Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159367

RESUMO

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Assuntos
Proteínas de Transporte , Comovirus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Vigna , Comovirus/metabolismo , Comovirus/fisiologia , Comovirus/genética , Vigna/virologia , Vigna/metabolismo , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Plantas Geneticamente Modificadas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Potyvirus/fisiologia , Potyvirus/metabolismo , Endopeptidases
2.
New Phytol ; 237(4): 1146-1153, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073550

RESUMO

Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.


Assuntos
Arabidopsis , Comovirus , Comovirus/genética , Arabidopsis/genética , RNA Viral/genética , Doenças das Plantas
3.
Methods Mol Biol ; 2480: 103-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616860

RESUMO

Recent discoveries in the dynamics of genome replication and packaging in the plant virus Cowpea mosaic virus (CPMV) has led to the development of a novel method for specifically packaging an RNA molecule of choice into virus-like particles (VLPs) of CPMV. Thanks to modern gene synthesis and molecular cloning methods, the DNA sequence corresponding to an RNA sequence of interest can be cloned into a suitable expression plasmid for transient expression in plants. We describe here a method for ensuring that this RNA sequence will be packaged within VLPs of CPMV in plant cells by replication-dependent RNA packaging. This requires co-expression of the CPMV replication machinery alongside the CPMV coat protein precursor. These components are co-expressed in the leaves of the Nicotiana benthamiana plant and this co-expression results in the production of large quantities of VLPs that contain the RNA sequence of choice. These VLPs are easy to extract and purify from the plant tissue, and are stable for months in refrigerated conditions. These VLPs can then be used for a variety of different applications, such as RNA delivery or control reagents in RT-qPCR.


Assuntos
Comovirus , Vírus de Plantas , Comovirus/genética , Comovirus/metabolismo , Vírus de Plantas/genética , Plasmídeos , RNA/metabolismo , Nicotiana/genética
4.
Sci Rep ; 12(1): 681, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027575

RESUMO

Bean pod mottle virus (BPMV) is a destructive virus that causes serious economic losses in many countries every year, highlighting the importance of its effective detection. In this study, we developed a fast reverse transcription-cross-priming amplification (RT-CPA) coupled with lateral flow dipstick (LFD) diagnostic method for BPMV detection. The RT-CPA-LFD assay that targets the coat protein gene of BPMV was highly specific against diagnosing four other common viruses transmitted by soybean seeds, i.e., Southern bean mosaic virus (SBMV), Tomato ringspot virus (ToRSV), Arabis mosaic virus (ArMV), and Tobacco ringspot virus (TRSV). The sensitivities of the real-time fluorescent RT-CPA and the RT-CPA-LFD assay were at least 50 pg/µl and 500 pg/µl, respectively. Despite a compromise in the limit of detection of the RT-CPA method compared with TaqMan-MGB real-time RT-PCR, our results demonstrated a notably better performance in the detection of field samples of BPMV-infested soybean seeds. With the advantages of efficiency and convenience by visual determination, the RT-CPA-LFD assay presents a potential application for the rapid and accurate detection of BPMV in routine tests.


Assuntos
Comovirus/isolamento & purificação , Apresentação Cruzada , Glycine max/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Transcrição Reversa , Comovirus/genética , Sensibilidade e Especificidade
5.
ACS Infect Dis ; 7(11): 3096-3110, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672530

RESUMO

The development of vaccines against coronaviruses has focused on the spike (S) protein, which is required for the recognition of host-cell receptors and thus elicits neutralizing antibodies. Targeting conserved epitopes on the S protein offers the potential for pan-beta-coronavirus vaccines that could prevent future pandemics. We displayed five B-cell epitopes, originally identified in the convalescent sera from recovered severe acute respiratory syndrome (SARS) patients, on the surface of the cowpea mosaic virus (CPMV) and evaluated these formulations as vaccines. Prime-boost immunization of mice with three of these candidate vaccines, CPMV-988, CPMV-1173, and CPMV-1209, elicited high antibody titers that neutralized the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro and showed an early Th1-biased profile (2-4 weeks) transitioning to a slightly Th2-biased profile just after the second boost (6 weeks). A pentavalent slow-release implant comprising all five peptides displayed on the CPMV elicited anti-S protein and epitope-specific antibody titers, albeit at a lower magnitude compared to the soluble formulations. While the CPMV remained intact when released from the PLGA implants, processing results in loss of RNA, which acts as an adjuvant. Loss of RNA may be a reason for the lower efficacy of the implants. Finally, although the three epitopes (988, 1173, and 1209) that were found to be neutralizing the SARS-CoV were 100% identical to the SARS-CoV-2, none of the vaccine candidates neutralized the SARS-CoV-2 in vitro suggesting differences in the natural epitope perhaps caused by conformational changes or the presence of N-linked glycans. While a cross-protective vaccine candidate was not developed, a multivalent SARS vaccine was developed. The technology discussed here is a versatile vaccination platform that can be pivoted toward other diseases and applications that are not limited to infectious diseases.


Assuntos
COVID-19 , Comovirus , Nanopartículas , Vacinas , Animais , COVID-19/terapia , Comovirus/genética , Epitopos de Linfócito B , Humanos , Imunização Passiva , Camundongos , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
6.
Biomacromolecules ; 22(8): 3613-3623, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314166

RESUMO

The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.


Assuntos
Comovirus , Nanopartículas , Comovirus/genética , Humanos , Peptídeos
7.
Virus Genes ; 57(2): 238-241, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33555455

RESUMO

In this study, the complete nucleotide sequence of a Brazilian isolate of cowpea severe mosaic virus (CPSMV) is presented for the first time. To date, the CPSMV-DG isolate, from the USA, is the only one with the complete known genome. High-throughput sequencing (Illumina HiSeq) and Sanger sequencing of the total RNA extract from a cowpea plant collected in Teresina city, Brazil, revealed the genome sequence of the CPSMV-Ter1 isolate. RNA-1 and RNA-2 are, respectively, 5921 and 3465 nucleotides (nt) long without the poly(A) tail, and show 77.91% and 76.08% nt sequence identity with CPSMV-DG, considered the type isolate of the species. The open reading frames (ORFs) were determined and the cleavage sites of the polyproteins were predicted. Although the two isolates show a similar genomic organization, there was a low percentage of sequence identity between Ter1 and DG. Furthermore, pairwise comparisons of a partial RNA-1 fragment between CPSMV-Ter1 and 11 CPSMV isolates from Brazil indicated 94.6 to 94.8% nt and 98.9% to 99.4% aa sequence identities.


Assuntos
Comovirus/genética , Genoma Viral , Brasil , Comovirus/isolamento & purificação , RNA Viral , Análise de Sequência de RNA , Vigna/virologia , Sequenciamento Completo do Genoma
8.
Arch Virol ; 165(6): 1505-1509, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277282

RESUMO

The complete genome sequence of a novel comovirus identified in Guanajuato, Mexico, in a common bean plant (Phaseolus vulgaris L.) coinfected with Phaseolus vulgaris alphaendornavirus 1 (PvEV-1) and Phaseolus vulgaris alphaendornavirus 2 (PvEV-2) is presented. According to the current ICTV taxonomic criteria, this comovirus corresponds to a new species, and the name "Phaseolus vulgaris severe mosaic virus" (PvSMV) is proposed for this virus based on the observed symptoms of "severe mosaic" syndrome caused by comoviruses in common bean. PvSMV is closely related to bean pod mosaic virus (BPMV), and its genome consists of two polyadenylated RNAs. RNA-1 (GenBank accession number MN837498) is 5969 nucleotides (nt) long and encodes a single polyprotein of 1856 amino acids (aa), with an estimated molecular weight (MW) of 210 kDa, that contains putative proteins responsible for viral replication and proteolytic processing. RNA-2 (GenBank accession number MN837499) is 3762 nt long and encodes a single polyprotein of 1024 aa, with an estimated MW of 114 kDa, that contains putative movement and coat proteins. Cleavage sites were predicted based on similarities in size and homology to aa sequences of other comoviruses available in the GenBank database. Symptoms associated with PvSMV include mosaic, local necrotic lesions, and apical necrosis. This is the first report of a comovirus infecting common bean in Mexico.


Assuntos
Comovirus/genética , Genoma Viral , Phaseolus/virologia , Doenças das Plantas/virologia , Sequência de Aminoácidos , Comovirus/classificação , Comovirus/isolamento & purificação , México , Filogenia , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma
9.
Virus Res ; 274: 197766, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560966

RESUMO

Squash mosaic virus (SqMV), a member of the species Squash mosaic virus in the genus Comovirus (family Comoviridae), is an important seed-borne virus that causes serious economic losses in cucurbit crops. Here, we constructed infectious cDNA clones of SqMV genomic RNAs (RNA1 and RNA2) under the control of the cauliflower mosaic virus (CaMV) 35S promoter by Gibson assembly. The infectious cDNA clones of SqMV could infect zucchini squash (Cucurbita pepo) plants systemically by agrobacterium-mediated inoculation. The virus progeny from the infectious clones showed no difference from the wild type in terms of pathogenicity and symptom induction. It could be mechanically transmitted to zucchini squash (Cucurbita pepo), pumpkin (Cucurbita moschata), cucumber (Cucumis sativus), and muskmelon (Cucumis melo) but not watermelon (Citrullus lanatus) or Nicotiana benthamiana. This is the first report of construction of a SqMV infection clone and will facilitate the investigation of viral pathogenesis and host interactions.


Assuntos
Agrobacterium/genética , Comovirus/fisiologia , Comovirus/patogenicidade , DNA Complementar/genética , Caulimovirus/genética , Clonagem Molecular , Comovirus/genética , Comovirus/isolamento & purificação , Cucurbitaceae/virologia , DNA Complementar/isolamento & purificação , Vírus Delta da Hepatite/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/metabolismo , Transformação Genética , Virulência , Replicação Viral
10.
J Gen Virol ; 100(7): 1165-1170, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169482

RESUMO

The icosahedral capsid of cowpea mosaic virus is formed by 60 copies of the large (L) and small (S) coat protein subunits. The 24-amino-acid C-terminal peptide of the S coat protein can undergo proteolytic cleavage without affecting particle stability or infectivity. Mutagenic studies have shown that this sequence is involved in particle assembly, virus movement, RNA encapsidation and suppression of gene silencing. However, it is unclear how these processes are related, and which part(s) of the sequence are involved in each process. Here, we have analysed the effect of mutations in the C-terminal region of the S protein on the assembly of empty virus-like particles and on the systemic movement of infectious virus. The results confirmed the importance of positively charged amino acids adjacent to the cleavage site for particle assembly and revealed that the C-terminal 11 amino acids are important for efficient systemic movement of the virus.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Comovirus/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Comovirus/química , Comovirus/genética , Mutação , Doenças das Plantas/virologia , Nicotiana/virologia , Montagem de Vírus
11.
Nano Lett ; 19(3): 2099-2105, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30801195

RESUMO

In situ cancer vaccination that uses immune stimulating agents is revolutionizing the way that cancer is treated. In this realm, viruses and noninfectious virus-like particles have gained significant traction in reprogramming the immune system to recognize and eliminate malignancies. Recently, cowpea mosaic virus-like particles (VLPs) have shown exceptional promise in their ability to fight a variety of cancers. However, the current methods used to produce CPMV VLPs rely on agroinfiltration in plants. These protocols remain complicated and labor intensive and have the potential to introduce unwanted immunostimulatory agents, like lipopolysaccharides. This Letter describes a simple "post-processing" method to remove RNA from wild-type CPMV, while retaining the structure and function of the capsid. Lyophilization was able to eject encapsulated RNA to form lyo-eCPMV and, when purified, eliminated nearly all traces of encapsulated RNA. Lyo-eCPMV was characterized by cryo-electron microscopy single particle reconstruction to confirm the structural integrity of the viral capsid. Finally, lyo-eCPMV showed  equivalent anticancer efficacy as eCPMV, produced by agroinfiltration, when using an invasive melanoma model. These results describe a straightforward method to prepare CPMV VLPs from infectious virions.


Assuntos
Vacinas Anticâncer/química , Comovirus/química , Melanoma/tratamento farmacológico , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Comovirus/genética , Microscopia Crioeletrônica , Liofilização , Humanos , Melanoma/imunologia , Plantas/virologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vírion/química , Vírion/genética
12.
Methods Mol Biol ; 1776: 337-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869253

RESUMO

Plant virus capsids are attractive entities for nanotechnological applications because of their variation in shape and natural assembly ability. This chapter describes the production and modification of three differently shaped plant virus capsids for silica mineralization purposes. The chosen plant viruses exhibit either an icosahedral (cowpea mosaic virus, CPMV), or a flexuous rod-like structure (potato virus X, PVX), or a rigid rod-like shape (tobacco mosaic virus, TMV), and are well-known and frequently used plant viruses for biotechnological applications. We describe the production (including genetic or chemical modification) and purification of the plant viruses or of empty virus-like particles in the case of CPMV, as well as the characterization of these harvested templates. The mineralization procedures and differences in the protocols specific to the distinct viruses are described, and the analyses of the mineralization results are explained.


Assuntos
Comovirus/genética , Nanotecnologia/métodos , Potexvirus/genética , Vírus do Mosaico do Tabaco/genética , Capsídeo/química , Comovirus/química , Nanopartículas/química , Potexvirus/química , Dióxido de Silício/química , Vírus do Mosaico do Tabaco/química
13.
Methods Mol Biol ; 1776: 609-627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869269

RESUMO

Stem cells can interact and respond to the extracellular nanoscale environment. Viral nanoparticles have been utilized as building blocks to control cell growth and differentiation. By integrating stem cell research and virus nanoparticle chemistry together, a systematic analysis of the effects of nanotopography on stem cell differentiation can be accomplished. The fabrication of thin films of the viral nanoparticles is particularly valuable for such studies. Here, we describe two methods to fabricate plant virus-based thin films and procedures to study the osteogenic differentiation of mesenchymal stem cells on plant virus-based substrates. The method makes use of wild-type tobacco mosaic virus (wt-TMV), RGD-modified TMV (TMV-RGD), turnip yellow mosaic virus (TYMV), cowpea mosaic virus (CPMV), turnip vein clearing virus (TVCV), and potato virus X (PVX) for development of bone tissue engineering biomaterials.


Assuntos
Células-Tronco Mesenquimais/química , Nanopartículas/química , Osteogênese/genética , Engenharia Tecidual/métodos , Adesão Celular/genética , Diferenciação Celular/genética , Comovirus/química , Comovirus/genética , Potexvirus/química , Potexvirus/genética , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/genética , Tymovirus/química , Tymovirus/genética
14.
Metab Eng ; 42: 185-193, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687337

RESUMO

Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.


Assuntos
Algoritmos , Avena , Comovirus , Descoberta de Drogas/métodos , Genoma de Planta , Genoma Viral , Nicotiana , Biologia Sintética/métodos , Triterpenos/metabolismo , Avena/enzimologia , Avena/genética , Comovirus/enzimologia , Comovirus/genética , Nicotiana/enzimologia , Nicotiana/genética
15.
Curr Protein Pept Sci ; 18(11): 1141-1151, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28440187

RESUMO

Vaccine development is one of the greatest achievements of modern medicine. Vaccines made of live-attenuated pathogens can revert to virulent live strains, which causes safety concerns. On the other hand, the use of purified antigenic components as subunit vaccines is safer, but less effective, as these components induce lower levels of protective immunity. Multiple copy presentation of an antigenic determinant in a well-ordered and well-defined orientation on a nanosized particle can mimic the natural host-pathogen surface interaction to provide antigen stability and immunogenicity similar to that of conventional vaccines with improved safety. The icosahedral symmetry of plant viral capsid based nanoparticles is highly ordered and their multivalent structured protein nanostructures facilitate genetic modifications that result in the display of heterologous epitopes or antigens attached to coat proteins. These recombinant plant virus-based nanoparticles (PVNs) provide platforms for the induction of humoral and cellular immune responses to genetically fused antigens from pathogenic viruses, bacteria, tumors, and toxins in man and animals. Here, we comprehensively review the developments of several recombinant PVNs as prophylactic and/or therapeutic vaccines for the prevention or treatment of several microbial diseases, pathologies, and toxin poisoning.


Assuntos
Doença de Alzheimer/terapia , Vacinas Bacterianas/imunologia , Vacinas Antimaláricas/imunologia , Nanopartículas/química , Vacinas Virais/imunologia , Vírion/imunologia , Vírus do Mosaico da Alfafa/genética , Vírus do Mosaico da Alfafa/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Antígenos/química , Antígenos/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Vacinas Bacterianas/genética , Comovirus/genética , Comovirus/imunologia , Cucumovirus/genética , Cucumovirus/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Nanopartículas/administração & dosagem , Tombusviridae/genética , Tombusviridae/imunologia , Tombusvirus/genética , Tombusvirus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/genética , Vírion/química , Vírion/genética
16.
Arch Virol ; 161(6): 1711-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26973227

RESUMO

Since the first report in Costa Rica in 1971, bean rugose mosaic virus (BRMV) has been found in Colombia, El Salvador, Guatemala and Brazil. In this study, the complete genome sequence of a soybean isolate of BRMV from Paraná State, Brazil, was determined. The BRMV genome consists of two polyadenylated RNAs. RNA1 is 5909 nucleotides long and encodes a single polypeptide of 1856 amino acids (aa), with an estimated molecular weight of 210 kDa. The RNA1 polyprotein contains the polypeptides for viral replication and proteolytic processing. RNA2 is 3644 nucleotides long and codes for a single polypeptide of 1097 aa, containing the movement and coat proteins. This is the first complete genome sequence of BRMV. When compared with available aa sequences of comoviruses, the highest identities of BRMV coat proteins and proteinase polymerase were 57.5 and 58 %, respectively. These were below the 75 and 80 % identity limits, respectively, established for species demarcation in the genus. This confirms that BRMV is a member of a distinct species in the genus Comovirus.


Assuntos
Comovirus/genética , Glycine max/virologia , Brasil , Comovirus/classificação , Comovirus/isolamento & purificação , Genoma Viral , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética
17.
Methods Mol Biol ; 1385: 39-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26614280

RESUMO

This chapter constitutes a practical guide to using the "pEAQ" vector series for transient or stable expression of one or more protein(s) in Nicotiana benthamiana plants. The pEAQ vectors are a series of small binary vectors designed for controlled expression of multiple proteins in plants. To achieve high levels of expression, an expression system based on translational enhancement by the untranslated regions of RNA-2 from cowpea mosaic virus (CPMV), named CPMV-HT, is used. The expression vector pEAQ-HT combines the user-friendly pEAQ plasmid with CPMV-HT to provide a system for high-level expression of proteins in plants.


Assuntos
Comovirus/genética , Engenharia Genética/métodos , Vetores Genéticos , Nicotiana/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Plasmídeos
18.
BMC Biotechnol ; 15: 42, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26022390

RESUMO

BACKGROUND: The extracellular domain of matrix protein 2 (M2e) of influenza A virus is a promising target for the development of a universal vaccine against influenza because M2e sequences are highly conserved among human influenza A strains. However, native M2e is poorly immunogenic, but its immunogenicity can be increased by delivery in combination with adjuvants or carrier particles. It was previously shown that fusion of M2e to bacterial flagellin, the ligand for Toll-like receptor (TLR) 5 and powerful mucosal adjuvant, significantly increases the immunogenicity and protective capacity of M2e. RESULTS: In this study, we report for the first time the transient expression in plants of a recombinant protein Flg-4M comprising flagellin of Salmonella typhimurium fused to four tandem copies of the M2e peptide. The chimeric construct was expressed in Nicotiana benthamiana plants using either the self-replicating potato virus X (PVX) based vector, pA7248AMV-GFP, or the cowpea mosaic virus (CPMV)-derived expression vector, pEAQ-HT. The highest expression level up to 30% of total soluble protein (about 1 mg/g of fresh leaf tissue) was achieved with the PVX-based expression system. Intranasal immunization of mice with purified Flg-4M protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza virus. CONCLUSIONS: This study confirms the usefulness of flagellin as a carrier of M2e and its relevance for the production of M2e-based candidate influenza vaccines in plants.


Assuntos
Flagelina/imunologia , Vacinas contra Influenza/biossíntese , Nicotiana/virologia , Vírus de Plantas/fisiologia , Salmonella typhimurium/genética , Proteínas da Matriz Viral/imunologia , Administração Intranasal , Animais , Comovirus/genética , Comovirus/fisiologia , Proteínas Filagrinas , Flagelina/genética , Vetores Genéticos/fisiologia , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Vírus de Plantas/genética , Potexvirus/genética , Potexvirus/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
19.
Mol Plant Microbe Interact ; 28(6): 675-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25650831

RESUMO

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix-induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death-inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


Assuntos
Comovirus/enzimologia , Nicotiana/virologia , Doenças das Plantas/virologia , Raphanus/virologia , Sequência de Aminoácidos , Morte Celular , Cerulenina/farmacologia , Comovirus/genética , Comovirus/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , Retículo Endoplasmático/metabolismo , Genes Reporter , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Necrose , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
20.
Virology ; 449: 133-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418546

RESUMO

Due to the nanoscale size and the strictly controlled and consistent morphologies of viruses, there has been a recent interest in utilizing them in nanotechnology. The structure, surface chemistries and physical properties of many viruses have been well elucidated, which have allowed identification of regions of their capsids which can be modified either chemically or genetically for nanotechnological uses. In this review we focus on the use of such modifications for the functionalization and production of viruses and empty viral capsids that can be readily decorated with metals in a highly tuned manner. In particular, we discuss the use of two plant viruses (Cowpea mosaic virus and Tobacco mosaic virus) which have been extensively used for production of novel metal nanoparticles (<100nm), composites and building blocks for 2D and 3D materials, and illustrate their applications.


Assuntos
Comovirus/química , Vírus Defeituosos/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Vírus do Mosaico do Tabaco/química , Comovirus/genética , Comovirus/metabolismo , Vírus Defeituosos/genética , Vírus Defeituosos/metabolismo , Nanotecnologia/métodos , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA