Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
J Alzheimers Dis ; 98(4): 1515-1532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578893

RESUMO

Background: Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective: We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods: MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results: MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions: FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Receptor Muscarínico M4 , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Colinérgicos , Lipídeos
2.
Int J Clin Pharmacol Ther ; 62(5): 213-221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431832

RESUMO

OBJECTIVE: Irinotecan (IRI) is an anticancer drug that is frequently used to treat colorectal, gastric, and pancreatic cancers. Its side effects include cholinergic symptoms, such as diarrhea, abdominal pain, nausea, and hyperhidrosis. Anticholinergic medicines are frequently used for treatment or prophylaxis; however, the risk factors for the failure of a single prophylactic anticholinergic administration remain unclear. Moreover, an appropriate anticholinergic drug for prophylaxis remains unknown. Thus, we aimed to identify the risk factors associated with the failure of a single prophylactic dose of anticholinergic drugs for IRI-induced cholinergic symptoms and to evaluate the usefulness of multiple prophylactic doses of anticholinergic drugs. MATERIALS AND METHODS: Patients who underwent IRI treatment for colorectal, gastric, or pancreatic cancer and received prophylactic anticholinergic drugs for IRI-induced cholinergic symptoms (n = 135) were retrospectively evaluated. Univariate and multivariate logistic regression analyses were performed to identify the risk factors for failure of a single prophylactic dose of anticholinergic drugs. We also evaluated the efficacy of multiple prophylactic anticholinergic drug administration. RESULTS: Based on univariate and multivariate analyses, colorectal cancer, female sex, and prophylactic use of scopolamine butyl bromide were identified as risk factors for failure of a single prophylactic dose of anticholinergic drugs. The efficacy of multiple prophylactic doses was confirmed to be 95% of the patients who had a single prophylactic failure due to temporary effect but symptom appearance after a certain period of time (wearing-off). CONCLUSION: We determined that colorectal cancer, female sex, and prophylactic use of scopolamine butyl bromide were risk factors associated with the failure of a single prophylactic dose of anticholinergic drugs, and that multiple prophylactic doses for wearing-off can be a promising method.


Assuntos
Antagonistas Colinérgicos , Neoplasias Colorretais , Hidrocarbonetos Bromados , Humanos , Feminino , Irinotecano/efeitos adversos , Estudos Retrospectivos , Antagonistas Colinérgicos/efeitos adversos , Fatores de Risco , Colinérgicos , Brometo de Butilescopolamônio , Neoplasias Colorretais/tratamento farmacológico
3.
Neurosci Lett ; 825: 137710, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432355

RESUMO

Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.


Assuntos
Lipopolissacarídeos , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/toxicidade , Lipopolissacarídeos/toxicidade , Ratos Wistar , Acetilcolinesterase/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Glutationa/metabolismo , Encéfalo/metabolismo , Colinérgicos/farmacologia
4.
J Physiol Sci ; 74(1): 18, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491428

RESUMO

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4ß2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4ß2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4ß2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.


Assuntos
Neocórtex , Receptores Nicotínicos , Ratos , Animais , Nicotina/farmacologia , Bulbo Olfatório/metabolismo , Receptores Nicotínicos/metabolismo , Colinérgicos , Neocórtex/metabolismo
5.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38320853

RESUMO

Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4ß2, α3ß4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.


Assuntos
Acetilcolina , Hormônio Liberador de Gonadotropina , Camundongos , Animais , Masculino , Acetilcolina/farmacologia , Carbacol/farmacologia , Neurônios/fisiologia , Colinérgicos/farmacologia , Nicotina/farmacologia , Hormônio Luteinizante , Ácido gama-Aminobutírico/farmacologia
6.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
7.
Neurochem Res ; 49(5): 1137-1149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300457

RESUMO

Vascular dementia (VD) is a degenerative cerebrovascular disorder associated with progressive cognitive decline. Previous reports have shown that 7,8-dihydroxyflavone (7,8-DHF), a well-known TrkB agonist, effectively ameliorates cognitive deficits in several disease models. Therefore, this study investigated the protective effects of 7,8-DHF against 2-VO-induced VD. VD was established in rats using the permanent bilateral carotid arteries occlusion (two-vessel occlusion, 2-VO) model. 7,8-DHF (5, 10, and 20 mg/kg) and Donepezil (10 mg/kg) were administered for 4 weeks. Memory function was assessed by the novel objective recognition task (NOR) and Morris water maze (MWM) tests. Inflammatory (TNF-α, IL-1ß, and NF-kß), oxidative stress, and apoptotic (BAX, BCL-2, caspase-3) markers, along with the activity of choline acetylcholinesterase (AChE) was assessed. p-AKT, p-CREB, BDNF, and neurotransmitter (NT) (GLU, GABA, and ACh) levels were also analyzed in the hippocampus of 2-VO rats. Our results show that 7,8-DHF effectively improved memory performance and cholinergic dysfunction in 2-VO model rats. Furthermore, 7,8-DHF treatment also increased p-AKT, p-CREB, and BDNF levels, suppressed oxidative, inflammatory, and apoptotic markers, and restored altered NT levels in the hippocampus. These findings imply that 7, 8-DHF may act via multiple mechanisms and as such serve as a promising neuroprotective agent in the context of VD.


Assuntos
Demência Vascular , Ratos , Animais , Demência Vascular/tratamento farmacológico , Acetilcolinesterase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Aprendizagem em Labirinto , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Hipocampo/metabolismo , Colinérgicos/farmacologia
8.
Eur J Pharmacol ; 968: 176430, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38369274

RESUMO

Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.


Assuntos
Escopolamina , Pepinos-do-Mar , Ratos , Humanos , Camundongos , Animais , Escopolamina/farmacologia , Espectrometria de Massas em Tandem , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Estresse Oxidativo , Colinérgicos/farmacologia
9.
Mol Med ; 30(1): 22, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317082

RESUMO

BACKGROUND: The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS: In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS: At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1ß, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILß+ neutrophils and ILß+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1ß, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1ß+ neutrophils, IL-1ß+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION: Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.


Assuntos
Citocinas , Piridinas , Sepse , Tiadiazóis , Masculino , Camundongos , Animais , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL3 , Quimiocinas , Punções , Endotoxinas , Encéfalo/metabolismo , Ligadura , Colinérgicos , Fator Estimulador de Colônias de Granulócitos , Camundongos Endogâmicos C57BL , Ceco/metabolismo , Modelos Animais de Doenças
10.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262412

RESUMO

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptor Muscarínico M1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Colinérgicos/uso terapêutico
11.
Nat Cell Biol ; 26(1): 72-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168768

RESUMO

A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.


Assuntos
S-Adenosilmetionina , Vitamina B 12 , Animais , Vitamina B 12/metabolismo , S-Adenosilmetionina/metabolismo , Caenorhabditis elegans/metabolismo , Colina/metabolismo , Bactérias/metabolismo , Metionina/metabolismo , Vitaminas/metabolismo , Colinérgicos/metabolismo
12.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178134

RESUMO

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
13.
FASEB J ; 38(2): e23416, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38198186

RESUMO

Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.


Assuntos
5'-Nucleotidase , Bexiga Urinária , Animais , Camundongos , 5'-Nucleotidase/genética , Adenosina , Fosfatase Alcalina , Colinérgicos , Camundongos Knockout
14.
PLoS One ; 19(1): e0295813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194422

RESUMO

OBJECTIVE: To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model. METHODS: Twelve patients diagnosed with DR at the Qinghai Provincial People's Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People's Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at -20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting. RESULTS: The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele. CONCLUSION: The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.


Assuntos
Diabetes Mellitus , Doenças Retinianas , Humanos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Cálcio , Fator A de Crescimento do Endotélio Vascular , Classe I de Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR/genética , Fator de Necrose Tumoral alfa , Colinérgicos , Glucose , Aminopeptidases , Antígenos de Histocompatibilidade Menor
15.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G279-G290, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193160

RESUMO

The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (∼2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission.NEW & NOTEWORTHY We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. Through anatomic, molecular, and functional analyses, we demonstrated that VGLUT2-ENs are activated indirectly by noxious circumferential colorectal stretch via nicotinic cholinergic transmission, suggesting their participation in mechanical visceral nociception.


Assuntos
Neoplasias Colorretais , Neurônios Motores , Camundongos , Animais , Imuno-Histoquímica , Neurotransmissores/metabolismo , Colinérgicos , Neoplasias Colorretais/metabolismo , Plexo Mientérico/metabolismo
16.
Ann Neurol ; 95(3): 442-458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062617

RESUMO

OBJECTIVE: X-linked adrenoleukodystrophy is caused by mutations in the peroxisomal half-transporter ABCD1. The most common manifestation is adrenomyeloneuropathy, a hereditary spastic paraplegia of adulthood. The present study set out to understand the role of neuronal ABCD1 in mice and humans with adrenomyeloneuropathy. METHODS: Neuronal expression of ABCD1 during development was assessed in mice and humans. ABCD1-deficient mice and human brain tissues were examined for corresponding pathology. Next, we silenced ABCD1 in cholinergic Sh-sy5y neurons to investigate its impact on neuronal function. Finally, we tested adeno-associated virus vector-mediated ABCD1 delivery to the brain in mice with adrenomyeloneuropathy. RESULTS: ABCD1 is highly expressed in neurons located in the periaqueductal gray matter, basal forebrain and hypothalamus. In ABCD1-deficient mice (Abcd1-/y), these structures showed mild accumulations of α-synuclein. Similarly, healthy human controls had high expression of ABCD1 in deep gray nuclei, whereas X-ALD patients showed increased levels of phosphorylated tau, gliosis, and complement activation in those same regions, albeit not to the degree seen in neurodegenerative tauopathies. Silencing ABCD1 in Sh-sy5y neurons impaired expression of functional proteins and decreased acetylcholine levels, similar to observations in plasma of Abcd1-/y mice. Notably, hind limb clasping in Abcd1-/y mice was corrected through transduction of ABCD1 in basal forebrain neurons following intracerebroventricular gene delivery. INTERPRETATION: Our study suggests that the basal forebrain-cortical cholinergic pathway may contribute to dysfunction in adrenomyeloneuropathy. Rescuing peroxisomal transport activity in basal forebrain neurons and supporting glial cells might represent a viable therapeutic strategy. ANN NEUROL 2024;95:442-458.


Assuntos
Adrenoleucodistrofia , Prosencéfalo Basal , Neuroblastoma , Humanos , Animais , Camundongos , Adulto , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Prosencéfalo Basal/metabolismo , Neurônios/metabolismo , Colinérgicos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética
17.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38061549

RESUMO

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Assuntos
Motilidade Gastrointestinal , Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Motilidade Gastrointestinal/fisiologia , Neuroglia/metabolismo , Colinérgicos
18.
Alzheimers Dement ; 20(2): 995-1012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846816

RESUMO

INTRODUCTION: About two-thirds of Alzheimer's Disease (AD) patients are women, who exhibit more severe pathology and cognitive decline than men. Whether biological sex causally modulates the relationship between cholinergic signaling and amyloid pathology remains unknown. METHODS: We quantified amyloid beta (Aß) in male and female App-mutant mice with either decreased or increased cholinergic tone and examined the impact of ovariectomy and estradiol replacement in this relationship. We also investigated longitudinal changes in basal forebrain (cholinergic function) and Aß in elderly individuals. RESULTS: We show a causal relationship between cholinergic tone and amyloid pathology in males and ovariectomized female mice, which is decoupled in ovary-intact and ovariectomized females receiving estradiol. In elderly humans, cholinergic loss exacerbates Aß. DISCUSSION: Our findings emphasize the importance of reflecting human menopause in mouse models. They also support a role for therapies targeting estradiol and cholinergic signaling to reduce Aß. HIGHLIGHTS: Cholinergic tone regulates amyloid beta (Aß) pathology in males and ovariectomized female mice. Estradiol uncouples the relationship between cholinergic tone and Aß. In elderly humans, cholinergic loss correlates with increased Aß in both sexes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Feminino , Masculino , Animais , Idoso , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Estradiol , Colinérgicos , Precursor de Proteína beta-Amiloide , Camundongos Transgênicos , Modelos Animais de Doenças
19.
Br J Pharmacol ; 181(3): 413-428, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37614042

RESUMO

BACKGROUND AND PURPOSE: Glial cell-derived neurotrophic factor (GDNF) maintains gut homeostasis. Dopamine promotes GDNF release in astrocytes. We investigated the regulation by dopamine of colonic GDNF secretion. EXPERIMENTAL APPROACH: D1 receptor knockout (D1 R-/- ) mice, adeno-associated viral 9-short hairpin RNA carrying D2 receptor (AAV9-shD2 R)-treated mice, 6-hydroxydopamine treated (6-OHDA) rats and primary enteric glial cells (EGCs) culture were used. Incubation fluid from colonic submucosal plexus and longitudinal muscle myenteric plexus were collected for GDNF and ACh measurements. KEY RESULTS: D2 receptor-immunoreactivity (IR), but not D1 receptor-IR, was observed on EGCs. Both D1 receptor-IR and D2 receptor-IR were co-localized on cholinergic neurons. Low concentrations of dopamine induced colonic GDNF secretion in a concentration-dependent manner, which was mimicked by the D1 receptor agonist SKF38393, inhibited by TTX and atropine and eliminated in D1 R-/- mice. SKF38393-induced colonic ACh release was absent in D1 R-/- mice. High concentrations of dopamine suppressed colonic GDNF secretion, which was mimicked by the D2 receptor agonist quinpirole, and absent in AAV-shD2 R-treated mice. Quinpirole decreased GDNF secretion by reducing intracellular Ca2+ levels in primary cultured EGCs. Carbachol ( ACh analogue) promoted the release of GDNF. Quinpirole inhibited colonic ACh release, which was eliminated in the AAV9-shD2 R-treated mice. 6-OHDA treated rats with low ACh and high dopamine content showed decreased GDNF content and increased mucosal permeability in the colon. CONCLUSION AND IMPLICATIONS: Low concentrations of dopamine promote colonic GDNF secretion via D1 receptors on cholinergic neurons, whereas high concentrations of dopamine inhibit GDNF secretion via D2 receptors on EGCs and/or cholinergic neurons.


Assuntos
Dopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ratos , Camundongos , Animais , Dopamina/metabolismo , Quimpirol , Oxidopamina , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Receptores de Dopamina D1 , Receptores de Dopamina D2/agonistas , Colinérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA