Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.299
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702534

RESUMO

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Assuntos
Colorimetria , Limite de Detecção , Estruturas Metalorgânicas , Praguicidas , Porfirinas , Colorimetria/métodos , Praguicidas/análise , Estruturas Metalorgânicas/química , Porfirinas/química , Peróxido de Hidrogênio/química , Oxirredutases/química , Aptâmeros de Nucleotídeos/química
2.
Mikrochim Acta ; 191(6): 307, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713296

RESUMO

An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.


Assuntos
Colorimetria , Muramidase , Saliva , Muramidase/análise , Muramidase/química , Muramidase/metabolismo , Colorimetria/métodos , Humanos , Saliva/química , Saliva/enzimologia , Limite de Detecção , Peptídeos/química , Aptâmeros de Nucleotídeos/química , Proteínas/análise , Técnicas Biossensoriais/métodos , Histidina/análise , Histidina/química
3.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692787

RESUMO

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Assuntos
Colorimetria , Oxirredução , Sarcosina , Smartphone , Sarcosina/urina , Sarcosina/análise , Sarcosina/química , Humanos , Nanoestruturas/química , Limite de Detecção , Espectrometria de Fluorescência , Neoplasias da Próstata/diagnóstico , Fluorescência , Técnicas Biossensoriais , Sarcosina Oxidase/química
4.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740454

RESUMO

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Assuntos
Antioxidantes , Compostos de Manganês , Óxidos , Óxidos/química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Compostos de Manganês/química , Colorimetria , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredução , Nanoestruturas/química , Catálise
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124325, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701574

RESUMO

A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.


Assuntos
Arsênio , Colorimetria , Teoria da Densidade Funcional , Tiazóis , Colorimetria/métodos , Humanos , Tiazóis/química , Tiazóis/análise , Arsênio/análise , Limite de Detecção , Células MCF-7 , Íons/análise , Imagem Óptica
6.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727763

RESUMO

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Assuntos
Glicina , Glifosato , Hemina , Limite de Detecção , Estruturas Metalorgânicas , Praguicidas , Praguicidas/análise , Praguicidas/química , Estruturas Metalorgânicas/química , Hemina/química , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Colorimetria/métodos , Benzidinas/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Dimetoato/análise , Dimetoato/química , Aptâmeros de Nucleotídeos/química , Compostos Organofosforados/análise , Compostos Organofosforados/química
7.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731608

RESUMO

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Assuntos
Colorimetria , Cobre , Glutationa , Peróxido de Hidrogênio , Nanoestruturas , Glutationa/análise , Glutationa/química , Colorimetria/métodos , Cobre/química , Nanoestruturas/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Porosidade , Oxirredução , Ácidos Ftálicos/química , Humanos , Benzidinas/química , Limite de Detecção
8.
J Agric Food Chem ; 72(19): 11164-11173, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564679

RESUMO

This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.


Assuntos
Colorimetria , Cromatografia Gasosa-Espectrometria de Massas , Nanocompostos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Zea mays , Zea mays/química , Zea mays/microbiologia , Nanocompostos/química , Colorimetria/métodos , Colorimetria/instrumentação , Compostos Orgânicos Voláteis/química , Microextração em Fase Sólida/métodos , Microextração em Fase Sólida/instrumentação , Fungos , Contaminação de Alimentos/análise
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124352, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678841

RESUMO

Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.


Assuntos
Compostos de Manganês , Mucina-1 , Nanoestruturas , Óxidos , Compostos de Manganês/química , Concentração de Íons de Hidrogênio , Mucina-1/análise , Óxidos/química , Nanoestruturas/química , Humanos , Colorimetria/métodos , Benzidinas/química , Pressão , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Aptâmeros de Nucleotídeos/química
10.
J Hazard Mater ; 470: 134271, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608593

RESUMO

Rapid and sensitive monitoring of pH and histamine is crucial for bridging biological and food systems and identifying corresponding abnormal situations. Herein, N-doped carbon dots (CDs) are fabricated by a hydrothermal method employing dipicolinic acid and o-phenylenediamine as precursors. The CDs exhibit colorimetric and fluorescent dual-mode responses to track pH and histamine variations in living cells and food freshness, respectively. The aggregation-induced emission enhancement and intramolecular charge transfer result in a decrease in absorbance and an increase in fluorescence, which become readily apparent as the pH changes from acidic to neutral. This property enables precise differentiation between normal and cancerous cells. Furthermore, given the intrinsic basicity of histamine, pH-responsive CDs are advantageous for additional colorimetric and fluorescent monitoring of histamine in food freshness, achieving linearities of 25-1000 µM and 30-1000 µM, respectively, which are broader than those of alternative nanoprobes. Interestingly, the smartphone-integrated sensing platform can portably and visually evaluate pH and histamine changes due to sensitive color changes. Therefore, the sensor not only establishes a dynamic connection between pH and histamine for the purposes of biological and food monitoring, but also presents a novel approach for developing a multifunctional biosensor that can accomplish environmental monitoring and biosensing simultaneously.


Assuntos
Carbono , Colorimetria , Histamina , Pontos Quânticos , Histamina/análise , Carbono/química , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência , Smartphone , Análise de Alimentos/métodos , Nitrogênio/química , Fluorescência , Corantes Fluorescentes/química
11.
Anal Chim Acta ; 1305: 342582, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677838

RESUMO

BACKGROUND: Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS: In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE: This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.


Assuntos
Corantes Fluorescentes , Paládio , Paládio/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cianetos/análise , Naftalenos/química , Naftalenos/toxicidade , Células HeLa , Imagem Óptica , Limite de Detecção , Colorimetria/métodos , Estrutura Molecular , Espectrometria de Fluorescência
12.
Anal Chim Acta ; 1305: 342583, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677845

RESUMO

P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs/piRs) are a class of small noncoding RNAs that play a crucial role in regulating various biological processes, including carcinogenesis. One specific piRNA, piR-651, has been reported to be overexpressed in both human blood serum and solid cancer tissues, that can be used a viable biomarker in cancer diagnosis. Early diagnosis of cancer can help reduce the burden of the disease and improve survival rates. In the present work, we report for the first time a smartphone-based colorimetric biosensor for highly sensitive and specific detection of piR-651 thanks to an enzymatic signal amplification, which yielded high colorimetric intensities. Indeed, a heteroduplex DNA:RNA was formed in the presence of piR-651 with the capture DNA probe immobilized on the magnetic beads for easy magnetic separation. Then, a HRP tethered to anti-DNA:RNA (S9.6) was used to reveal the DNA-RNA heteroduplex formed by catalyzing the oxidation of TMB substrate into colorimetric TMBox, which absorbs at 630 nm. The absorbance is positively proportional to the piR-651 concentrations. On the other hand, the colorimetric product of the assay can be photographed with a smartphone camera and analyzed using ImageJ software. Using a smartphone and under optimal conditions, the biosensor responded linearly to the logarithm of piRNA-651 from 8 fM to 100 pM with a detection limit of 2.3 fM and discriminates against other piRNAs. It was also successfully applied to the determination of piRNA-651 levels in spiked human serum.


Assuntos
Técnicas Biossensoriais , RNA Interferente Pequeno , Smartphone , Humanos , RNA Interferente Pequeno/química , Técnicas Biossensoriais/métodos , Colorimetria , DNA/química , Limite de Detecção , RNA de Interação com Piwi
13.
Anal Chem ; 96(16): 6202-6208, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598750

RESUMO

New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.


Assuntos
Trifosfato de Adenosina , Cobre , Polímeros , Cobre/química , Trifosfato de Adenosina/análise , Polímeros/química , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Nanoestruturas/química , Limite de Detecção , Colorimetria , Benzidinas/química , Testes Imediatos
14.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637053

RESUMO

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/química , Estruturas Metalorgânicas/química , Colorimetria , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Oxirredutases , Glutationa
15.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
16.
Anal Methods ; 16(15): 2378-2385, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572618

RESUMO

Using silver nitrate as the silver source and sodium borohydride as the reducing agent, we synthesized negatively charged silver nanoparticles (AgNPs). Subsequently, the AgNPs solution was mixed with positively charged lead ions, resulting in AgNPs aggregation via electrostatic interactions. This led to a color change in the solution from yellow to purple and eventually to blue-green. Our study focused on a colorimetric method that exhibited high selectivity and sensitivity in detecting cysteine using AgNPs-Pb2+ as a sensing probe. Upon the introduction of cysteine to the AgNPs-Pb2+ system, the absorbance of AgNPs increased at 396 nm and decreased at 520 nm. The formation of a complex between cysteine and lead ions prevented the aggregation of silver nanoparticles, enabling the colorimetric detection of cysteine. The relationship between the concentration of ΔA396/A520 and cysteine showed linearity within the range of 0.01 to 0.1 µM; the regression equation of the calibration curve is ΔA396/A520 = 9.0005c - 0.0557 (c: µM), with an R2 value of 0.9997. The detection limit was found to be 3.8 nM (S/N = 3). This method demonstrated exceptional selectivity and sensitivity for cysteine and was effectively used for the determination of cysteine in urine. Our findings offer a new perspective for the future advancement of anti-aggregation silver nanocolorimetry.


Assuntos
Colorimetria , Nanopartículas Metálicas , Colorimetria/métodos , Cisteína , Chumbo , Prata , Íons
17.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667178

RESUMO

As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL-1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10-50 ng mL-1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers.


Assuntos
Benzidinas , Técnicas Biossensoriais , Colorimetria , Técnicas Eletroquímicas , Ferrocianetos , Nanopartículas , Tiorredoxinas , Ferrocianetos/química , Humanos , Nanopartículas/química , Limite de Detecção , Peróxido de Hidrogênio , Catálise , Peroxidase/química , Imunoensaio
18.
Anal Methods ; 16(18): 2921-2929, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661387

RESUMO

Carcinoembryonic antigen (CEA) is a glycoprotein widely used as a tumor marker. In this work, a colorimetric lateral flow immunosensor is developed for rapid and low-cost quantification of CEA in human blood serum. The immunosensor consists of a glass fiber sample/conjugation pad, a nitrocellulose detection pad and a cellulose absorption pad. The detection is based on a sandwich immunoreaction: the sample/conjugation pad is modified with gold nanoparticles (GNPs)-labeled anti-CEA conjugate probes which bind to the CEA target molecules in the sample and the complexes are captured at capture anti-CEA immobilized at the test line. The color intensity of the test line, measured from a scanned image of the strip, is related to the CEA concentration in the sample. The different assay parameters are studied in detail. The linearity holds from 1.25 to 640 ng mL-1 of CEA, the instrumental and visual limits of detection are 0.45 and 0.63 ng mL-1, respectively, and the total assay time is 15 min. The specificity of the immunoassay versus other cancer biomarkers is satisfactory. The recovery in samples of human serum spiked with CEA is in the range of 81-118% and the coefficient of variation of the method is ≤10%. Results obtained with the lateral flow immunosensor correlated well with a reference radioimmunoassay method (R2 = 0.99). This immunosensor can be readily applied to CEA monitoring at the point-of-care (POC) or in resource-limited settings thanks to its low-cost and simplicity.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário , Ouro , Nanopartículas Metálicas , Antígeno Carcinoembrionário/sangue , Humanos , Imunoensaio/métodos , Nanopartículas Metálicas/química , Ouro/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Colorimetria/métodos , Biomarcadores Tumorais/sangue
19.
Anal Methods ; 16(18): 2948-2958, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38669009

RESUMO

Herein, a novel type of phosphorus and iron-doped carbon dot (P,Fe-CD) with outstanding peroxidase activity and excellent fluorescence performance was hydrothermally synthesized to colorimetrically and fluorimetrically detect tannic acid (TA). In the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, the P,Fe-CDs could oxidize colorless TMB to a blue oxidation product (oxTMB) resulting in an increased value of absorbance. Simultaneously, the fluorescence intensity of P,Fe-CDs at 430 nm could be quenched owing to the fluorescence resonance energy transfer (FRET) between P,Fe-CDs and the generated oxTMB. Meanwhile, after adding the TA to the system containing TMB, H2O2 and P,Fe-CDs, the value of absorbance could be decreased and the fluorescence could be recovered because of the reduction reaction between TA and oxTMB. Therefore, fluorescence intensity and value of absorbance could be applied to quantitatively detect TA with good linearities between the concentration of TA and the fluorescence intensity/value of absorbance (0.997 and 0.997 for the colorimetric signal and fluorimetric one, respectively) and low limits of detection (0.093 µmol L-1 and 0.053 µmol L-1 for the colorimetry and the fluorimetry, respectively), which was successfully applied to the detection of TA in red wines. Moreover, we applied a smartphone-assisted method to the point-of-care detection of TA with accurate results, providing a new technique for TA detection and food quality monitoring.


Assuntos
Carbono , Pontos Quânticos , Taninos , Vinho , Taninos/química , Vinho/análise , Carbono/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Colorimetria/métodos , Peroxidase/química , Peroxidase/metabolismo , Limite de Detecção , Transferência Ressonante de Energia de Fluorescência/métodos , Benzidinas/química , Oxirredução , Polifenóis
20.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA