Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 840
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
2.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515015

RESUMO

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Assuntos
Deficiências de Ferro , Ferro , Gravidez , Feminino , Animais , Ratos , Masculino , Ferro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Epigênese Genética , Colina/farmacologia , Colina/metabolismo , Hipocampo
3.
PLoS One ; 19(2): e0297289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315685

RESUMO

Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aß42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aß42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.


Assuntos
Doença de Alzheimer , Amiloidose , Gravidez , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/patologia , Camundongos Transgênicos , Lactação , Modelos Animais de Doenças , Encéfalo/metabolismo , Amiloidose/patologia , Colina/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Transtornos da Memória/patologia , Aprendizagem em Labirinto , Suplementos Nutricionais , Peptídeos beta-Amiloides/metabolismo
4.
Phytomedicine ; 125: 155337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241915

RESUMO

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Assuntos
Acetilcisteína , Cádmio , Flavonoides , Camundongos , Animais , Acetilcisteína/farmacologia , Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Inflamação/metabolismo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico
5.
J Appl Toxicol ; 44(3): 316-332, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37715655

RESUMO

2-Amino-2-methyl-1-propanol (AMP™) is a widely used pH stabilizer in personal care products (PCPs); thus, the safety implications of dermal AMP exposure remain of interest. We have previously reported that exposure to AMP in PCPs when used as intended is not anticipated to result in an increased risk of hepatotoxicity (primarily steatosis and altered phospholipid homeostasis). The current study focuses on AMP in PCP's potential for developmental and reproductive toxicity (DART) in humans, based on data from animal studies. Animal studies suggest that exposure to AMP can result in post-implantation loss. However, such effects occur at maternally toxic doses, posing a challenge for determining appropriate hazard classifications in the context of relevant consumer use scenarios. Our assessment concluded that human exposure to AMP in PCPs is not anticipated to result in DART at non-maternally toxic doses. Further, mode of action (MOA) analysis elucidated the potential biological pathways underlying DART effects observed in high-dose animal studies, such that perturbation of uterine choline synthesis was the most well-supported MOA hypothesis. Downstream uterine effects might reflect choline-dependent changes in epigenetic control of pathways important for implantation maintenance and uterine cell energetics. Since AMP-induced post-implantation loss occurs at doses higher than pathology related to liver toxicity, maintaining AMP exposures from exceeding the onset dose for maternal liver effects will also be protective of DART effects. Furthermore, dermal exposure to AMP expected from the use of PCPs is highly unlikely to result in toxicologically significant systemic AMP concentrations; thus, DART is not anticipated.


Assuntos
Propanolaminas , Reprodução , Animais , Humanos , Propanolaminas/farmacologia , Implantação do Embrião , Colina/farmacologia
6.
Semergen ; 50(1): 102089, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-37862810

RESUMO

Pregnancy is one of the most important and difficult moments that a woman goes through throughout her life. It is a period of great need for macro and micronutrients to meet the demands of the developing fetus and avoid deficiencies, in order to obtain the best possible result. Nowadays, most women who are pregnant or planning to become pregnant know the importance of getting the required amount of certain types of nutrients (proteins, fats, folate, etc.), as well as avoiding certain compounds (alcohol, tobacco, drugs, etc.) to avoid possible complications during pregnancy. In recent years, with the greatest scientific evidence available, it has been shown how some of these nutrients could have a more relevant role than previously believed in the optimal outcome of pregnancy. One of these nutrients being choline. Choline supplementation during pregnancy has been shown to be a non-pharmacological treatment capable of improving both physical (growth) and mental (memory) qualities of the new individual. Choline has been known as an essential nutrient since 1998 and several studies have shown its effectiveness in rodent models. The existence of recent publications that deal with its application in humans makes it necessary to carry out a systematic review. In this systematic review of the scientific evidence available from 2012 to the present that deals with the application of a higher intake of choline through supplementation as a treatment to improve pregnancy outcomes, its main objetive is to determine the effects that a nutritional intervention through choline supplementation in pregnant mothers can have on children's cognition. For this, 9studies have been analyzed where the treatment given to pregnant women is revealed, this being choline supplementation in different modalities (choline chloride, choline bitartrate, and phosphatidylcholine) and the different effects produced in the children of these mothers who have resulted from these treatment modalities. We conclude by stating that choline supplementation during pregnancy appears to be effective in improving or increasing cognition in children.


Assuntos
Colina , Suplementos Nutricionais , Criança , Feminino , Humanos , Gravidez , Colina/farmacologia , Colina/uso terapêutico , Gestantes , Lactação , Micronutrientes
7.
J Nutr ; 154(2): 491-497, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110180

RESUMO

BACKGROUND: Modification of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway can be induced by oral intake of inorganic NO3 (NIT) or NO3-rich products, such as beetroot juice (BRJ). OBJECTIVES: The primary aim of this study was to evaluate the plasma changes in betaine, choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), and NO3/NO2 (NOx) concentrations over 4 h after single oral ingestion of NIT or BRJ. The flow-mediated skin fluorescence (FMSF) method was applied to measure the changes in nicotinamide adenine dinucleotide reduced form (NADH) in response to transient ischemia and reperfusion. We hypothesized that various sources of NO3 may differently affect endothelial and mitochondrial functions in healthy human subjects. METHODS: In a randomized crossover trial, 8 healthy young adults ingested 800 mg NO3 from either NIT or BRJ on 2 separate days with ≥3 d apart. Venous blood samples were collected every hour, and FMSF determination was applied bihourly. RESULTS: Plasma betaine and choline concentrations peaked at 1 h after BRJ ingestion, and remained significantly higher than baseline values at all time points (P < 0.001 and P < 0.001, compared to preingestion values). Over time, BRJ was more effective in increasing NOx compared with NIT (fixed-trial effect P < 0.001). Baseline fluorescence decreased after both NIT and BRJ consumption (fixed-time effect P = 0.005). Transient ischemia and reperfusion response increased because of NO3 consumption (fixed-time effect P = 0.003), with no differences between trials (P = 0.451; P = 0.912; P = 0.819 at 0, 2, and 4 h, respectively). CONCLUSIONS: Acute ingestion of BRJ elevated plasma betaine and choline, but not TMA and TMAO. Moreover, plasma NOx levels were higher in the BRJ trial than in the NIT trial. Various sources of NO3 positively affected endothelial and mitochondrial functions. This trial was registered at clinicaltrials.gov as NCT05004935.


Assuntos
Beta vulgaris , Metilaminas , Nitratos , Adulto Jovem , Humanos , Betaína/farmacologia , Dióxido de Nitrogênio/farmacologia , Sucos de Frutas e Vegetais , Nitritos , Óxido Nítrico/metabolismo , Antioxidantes/farmacologia , Isquemia , Colina/farmacologia , Suplementos Nutricionais , Estudos Cross-Over , Pressão Sanguínea , Método Duplo-Cego
8.
Sci Rep ; 13(1): 18431, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891247

RESUMO

To investigate the effects and potential mechanisms of human umbilical cord mesenchymal stem cells, exosomes, and their conditioned media on lipid storage in oleic acid (OA) and palmitic acid (PA) treated hepatocytes and high-fat methionine- choline deficient diet (HFMRCD) induced non-alcoholic steatohepatitis (NASH) mice. AML12 cells were stimulated with OA and PA to establish the lipid storage cell model. HucMSCs, exosomes, and culture medium were then co-cultured. At the same time, C57BL/6 mice were fed an HFMRCD for 6 or 8 weeks to establish a NASH mouse model. The effect of HucMSCs, exosomes, and culture medium on lipid droplet repair of hepatocytes or NASH mice was then assessed. The weight of hepatocytes or liver tissue, Oil Red O, hematoxylin-eosin staining, Masson staining, Western blot, and qPCR were used to detect the related IL-6, TNF-α, TGF-ß1 andEI24/AMPK/mTOR pathway expression in hepatocytes and liver tissue. Compared with the model group, the effect of HucMSCs-Ex on inhibiting the accumulation of lipid droplets was more obvious at the cell level. In vivo study showed that HucMSCs-Ex reduces activity scores in NASH mice and improves liver tissue morphology by reducing vacuolar degeneration, fat deposition, and collagen deposition of liver tissue. Western blot and qPCR results showed that inflammatory factors and AMPK/mTOR or EI24-related autophagy pathways were altered before and after treatment. HucMSCs, HucMSC-Ex, and CM can promote autophagy in hepatocytes or NASH mice through the AMPK/mTOR or EI24-related autophagy pathway and alleviate injury associated with lipid deposition, collagen deposition or inflammation, reversing the progression of NASH.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Meios de Cultivo Condicionados/farmacologia , Exossomos/metabolismo , Proteínas Quinases Ativadas por AMP , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ácido Palmítico/farmacologia , Colina/farmacologia , Ácido Oleico/farmacologia , Colágeno/farmacologia , Células-Tronco Mesenquimais/metabolismo
9.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678795

RESUMO

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Assuntos
Doenças dos Bovinos , Deficiência de Colina , Feminino , Bovinos , Animais , Deficiência de Colina/metabolismo , Deficiência de Colina/veterinária , Gotículas Lipídicas/metabolismo , Colina/farmacologia , Colina/metabolismo , Lactação/fisiologia , Fígado/metabolismo , Fosfolipídeos/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Rúmen/metabolismo , Leite/química , Doenças dos Bovinos/metabolismo
10.
Vet Med Sci ; 9(5): 2260-2268, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556348

RESUMO

BACKGROUND: Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES: This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS: Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS: Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS: Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.


Assuntos
Colina , Monensin , Gravidez , Animais , Ovinos , Feminino , Masculino , Monensin/farmacologia , Colina/farmacologia , Rúmen , Propilenoglicol , Fibras Musculares Esqueléticas , Suplementos Nutricionais
11.
Mol Pharmacol ; 104(5): 214-229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595967

RESUMO

Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Metionina/metabolismo , Metionina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
J Nutr ; 153(10): 3131-3143, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586605

RESUMO

BACKGROUND: Obesity is associated with increased intestinal permeability and a diminished immune response. Phosphatidylcholine (PC), a form of choline found in eggs, has been shown to beneficially modulate T-cell response in the context of obesity when provided as the sole form of choline in the diet. OBJECTIVE: This study aimed to determine the impact of varying doses of PC as part of a high-fat diet (HFD) on immune cell function and intestinal permeability. METHODS: Male Wistar rats 4 wk of age were randomly assigned to consume 1 of 6 diets for 12 wk containing the same amount of total choline but differing in the forms of choline: 1-control low-fat (CLF, 20% fat, 100% free choline [FC]); 2-control high-fat (CHF, 50% fat, 100% FC); 3-100% PC (100PC, 50% fat, 100% egg-PC); 4-75% PC (75PC, 50% fat, 75% egg-PC+25% FC); 5-50% PC (50PC, 50% fat, 50% egg-PC+50% FC); and 6-25% PC (25PC; 50% fat, 25% egg-PC+75% FC). Intestinal permeability was measured by fluorescein isothiocyanate-dextran. Immune function was assessed by ex vivo cytokine production of splenocytes and cells isolated from the mesenteric lymph node (MLN) after stimulation with different mitogens. RESULTS: Feeding the CHF diet increased intestinal permeability compared with the CLF diet, and doses of PC 50% or greater returned permeability to levels similar to that of the CLF diet. Feeding the CHF diet lowered splenocyte production of interleukin (IL)-1ß, IL-2, IL-10, and tumor necrosis factor-alpha, and MLN production of IL-2 compared with the CLF group. The 50PC diet most consistently significantly improved cytokine levels (IL-2, IL-10, tumor necrosis factor-alpha) compared with the CHF diet. CONCLUSIONS: Our results show that a dose of 50% of total choline derived from egg-PC can ameliorate HFD-induced intestinal permeability and immune cell dysfunction.


Assuntos
Dieta Hiperlipídica , Interleucina-10 , Ratos , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Fator de Necrose Tumoral alfa , Interleucina-2 , Citocinas , Colina/farmacologia , Obesidade , Lecitinas , Permeabilidade
13.
Acta Neuropathol ; 146(4): 565-583, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548694

RESUMO

Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-ß levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-ß and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Colina/farmacologia , Fator de Necrose Tumoral alfa , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Acetilcolina , Inflamação , Proteínas tau/metabolismo
14.
PLoS One ; 18(7): e0289098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490473

RESUMO

Chronic smoking is a primary risk factor for breast cancer due to the presence of various toxins and carcinogens within tobacco products. Nicotine is the primary addictive component of tobacco products and has been shown to promote breast cancer cell proliferation and metastases. Nicotine activates nicotinic acetylcholine receptors (nAChRs) that are expressed in cancer cell lines. Here, we examine the role of the α7 nAChR in coupling to heterotrimeric G proteins within breast cancer MCF-7 cells. Pharmacological activation of the α7 nAChR using choline or nicotine was found to increase proliferation, motility, and calcium signaling in MCF-7 cells. This effect of α7 nAChR on cell proliferation was abolished by application of Gαi/o and Gαq protein blockers. Specifically, application of the Gαi/o inhibitor pertussis toxin was found to abolish choline-mediated cell proliferation and intracellular calcium transient response. These findings were corroborated by expression of a G protein binding dominant negative nAChR subunit (α7345-348A), which resulted in significantly attenuating calcium signaling and cellular proliferation in response to choline. Our study shows a new role for G protein signaling in the mechanism of α7 nAChR-associated breast cancer growth.


Assuntos
Neoplasias da Mama , Proteínas Heterotriméricas de Ligação ao GTP , Receptores Nicotínicos , Humanos , Feminino , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sinalização do Cálcio , Receptores Nicotínicos/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proliferação de Células , Colina/farmacologia , Cálcio/metabolismo
15.
J Dairy Sci ; 106(12): 8561-8582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37500444

RESUMO

Recent studies have suggested that dietary rumen-protected choline (RPC) supplementation can modulate immune function, attenuate inflammation, and improve performance in periparturient dairy cattle; however, this has yet to be evaluated during a mastitis challenge. Therefore, the objective of this study was to examine the effects of supplementation and dose of RPC on metabolism, inflammation, and performance during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows (parity, mean ± SD, 1.9 ± 1.1 at enrollment) were blocked by calving month and randomly assigned within block to receive either 45 g/d of RPC (20.4 g/d of choline ions; CHOL45, n = 18), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30, n = 21), or no RPC (CON, n = 19) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 µg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM. Before the challenge, CHOL45 and CHOL30 cows produced 3.4 and 3.8 (±1.2 SED) kg/d more milk than CON, respectively. Dietary RPC supplementation did not mitigate the milk loss associated with the intramammary LPS challenge; however, CHOL45 and CHOL30 cows produced 3.1 and 3.5 (±1.4 SED) kg/d more milk than CON, respectively in the carryover period (22 to 84 DIM). Dietary RPC supplementation enhanced plasma ß-hydroxybutyrate (BHB) concentrations before the LPS challenge, and increased plasma nonesterified fatty acids (NEFA) and acetylcarnitine concentrations during the LPS challenge, potentially reflecting greater adipose tissue mobilization, fatty acid transport and oxidation. Aside from trimethylamine N-oxide and sarcosine, which were increased in CHOL45-LPS as compared with CON-LPS, most other choline metabolite concentrations in plasma were unaffected by treatment, likely because more choline was being secreted in milk. Plasma lactic acid concentrations were decreased in CHOL45-LPS and CHOL30-LPS as compared with CON-LPS, suggesting a reduction in glycolysis or an enhancement in the flux through the lactic acid cycle to support gluconeogenesis. Plasma concentrations of fumaric acid, a byproduct of AA catabolism and the urea cycle, were increased in both choline groups as compared with CON-LPS during the LPS challenge. Cows in the CHOL45 group had greater plasma antioxidant potential before the LPS challenge and reduced plasma methionine sulfoxide concentrations during the LPS challenge compared with CON-LPS, suggesting an improvement in oxidant status. Nevertheless, concentrations of inflammatory markers such as haptoglobin and tumor necrosis factor α (TNFα) were not affected by treatment. Taken together, our data suggest that the effects of dietary RPC supplementation on milk yield could be mediated through metabolic pathways and are unlikely to be related to the resolution of inflammation in periparturient dairy cattle. Lastly, dose responses to dietary RPC supplementation were not found for various economically important outcomes including milk yield, limiting the justification for feeding a greater dietary RPC dose in industry.


Assuntos
Doenças dos Bovinos , Lipopolissacarídeos , Gravidez , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Colina/farmacologia , Colina/metabolismo , Suplementos Nutricionais , Lactação/fisiologia , Rúmen/metabolismo , Dieta/veterinária , Leite/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Ácido Láctico/metabolismo , Íons/metabolismo , Íons/farmacologia , Doenças dos Bovinos/metabolismo
16.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447316

RESUMO

Substance use during pregnancy increases the risk for poor developmental outcomes of the offspring, and for substance-dependent mothers, abstaining from substance use during pregnancy is often difficult. Given the addictive nature of many substances, strategies that may mitigate the harmful effects of prenatal substance exposure are important. Prenatal nutrient supplementation is an emerging intervention that may improve developmental outcomes among substance-exposed offspring. We provide a narrative review of the literature on micronutrient and fatty acid supplementation during pregnancies exposed to substance use in relation to offspring developmental outcomes. We first discuss animal models exposed to ethanol during pregnancy with supplementation of choline, zinc, vitamin E, iron, and fatty acids. We follow with human studies of both alcohol- and nicotine-exposed pregnancies with supplementation of choline and vitamin C, respectively. We identified only 26 animal studies on ethanol and 6 human studies on alcohol and nicotine that supplemented nutrients during pregnancy and reported offspring developmental outcomes. There were no studies that examined nutrient supplementation during pregnancies exposed to cannabis, illicit substances, or polysubstance use. Implementations and future directions are discussed.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Transtornos Relacionados ao Uso de Substâncias , Gravidez , Animais , Feminino , Humanos , Mães , Nicotina/efeitos adversos , Suplementos Nutricionais , Vitaminas , Colina/farmacologia , Etanol/efeitos adversos
17.
Poult Sci ; 102(8): 102816, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302323

RESUMO

The purpose of the present study was to assess the performance, quality of eggs internally and externally, and antioxidant capacity of yolks in laying quails with the administration of choline and betaine to diets containing reduced methionine levels. A total of 150 Japanese laying quails (Coturnix coturnix japonica) at the 10-wk age were randomly assigned to 6 experimental groups, each consisting of 5 replicates and 5 birds for 10 wk. The treatment diets were designed by adding the following substances: 0.45% methionine (C), 0.30% methionine (LM), 0.30% methionine + 0.15% choline (LMC), 0.30% methionine + 0.20% betaine (LMB), 0.30% methionine + 0.075% choline + 0.10% betaine (LMCB1), 0.30% methionine + 0.15% choline + 0.20% betaine (LMCB2). The treatments did not affect performance, egg production, or egg internal quality (P > 0.05). No significant effect was determined on the damaged egg rate (P > 0.05), but the egg-breaking strength, eggshell thickness, and eggshell relative weight decreased in the LMCB2 group (P < 0.05). Regarding lipid peroxidation, treatments did not affect the yolk 2,2 diphenyl-1-picrylhydrazyl value (P > 0.05), although the lowest thiobarbituric acid reactive substances value was observed in the LMB compared to the control group (P < 0.05). It may be summarized that methionine can be decreased to levels of 0.30% for laying quail diets with no negative effect on performance, egg production, or egg internal quality, whereas the combination of methionine (0.30%) and betaine (0.2%) could improve antioxidant stability of eggs over the 10-wk experimental period. These findings provide useful information to the traditional recommendations on the requirements of laying quail. However, further studies are needed to test whether these effects persist throughout extended study periods.


Assuntos
Antioxidantes , Codorniz , Animais , Betaína , Metionina , Coturnix , Colina/farmacologia , Galinhas , Óvulo , Dieta/veterinária , Racemetionina , Ração Animal/análise , Suplementos Nutricionais
18.
Poult Sci ; 102(7): 102710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148572

RESUMO

This research aimed to evaluate how using betaine levels as a choline substitute affects productive performance, egg quality parameters, fatty acids profile, and antioxidant status in laying hens. One hundred and forty brown chickens, 45 wk old, were divided into 4 groups, each group of 7 replicates with 5 chickens per replicate. The first group of diets with choline has control (A) 100% choline, the second group (B) 75% choline + 25% betaine, the third group (C) 50% choline + 50% betaine, and the fourth group (D) received 100% betaine. No significant effects were observed in final body weight (BW), body weight gain (BWG), egg production (EW), and feed intake (FI) for laying hens. In the diet in which betaine was replaced choline, egg mass (EM) and egg weight (EW) increased compared to the control group (P < 0.05). Also, after 12 wk of feeding, the egg quality parameters were not influenced; however, yolk color was increased significantly compared with the control group. Serum total cholesterol, LDL-lipoprotein, HDL-lipoprotein, triglyceride, glucose, aspartate transaminase (AST), and alanine transaminase (ALT) were not affected by replacing choline with betaine. Furthermore, liver malondialdehyde (MDA) content, yolk vitamin E, and fatty acid levels were not significantly affected by replacing choline with betaine. Moreover, hens fed betaine displayed an increased antibody titer of the Newcastle disease (ND) virus. EW and EM were increased by 3.50% and 5.43% in 100% betaine group (D) when compared to the control group. Isthmus weight was decreased by 48.28 % in 50% choline + 50% betaine group (C) when compared to the control group. ND was increased by 26.24% in 100% betaine group when compared to the control group. In conclusion, betaine supplementation positively affected productive performance, egg quality measurements, and immunity response in Bovans brown laying hens.


Assuntos
Betaína , Suplementos Nutricionais , Animais , Feminino , Betaína/farmacologia , Colina/farmacologia , Galinhas/fisiologia , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Gema de Ovo
19.
J Pharm Pharmacol ; 75(8): 1046-1057, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061805

RESUMO

OBJECTIVES: Non-alcoholic steatohepatitis (NASH) is a chronic liver disease histologically characterized by liver steatosis, hepatocellular injury, inflammation and fibrosis, resulting in cirrhosis and hepatocellular carcinoma, but effective measures and obvious pathogenesis for NASH remain elusive. Chrysin (CH) has been reported to have anti-inflammatory effects but shows lower bioavailability. METHODS: In this study, a chrysin nanoliposome (CH-NL) was first prepared and characterized. Then, we used the methionine-choline-deficient (MCD) diet to induce a mouse model of NASH. Finally, the effects of CH and CH-NL on NASH were evaluated in the liver of NASH mice. KEY FINDINGS: The results showed that CH or CH-NL significantly reduced the accumulation of lipids in hepatocytes, alleviated liver injury, decreased the generation of radical oxygen species, and attenuated the accumulation of collagen fibre in the liver of NASH mice. In addition, CH and its nano-liposomes markedly inhibited the production of inflammatory cytokines and inflammatory cell infiltration in the liver of NASH mice. Further studies found that CH-NL and CH-NL downregulated the MCD diet-induced activation of Toll-like receptor 4 (TLR4) signalling pathway in the liver of mice. CONCLUSIONS: CH and its nanoliposome alleviated MCD diet-induced NASH in mice, which might be through inhibiting TLR4 signalling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor 4 Toll-Like/metabolismo , Fígado , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Dieta , Metionina , Colina/metabolismo , Colina/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
20.
Cell Prolif ; 56(10): e13470, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37051938

RESUMO

Macrophages' activation plays a central role during the development and progression of inflammation, while the regulation of metabolic reprogramming of macrophages has been recently identified as a novel strategy for anti-inflammatory therapies. Our previous studies have found that tetrahedral framework nucleic acid (tFNA) plays a mild anti-inflammatory effect by inhibiting macrophage activation, but the specific mechanism remains unclear. Here, by metabolomics and RNA sequencing, choline uptake is identified to be significantly repressed by decreased slc44a1 expression in tFNA-treated activated macrophages. Inspired by this result, combined with the excellent delivery capacities of tFNA, siR-slc44a1 is loaded into the tFNA to develop a new tFNA-based small interfering RNA (siRNA) delivery system named 'nano-windmill,' which exhibits a synergetic role by targeting slc44a1, finally blowing up the anti-inflammatory effects of tFNA to inhibit macrophages activation via reducing choline uptake. By confirming its anti-inflammatory effects in chronic (periodontitis) and acute (sepsis) inflammatory disease, the tFNA-based nanomedicine developed for inflammatory diseases may provide broad prospects for tFNA upgrading and various biological applications such as anti-inflammatory.


Assuntos
Colina , Ácidos Nucleicos , Humanos , Colina/farmacologia , Colina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácidos Nucleicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA