses trophic effects to target tissues. CCK is a peripheral satiety signal and acts either via the vagus or directly on the dorsal medulla via CCK-1R. In this review, endocrine cells secreting these unique and so-called old gut hormones are described on a morphological basis.
Assuntos
Colecistocinina , Gastrinas , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Gastrinas/metabolismo , Gastrinas/farmacologia , Receptores da Colecistocinina/fisiologia , HumanosRESUMO
Synaptic impairment and loss are an important pathological feature of Alzheimer's disease (AD). Memory is stored in neural networks through changes in synaptic activity, and synaptic dysfunction can cause cognitive dysfunction and memory loss. Cholecystokinin (CCK) is one of the major neuropeptides in the brain, and plays a role as a neurotransmitter and growth factor. The level of CCK in the cerebrospinal fluid is decreased in AD patients. In this study, a novel CCK analogue was synthesized on the basis of preserving the minimum bioactive fragment of endogenous CCK to investigate whether the novel CCK analogue could improve synaptic plasticity in the hippocampus of the APP/PS1 transgenic mouse model of AD and its possible molecular biological mechanism. Our study found that the CCK analogue could effectively improve spatial learning and memory, enhance synaptic plasticity in the hippocampus, normalize synapse numbers and morphology and the levels of key synaptic proteins, up-regulate the PI3K/Akt signaling pathway and normalize PKA, CREB, BDNF and TrkB receptor levels in APP/PS1 mice. The amyloid plaque load in the brain was reduced by CCK, too. The use of a CCKB receptor antagonist and targeted knockdown of the CCKB receptor (CCKBR) attenuated the neuroprotective effect of the CCK analogue. These results demonstrate that the neuroprotective effect of CCK analogue is achieved by activating the PI3K/Akt as well as the PKA/CREB-BDNF/TrkB signaling pathway that leads to protection of synapses and cognition.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Plasticidade Neuronal , Camundongos Transgênicos , Cognição , Hipocampo/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Colecistocinina/uso terapêutico , Transdução de Sinais , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/metabolismoRESUMO
Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.
Assuntos
Desnutrição , Hipernutrição , Ratos , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Ratos Wistar , Núcleo Solitário/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Hipernutrição/metabolismo , Peso Corporal , Ingestão de AlimentosRESUMO
The strong effect of protein digestion products on gastrointestinal-released hormones is recognised. However, little is known about the specific peptide sequences able to induce gastrointestinal hormone secretion and the receptors involved. Our objective was to identify peptides able to induce the secretion of cholecystokinin (CCK) and glucagon like peptide-1 (GLP-1) in the enteroendocrine cell line STC-1, and to evaluate the involvement of the calcium-sensing receptor and G-protein coupled receptor-93 in this cell signalling. The key role of the amino acidic sequence on CCK and GLP-1 secretion is demonstrated. Removing Ser from the N-terminus of κ-casein 33SRYPS37, or the N-terminal Trp-Ile in lysozyme 123WIRGCRL129 decreased the secretion of both hormones. However, substituting Tyr by Ala in peptide αs1-CN 90RYLG93 enhanced the CCK secretion levels but not the GLP-1 ones. In addition, the involvement of CaSR and GPR93 was evidenced, but our results pointed to the contribution of additional receptors or transporters.
Assuntos
Colecistocinina , Hormônios Gastrointestinais , Colecistocinina/genética , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Muramidase/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Caseínas/metabolismo , Células Enteroendócrinas , Peptídeos/metabolismo , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
OBJECTIVE: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective medications to reduce appetite and body weight. These actions are centrally mediated; however, the neuronal substrates involved are poorly understood. METHODS: We employed a combination of neuroanatomical, genetic, and behavioral approaches in the mouse to investigate the involvement of caudal brainstem cholecystokinin-expressing neurons in the effect of the GLP-1RA exendin-4. We further confirmed key neuroanatomical findings in the non-human primate brain. RESULTS: We found that cholecystokinin-expressing neurons in the caudal brainstem are required for the anorectic and body weight-lowering effects of GLP-1RAs and for the induction of GLP-1RA-induced conditioned taste avoidance. We further show that, while cholecystokinin-expressing neurons are not a direct target for glucose-dependent insulinotropic peptide (GIP), GIP receptor activation results in a reduced recruitment of these GLP-1RA-responsive neurons and a selective reduction of conditioned taste avoidance. CONCLUSIONS: In addition to disclosing a neuronal population required for the full appetite- and body weight-lowering effect of GLP-1RAs, our data also provide a novel framework for understanding and ameliorating GLP-1RA-induced nausea - a major factor for withdrawal from treatment.
Assuntos
Colecistocinina/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Apetite/efeitos dos fármacos , Depressores do Apetite/farmacologia , Glicemia/efeitos dos fármacos , Exenatida/farmacologia , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Liraglutida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismoRESUMO
Opioids are the most potent widely used analgesics, primarily, but not exclusively, in palliative care. However, they are associated with numerous side effects, such as tolerance, addiction, respiratory depression, and cardiovascular events. This, in turn, can result in their overuse in cases of addiction, the need for dose escalation in cases of developing tolerance, and the emergence of dose-related opioid toxicity, resulting in respiratory depression or cardiovascular problems that can even lead to unintentional death. Therefore, a very important challenge for researchers is to look for ways to counteract the side effects of opioids. The use of peptides and their related compounds, which have been shown to modulate the effects of opioids, may provide such an opportunity. This short review is a compendium of knowledge about the most important and recent findings regarding selected peptides and their modulatory effects on various opioid actions, including cardiovascular and respiratory responses. In addition to the peptides more commonly reported in the literature in the context of their pro- and/or anti-opioid activity-such as neuropeptide FF (NPFF), cholecystokinin (CCK), and melanocyte inhibiting factor (MIF)-we also included in the review nociceptin/orphanin (N/OFQ), ghrelin, oxytocin, endothelin, and venom peptides.
Assuntos
Analgésicos Opioides/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Peptídeos/uso terapêutico , Analgésicos Opioides/farmacologia , Animais , Colecistocinina/farmacologia , Colecistocinina/uso terapêutico , Tolerância a Medicamentos , Grelina/farmacologia , Grelina/uso terapêutico , Humanos , Antagonistas de Entorpecentes/farmacologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Peptídeos Opioides/farmacologia , Peptídeos Opioides/uso terapêutico , Peptídeos/farmacologia , Receptores Opioides/metabolismo , NociceptinaRESUMO
Reports of the stimulated release of extracellular vesicles (EVs) are few, and the mechanisms incompletely understood. To our knowledge, the possibility that the activation of any one of the multitudes of G-protein-coupled receptors (GPCRs) expressed by a single cell-type might increase EV release has not been explored. Recently, we identified the expression of cholecystokinin (CCK), gastrin, gastrin/cholecystokinin types A and/or B receptors (CCKAR and/or -BR), and the bitter taste receptor, TAS2R14 in the human and mouse placenta. specifically, trophoblast. These GPCR(s) were also expressed in four different human trophoblast cell lines. The current objective was to employ two of these cell lines-JAR choriocarcinoma cells and HTR-8/SVneo cells derived from first-trimester human villous trophoblast-to investigate whether CCK, TAS2R14 agonists, and other GPCR ligands would each augment EV release. EVs were isolated from the cell-culture medium by filtration and ultracentrifugation. The preparations were enriched in small EVs (<200 nm) as determined by syntenin western blot before and after sucrose gradient purification, phycoerythrin (PE)-ADAM10 antibody labeling, and electron microscopy. Activation of TAS2R14, CCKBR, cholinergic muscarinic 1 & 3, and angiotensin II receptors, each increased EV release by 4.91-, 2.79-, 1.87-, and 3.11-fold, respectively (all p < .05 versus vehicle controls), without significantly changing EV diameter. A progressive increase of EV concentration in conditioned medium was observed over 24 hr consistent with the release of preformed EVs and de novo biogenesis. Compared to receptor-mediated stimulation, EV release by the calcium ionophore, A23187, was less robust (1.63-fold, p = .08). Diphenhydramine, a TAS2R14 agonist, enhanced EV release in JAR cells at a concentration 10-fold below that required to increase intracellular calcium. CCK activation of HTR-8/SVneo cells, which did not raise intracellular calcium, increased EV release by 2.06-fold (p < .05). Taken together, these results suggested that other signaling pathways may underlie receptor-stimulated EV release besides, or in addition to, calcium. To our knowledge, the finding that the activation of multiple GPCRs can stimulate EV release from a single cell-type is unprecedented and engenders a novel thesis that each receptor may orchestrate intercellular communication through the release of EVs containing a subset of unique cargo, thus mobilizing a specific integrated physiological response by a network of neighboring and distant cells.
Assuntos
Vesículas Extracelulares/metabolismo , Receptores da Colecistocinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trofoblastos/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Colecistocinina/farmacologia , Difenidramina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Ácido Flufenâmico/farmacologia , Humanos , Receptores da Colecistocinina/agonistas , Receptores Acoplados a Proteínas G/agonistas , Trofoblastos/citologiaRESUMO
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system. We previously found that pre-treatment with CCK-8 inhibited behavioural and histologic changes typically induced by repeated exposure to METH. Here, we aimed to estimate the effects of CCK-8 on METH-induced neuro-inflammation, which is markedly characterized by microglia activation and increased pro-inflammatory cytokines production in vivo and in vitro. Moreover, we assessed the subtypes of the CCK receptor mediating the regulatory effects of CCK-8, and the changes in the NF-κB signalling pathway. We found that CCK-8 inhibited METH-induced microglial activation and IL-6 and TNF-α generation in vivo and in vitro in a dose-dependent manner. Furthermore, co-treatment of CCK-8 with METH significantly attenuated the activation of the NF-κB signalling pathway by activating the CCK2 receptor subtype in N9 cells. In conclusion, our findings indicated the inhibitory effect of CCK-8 on METH-induced neuro-inflammation in vivo and in vitro, and suggested the underlying mechanism may involve the activation of the CCK2 receptor, which downregulated the NF-κB signalling pathway induced by METH stimulation.
Assuntos
Anti-Inflamatórios/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Colecistocinina/farmacologia , Mediadores da Inflamação/metabolismo , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor de Colecistocinina B/agonistas , Animais , Linhagem Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cholecystokinin (CCK) had been the first gastrointestinal hormone known to exert anorexic effects. CCK had been inferred to contribute to the onset of functional dyspepsia (FD) symptoms. To understand the pathophysiology of FD, the roles of stress have to be clarified. In this study, we aimed to clarify the influence of stress on the action of cholecystokinin (CCK) on appetite and gastric emptying. Using rats, stress was simulated by giving restraint stress or intraperitoneal injection of the stress-related peptide hormone urocortin 1 (UCN1). The effects of CCK and restraint stress, alone or in combination, on food intake and gastric motility were examined, and c-Fos expression in the neurons of appetite control network in the central nervous system was assessed by immunohistochemical staining. CCK inhibited food intake and gastric emptying in a dose-dependent manner. Food intake for 1 h was significantly lower with UCN1 (2 nmol/kg) than with the saline control. Restraint stress amplified the suppressive effects of CCK on food intake for 1 h and on gastric emptying. With regard to brain function, the CCK induced c-Fos expression in the neurons of the nucleus tractus solitarius and paraventricular nucleus of the hypothalamus was markedly and significantly amplified by the addition of restraint stress with CCK. The results suggested that stress might amplify the anorexic effects of CCK through activation of the nuclei that comprise the brain neuronal network for satiation; this might play a role in the pathogenesis of the postprandial distress syndromes of functional dyspepsia.
Assuntos
Apetite/efeitos dos fármacos , Colecistocinina/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Dispepsia/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Urocortinas/farmacologiaRESUMO
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Assuntos
Fenômenos Fisiológicos Celulares , Colecistocinina/fisiologia , Gastrinas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Colecistocinina/farmacologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/fisiologia , Gastrinas/farmacologia , Humanos , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Gastrin and cholecystokinin (CCK) are hormones released from endocrine cells in the antral stomach (gastrin), the duodenum, and the jejunum (CCK). Recent reports, based on secretion experiments in an enteroendocrine cell line (NCI-H716) and gastrin receptor expression in proglucagon-expressing cells from the rat colon, suggested that gastrin could be a regulator of glucagon-like peptide-1 (GLP-1) secretion. To investigate these findings, we studied the acute effects of CCK-8 (a CCK1/CCK2 (gastrin) receptor agonist) and gastrin-17 (a CCK2(gastrin) receptor agonist) in robust ex vivo models: the isolated perfused rat small intestine and the isolated perfused rat colon. Small intestines from Wistar rats (n = 6), were perfused intraarterially over 80 min. During the perfusion, CCK (1 nmol/L) and gastrin (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. Colons from Wistar rats (n = 6) were perfused intraarterially over 100 min. During the perfusion, CCK (1 nmol/L), vasoactive intestinal peptide (VIP) (10 nmol/L), and glucose-dependent insulinotropic polypeptide (GIP) (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. In the perfused rat small intestines neither CCK nor gastrin stimulated the release of GLP-1 or neurotensin. In the perfused rat colon, neither CCK or VIP stimulated GLP-1 or peptide YY (PYY) release, but GIP stimulated both GLP-1 and PYY release. In both sets of experiments, bombesin, a gastrin-releasing peptide analog, served as a positive control. Our findings do not support the suggestion that gastrin or CCK participate in the acute regulation of intestinal GLP-1 secretion, but that GIP may play a role in the regulation of hormone secretion from the colon.
Assuntos
Colecistocinina/farmacologia , Colo/metabolismo , Gastrinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestino Delgado/metabolismo , Neurotensina/metabolismo , Peptídeo YY/metabolismo , Animais , Colo/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptor de Colecistocinina B/agonistas , Receptores da Colecistocinina/agonistas , Peptídeo Intestinal Vasoativo/farmacologiaRESUMO
Deletion of the leptin receptor from vagal afferent neurons (VAN) using a conditional deletion (Nav1.8/LepRfl/fl) results in an obese phenotype with increased food intake and lack of exogenous cholecystokinin (CCK)-induced satiation in male mice. Female mice are partially protected from weight gain and increased food intake in response to ingestion of high-fat (HF) diets. However, whether the lack of leptin signaling in VAN leads to an obese phenotype or disruption of hypothalamic-pituitary-gonadal axis function in female mice is unclear. Here, we tested the hypothesis that leptin signaling in VAN is essential to maintain estrogen signaling and control of food intake, energy expenditure, and adiposity in female mice. Female Nav1.8/LepRfl/fl mice gained more weight, had increased gonadal fat mass, increased meal number in the dark phase, and increased total food intake compared with wild-type controls. Resting energy expenditure was unaffected. The decrease in food intake produced by intraperitoneal injection of CCK (3 µg/kg body wt) was attenuated in female Nav1.8/LepRfl/fl mice compared with wild-type controls. Intraperitoneal injection of ghrelin (100 µg/kg body wt) increased food intake in Nav1.8/LepRfl/fl mice but not in wild-type controls. Ovarian steroidogenesis was suppressed, resulting in decreased plasma estradiol, which was accompanied by decreased expression of estrogen receptor-1 (Esr1) in VAN but not in the hypothalamic arcuate nucleus. These data suggest that the absence of leptin signaling in VAN is accompanied by disruption of estrogen signaling in female mice, leading to an obese phenotype possibly via altered control of feeding behavior.
Assuntos
Ingestão de Alimentos/genética , Comportamento Alimentar/fisiologia , Neurônios Aferentes/metabolismo , Obesidade/genética , Receptores para Leptina/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/genética , Colecistocinina/farmacologia , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Feminino , Grelina/farmacologia , Camundongos , Obesidade/metabolismo , Saciação , Nervo Vago/citologia , Aumento de Peso/genéticaRESUMO
Although methionine sulfoxide reductase (Msr) is known to modulate the activity of multiple functional proteins, the roles of Msr in pancreatic stellate cell physiology have not been reported. In the present work we investigated expression and function of Msr in freshly isolated and cultured rat pancreatic stellate cells. Msr expression was determined by RT-PCR, Western blot and immunocytochemistry. Msr over-expression was achieved by transfection with adenovirus vectors. Pancreatic stellate cells were co-cultured with pancreatic acinar cells AR4-2J in monolayer culture. Pancreatic stellate and acinar cell function was monitored by Fura-2 calcium imaging. Rat pancreatic stellate cells were found to express MsrA, B1, B2, their expressions diminished in culture. Over-expressions of MsrA, B1 or B2 were found to enhance ATP-stimulated calcium increase but decreased reactive oxygen species generation and lipopolysaccharide-elicited IL-1 production. Pancreatic stellate cell-co-culture with AR4-2J blunted cholecystokinin- and acetylcholine-stimulated calcium increases in AR4-2J, depending on acinar/stellate cell ratio, this inhibition was reversed by MsrA, B1 over-expression in stellate cells or by Met supplementation in the co-culture medium. These data suggest that Msr play important roles in pancreatic stellate cell function and the stellate cells may serve as a brake mechanism on pancreatic acinar cell calcium signaling modulated by stellate cell Msr expression.
Assuntos
Células Acinares/metabolismo , Sinalização do Cálcio , Metionina Sulfóxido Redutases/metabolismo , Células Estreladas do Pâncreas/enzimologia , Células Acinares/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Colecistocinina/farmacologia , Interleucina-1/biossíntese , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Células Estreladas do Pâncreas/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismoRESUMO
Previous work has shown that cannabinoids increase feeding, while cholecystokinin (CCK) has an anorexigenic effect on food intake. Receptors for these hormones are located on cell bodies of vagal afferent nerves in the nodose ganglia. An interaction between CCK and endocannabinoid receptors has been suggested. The purpose of these studies is to explore the effect of pretreatment with a cannabinoid agonist, CP 55,940, on nodose neuron activation by CCK. To determine the effect of CP 55,940 and CCK on neuron activation, rats were anesthetized and nodose ganglia were excised. The neurons were dissociated and placed in culture on coverslips. The cells were treated with media; CP 55,940; CCK; CP 55,940 followed by CCK; or AM 251, a CB1 receptor antagonist, and CP 55,940 followed by CCK. Immunohistochemistry was performed to stain the cells for cFos as a measure of cell activation. Neurons were identified using neurofilament immunoreactivity. The neurons on each slip were counted using fluorescence imaging, and the number of neurons that were cFos positive was counted in order to calculate the percentage of activated neurons per coverslip. Pretreatment with CP 55,940 decreased the percentage of neurons expressing cFos-immunoreactivity in response to CCK. This observation suggests that cannabinoids inhibit CCK activation of nodose ganglion neurons.
Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Colecistocinina/farmacologia , Cicloexanóis/farmacologia , Neurônios/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Animais , Células Cultivadas , Masculino , Neurônios/metabolismo , Gânglio Nodoso/citologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Catecholamine (CA) neurons within the A1 and C1 cell groups in the ventrolateral medulla (VLM) potently increase food intake when activated by glucose deficit. In contrast, CA neurons in the A2 cell group of the dorsomedial medulla are required for reduction of food intake by cholecystokinin (CCK), a peptide that promotes satiation. Thus dorsal and ventral medullary CA neurons are activated by divergent metabolic conditions and mediate opposing behavioral responses. Acute glucose deficit is a life-threatening condition, and increased feeding is a key response that facilitates survival of this emergency. Thus, during glucose deficit, responses to satiation signals, like CCK, must be suppressed to ensure glucorestoration. Here we test the hypothesis that activation of VLM CA neurons inhibits dorsomedial CA neurons that participate in satiation. We found that glucose deficit produced by the antiglycolytic glucose analog, 2-deoxy-d-glucose, attenuated reduction of food intake by CCK. Moreover, glucose deficit increased c-Fos expression by A1 and C1 neurons while reducing CCK-induced c-Fos expression in A2 neurons. We also selectively activated A1/C1 neurons in TH-Cre+ transgenic rats in which A1/C1 neurons were transfected with a Cre-dependent designer receptor exclusively activated by a designer drug (DREADD). Selective activation of A1/C1 neurons using the DREADD agonist, clozapine- N-oxide, attenuated reduction of food intake by CCK and prevented CCK-induced c-Fos expression in A2 CA neurons, even under normoglycemic conditions. Results support the hypothesis that activation of ventral CA neurons attenuates satiety by inhibiting dorsal medullary A2 CA neurons. This mechanism may ensure that satiation does not terminate feeding before restoration of normoglycemia.
Assuntos
Catecolaminas/metabolismo , Colecistocinina/farmacologia , Clozapina/análogos & derivados , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucose/deficiência , Bulbo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Clozapina/farmacologia , Desoxiglucose/farmacologia , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Bulbo/citologia , Bulbo/metabolismo , Neurônios/metabolismo , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Resposta de Saciedade/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
OBJECTIVES: Modulation of cholecystokinin (CCK) receptors has been shown to influence pancreatic endocrine function. METHODS: We assessed the impact of the CCKA and CCKB receptor modulators, (pGlu-Gln)-CCK-8 and gastrin-17, respectively, on ß-cell secretory function, proliferation and apoptosis and glucose tolerance, and investigating alterations of CCK and gastrin islet expression in diabetes. RESULTS: Initially, the presence of CCK and gastrin, and expression of their receptors were evidenced in ß-cell lines and mouse islets. (pGlu-Gln)-CCK-8 and gastrin-17 stimulated insulin secretion from BRIN-BD11 and 1.1B4 ß-cells, associated with no effect on membrane potential or [Ca]i. Only (pGlu-Gln)-CCK-8 possessed insulin secretory actions in isolated islets. In agreement, (pGlu-Gln)-CCK-8 improved glucose disposal and glucose-induced insulin release in mice. In addition, (pGlu-Gln)-CCK-8 evoked clear satiety effects. Interestingly, islet colocalization of CCK with glucagon was elevated in streptozotocin- and hydrocortisone-induced diabetic mice, whereas gastrin coexpression in α cells was reduced. In contrast, gastrin colocalization within ß-cells was higher in diabetic mice, while CCK coexpression with insulin was decreased in insulin-deficient mice. (pGlu-Gln)-CCK-8 and gastrin-17 also augmented human and rodent ß-cell proliferation and offered protection against streptozotocin-induced ß-cell cytotoxicity. CONCLUSIONS: We highlight the direct involvement of CCKA and CCKB receptors in pancreatic ß-cell function and survival.