Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142760

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Assuntos
Doença de Niemann-Pick Tipo C , Camundongos , Humanos , Animais , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patologia
2.
Cell Rep Med ; 4(11): 101278, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944529

RESUMO

The choroid plexus (CP) plays a key role in remotely controlling brain function in health, aging, and disease. Here, we report that CP epithelial cells express the brain-specific cholesterol 24-hydroxylase (CYP46A1) and that its levels are decreased under different mouse and human brain conditions, including amyloidosis, aging, and SARS-CoV-2 infection. Using primary mouse CP cell cultures, we demonstrate that the enzymatic product of CYP46A1, 24(S)-hydroxycholesterol, downregulates inflammatory transcriptomic signatures within the CP, found here to be elevated across multiple neurological conditions. In vitro, the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) downregulates CYP46A1 expression, while overexpression of CYP46A1 or its pharmacological activation in mouse CP organ cultures increases resilience to TNF-α. In vivo, overexpression of CYP46A1 in the CP in transgenic mice with amyloidosis is associated with better cognitive performance and decreased brain inflammation. Our findings suggest that CYP46A1 expression in the CP impacts the role of this niche as a guardian of brain immune homeostasis.


Assuntos
Amiloidose , Plexo Corióideo , Humanos , Camundongos , Animais , Colesterol 24-Hidroxilase/metabolismo , Plexo Corióideo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Encéfalo/patologia , Homeostase/fisiologia , Camundongos Transgênicos , Amiloidose/metabolismo , Amiloidose/patologia
3.
Sci Rep ; 13(1): 9166, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280310

RESUMO

A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvß3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvß3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.


Assuntos
Hidroxicolesteróis , Integrina alfaVbeta3 , Simulação por Computador , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Hidroxicolesteróis/química , Hidroxicolesteróis/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Modelos Moleculares , Termodinâmica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Colesterol 24-Hidroxilase/metabolismo
4.
J Steroid Biochem Mol Biol ; 221: 106103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367370

RESUMO

Obesity has been known to increase the risks of breast cancer (BC) development and also to be associated with adverse clinical outcome of the patients. Abnormalities of cholesterol metabolism are not only related to obesity but also to biological or clinical behavior of BC patients. However, which metabolites or pathways of cholesterol metabolism could represent the characteristics of BC patients have remained virtually unknown. Therefore, in this study, we attempted to perform bird's eye view or comprehensive analysis of in situ or intra-tumoral cholesterol metabolic pathways using the multimodal approaches in order to elucidate the possible significance of cholesterol metabolites and its metabolic enzymes including CYP27A1, CYP7A1, and CYP46A1. GC-MS study using BC specimens was first performed in 60 BCE patients to evaluate cholesterol metabolism from cholesterol through oxysterols in both BC and normal tissues. Results of those analyses above lead to evaluating immunoreactivity and mRNA expression of CYP27A1, CYP7A1 and CYP46A1 in 213 and 153 BCE cases, respectively. Results of comprehensive GC-MS analysis did reveal that three oxysterols, 27-HC, 7α-HC and 24-HC were all related to malignant phenotypes in BC. 27-HC abundance was significantly associated with higher tumor stage (P = 0.0475) of BC patients. Luminal B type BC patients harboring high CYP27A1, the enzyme responsible for production of 27-HC were significantly associated with worse disease-free survival than those with low CYP27A1 (P = 0.0463). 7α-HC tended to be more abundant in HER2 positive and TNBC subtypes and higher levels of 7α-HC were also significantly associated with higher Ki-67 labeling index (P = 0.0022) and histological grade (P = 0.0286). CYP7A1, the enzyme involved in production of 7α-HC, was significantly more abundant in TNBC than other subtypes (vs Luminal A; P = 0.0321, vs Luminal B; P = 0.0048, vs HER2; P = 0.0103). The levels of 24-HC in BC were lower than normal breast tissues regardless of its subtypes. CYP46A1, the enzyme involved in the production of 24-HC, was detected only in 33 (15.5%) out of 213 BCE cases examined in this study. Results of our bird's eye view analysis of in situ or intra-tumoral cholesterol metabolism in BC patients did firstly reveal BC subtype dependent involvement of its different pathways. Results also indicated the therapeutic possibility of subtype dependent modification of cholesterol metabolizing pathways in BC patients.


Assuntos
Neoplasias da Mama , Oxisteróis , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Redes e Vias Metabólicas , Obesidade , Oxisteróis/metabolismo
5.
J Mol Neurosci ; 71(6): 1306-1319, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33405196

RESUMO

The existence of Gram-negative bacteria in the brain, regardless of underlying immune status has been demonstrated by recent studies. The colocalization of lipopolysaccharide (LPS) with Aß1-40/42 in amyloid plaques supports the hypothesis that brain microbes may be the cause, triggering chronic neuroinflammation, leading to Alzheimer's disease (AD). To investigate the behavioral changes induced by infectious neuroinflammation, we chose the third ventricle as the site of a single LPS injection (20 µg or 80 µg) in male Wistar rats to avoid mechanical injury to forebrain structures while inducing widespread inflammation throughout the brain. Chronic neuroinflammation induced by LPS resulted in depressive-like behaviors and the impairment of spatial learning; however, there was no evidence of the development of pathological hallmarks (e.g., the phosphorylation of tau) for 10 months following LPS injection. The acceleration of cholesterol metabolism via CYP46A1 and the retardation of cholesterol synthesis via HMGCR were observed in the hippocampus of rats treated with either low-dose or high-dose LPS. The rate-limiting enzymes of cholesterol metabolism (CYP46A1) in SH-SY5Y cells and synthesis (HMGCR) in U251 cells were altered by inflammation stimulators, including LPS, IL-1ß, and TNF-α, through the TLR4/MyD88/NF-κB signaling pathway. The data suggest that chronic neuroinflammation provoked by the administration of LPS into the third ventricle may induce depressive-like symptoms and that the loss of cholesterol might be a biomarker of chronic neuroinflammation. The lack of pathological hallmarks of AD in our model indicates that Gram-negative bacteria infection might not be a single cause of AD.


Assuntos
Encefalite/fisiopatologia , Aprendizagem em Labirinto , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Injeções Intraventriculares , Interleucina-1beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas tau/metabolismo
6.
BMC Res Notes ; 13(1): 210, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276655

RESUMO

OBJECTIVE: Compromised brain cholesterol turnover and altered regulation of brain cholesterol metabolism have been allied with some neurodegenerative diseases, including Huntington's disease (HD). Following our previous studies in HD, in this study we aim to investigate in vitro in a neuroblastoma cellular model of HD, the effect of CYP46A1 overexpression, an essential enzyme in cholesterol metabolism, on huntingtin aggregation and levels. RESULTS: We found that CYP46A1 reduces the quantity and size of mutant huntingtin aggregates in cells, as well as the levels of mutant huntingtin protein. Additionally, our results suggest that the observed beneficial effects of CYP46A1 in HD cells are linked to the activation of autophagy. Taken together, our results further demonstrate that CYP46A1 is a pertinent target to counteract HD progression.


Assuntos
Autofagia , Colesterol 24-Hidroxilase/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Neuroblastoma , Animais , Linhagem Celular Tumoral , Células Cultivadas , Doença de Huntington/enzimologia , Camundongos , Proteínas Mutantes
7.
EMBO Mol Med ; 12(1): e10924, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31777202

RESUMO

Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24-hydroxylase (CYP46A1), a brain-specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA-seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood-brain barrier, inhibited GBM growth in vivo. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.


Assuntos
Colesterol 24-Hidroxilase , Colesterol/metabolismo , Glioblastoma , Encéfalo/metabolismo , Colesterol 24-Hidroxilase/genética , Colesterol 24-Hidroxilase/metabolismo , Glioblastoma/metabolismo , Homeostase , Humanos
8.
Sci Rep ; 7(1): 2702, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578430

RESUMO

Increased evidence suggests that dysregulation of cholesterol metabolism may be a key event contributing to progression of multiple sclerosis (MS). Using an experimental autoimmune encephalomyelitis (EAE) model of MS we revealed specific changes in the mRNA and protein expression of key molecules involved in the maintaining of cholesterol homeostasis in the rat spinal cord: 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24-hydroxylase (CYP46A1) during the course of disease. The presence of myelin lipid debris was seen only at the peak of EAE in demyelination loci being efficiently removed during the recovery period. Since CYP46A1 is responsible for removal of cholesterol excess, we performed a detailed profiling of CYP46A1 expression and revealed regional and temporal specificities in its distribution. Double immunofluorescence staining demonstrated CYP46A1 localization with neurons, infiltrated macrophages, microglia and astrocytes in the areas of demyelination, suggesting that these cells play a role in cholesterol turnover in EAE. We propose that alterations in the regulation of cholesterol metabolism at the onset and peak of EAE may add to the progression of disease, while during the recovery period may have beneficial effects contributing to the regeneration of myelin sheath and restoration of neuronal function.


Assuntos
Colesterol/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo dos Lipídeos/genética , Medula Espinal/metabolismo , Transcriptoma , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Biomarcadores , Colesterol 24-Hidroxilase/genética , Colesterol 24-Hidroxilase/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Fenótipo , Ratos , Índice de Gravidade de Doença , Medula Espinal/patologia
9.
J Biol Chem ; 292(12): 4913-4924, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28190002

RESUMO

Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1-/- mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1-/-, Cyp46a1-/-, Cyp27a1-/-Cyp46a1-/-, and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically.


Assuntos
Encéfalo/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Animais , Cerebelo/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestenonas/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA