Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134598, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743975

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1-10 µg/L was performed form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 µg/L) could increase oxygen consumption rate and decease adenosine 5'-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod-3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associated with lifespan reduction by affecting insulin signaling in organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complexo I de Transporte de Elétrons , Longevidade , Mitocôndrias , Animais , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADH Desidrogenase , Citocromos b
3.
Nature ; 625(7994): 385-392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123683

RESUMO

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
4.
Commun Biol ; 6(1): 1134, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945749

RESUMO

The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lies at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region, with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Neoplasias Bucais/patologia , Complexo II de Transporte de Elétrons/metabolismo
5.
Science ; 381(6664): 1316-1323, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733872

RESUMO

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Assuntos
Antígenos de Neoplasias , Complexo II de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Neoplasias , Humanos , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Elétrons , Técnicas de Inativação de Genes , Histonas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Melanoma/imunologia , Melanoma/patologia , Metilação , Mitocôndrias/enzimologia , Neoplasias/imunologia , Neoplasias/patologia , Linhagem Celular Tumoral
6.
J Biol Chem ; 299(6): 104761, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119852

RESUMO

Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.


Assuntos
Complexo II de Transporte de Elétrons , Succinato Desidrogenase , Ciclo do Ácido Cítrico , Respiração , Transdução de Sinais , Succinato Desidrogenase/metabolismo , Mitocôndrias , Complexo II de Transporte de Elétrons/metabolismo
7.
Genes (Basel) ; 14(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36980917

RESUMO

Loss of function of the succinate dehydrogenase complex characterizes 20-40% of all KIT/PDGFRA-negative GIST. Approximately half of SDH-deficient GIST patients lack SDHx mutations and are caused by a hypermethylation of the SDHC promoter, which causes the repression of SDHC transcription and depletion of SDHC protein levels through a mechanism described as epimutation. The remaining 50% of SDH-deficient GISTs have mutations in one of the SDH subunits and SDHA mutations are the most common (30%), with consequent loss of SDHA and SDHB protein expression immunohistochemically. SDHB, SDHC, and SDHD mutations in GIST occur in only 20-30% of cases and most of these SDH mutations are germline. More recently, germline mutations in SDHA have also been described in several patients with loss of function of the SDH complex. SDHA-mutant patients usually carry two mutational events at the SDHA locus, either the loss of the wild type allele or a second somatic event in compound heterozygosis. This review provides an overview of all data in the literature regarding SDHA-mutated GIST, especially focusing on the prevalence of germline mutations in SDH-deficient GIST populations who harbor SDHA somatic mutations, and offers a view towards understanding the importance of genetic counselling for SDHA-variant carriers and relatives.


Assuntos
Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/genética , Mutação em Linhagem Germinativa , Succinato Desidrogenase/genética , Mutação , Metilação de DNA , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo
8.
J Med Genet ; 60(2): 107-111, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35260474

RESUMO

SDHA pathogenic germline variants (PGVs) are identified in up to 10% of patients with paraganglioma and phaeochromocytoma and up to 30% with wild-type gastrointestinal stromal tumours. Most SDHA PGV carriers present with an apparently sporadic tumour, but often the pathogenic variant has been inherited from parent who has the variant, but has not developed any clinical features. Studies of SDHA PGV carriers suggest that lifetime penetrance for SDHA-associated tumours is low, particularly when identified outside the context of a family history. Current recommended surveillance for SDHA PGV carriers follows an intensive protocol. With increasing implementation of tumour and germline large panel and whole-genome sequencing, it is likely more SDHA PGV carriers will be identified in patients with tumours not strongly associated with SDHA, or outside the context of a strong family history. This creates a complex situation about what to recommend in clinical practice considering low penetrance for tumour development, surveillance burden and patient anxiety. An expert SDHA working group was formed to discuss and consider this situation. This paper outlines the recommendations from this working group for testing and management of SDHA PGV carriers in clinical practice.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Testes Genéticos , Paraganglioma/genética , Feocromocitoma/genética , Mutação em Linhagem Germinativa/genética , Neoplasias das Glândulas Suprarrenais/genética , Reino Unido , Predisposição Genética para Doença , Complexo II de Transporte de Elétrons/genética
9.
Hepatology ; 78(1): 103-119, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35713976

RESUMO

BACKGROUND AND AIMS: Succinate dehydrogenase enzyme (SDH) is frequently diminished in samples from patients with hepatocellular carcinoma (HCC), and SDH reduction is associated with elevated succinate level and poor prognosis in patients with HCC. However, the underlying mechanisms of how impaired SDH activity promotes HCC remain unclear. APPROACH AND RESULTS: In this study, we observed remarkable downregulations of SDH subunits A and B (SDHA/B) in chronic liver injury-induced murine HCC models and patient samples. Subsequent RNA sequencing, hematoxylin and eosin staining, and immunohistochemistry analyses of HCC samples revealed that Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) were significantly upregulated in HCC, with their levels inversely correlating with that of SDHA/B. YAP/TAZ stability was greatly enhanced in SDHA/B-depleted HCC cells along with accumulation of succinate. Further mechanistic analyses demonstrated that impaired activity of SDHA/B resulted in succinate accumulation, which facilitated the deNEDDylation of cullin1 and therefore disrupted the E3 ubiquitin ligase SCF ß-TrCP complex, consequently leading to YAP/TAZ stabilization and activation in HCC cells. The accelerated in vitro cell proliferation and in vivo tumor growth caused by SDHA/B reduction or succinate exposure were largely dependent on the aberrant activation of YAP/TAZ. CONCLUSIONS: Our study demonstrated that SDHA/B reduction promotes HCC proliferation by preventing the proteasomal degradation of YAP/TAZ through modulating cullin1 NEDDylation, thus binding SDH-deficient HCC cells to YAP/TAZ pathway and rendering these cells vulnerable to YAP/TAZ inhibition. Our findings warrant further investigation on the therapeutic effects of targeting YAP/TAZ in patients with HCC displaying reduced SDHA/B or elevated succinate levels.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Hepáticas/patologia , Transativadores/metabolismo , Proteínas de Sinalização YAP , Succinatos , Complexo II de Transporte de Elétrons/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232604

RESUMO

Previous studies have shown that phosphoinositide 3-kinase enhancer-activating Akt (PIKE-A) is involved in the regulation of several biological processes in cancer. In our previous study, we demonstrated a crucial function of PIKE-A in cancer energy metabolism by regulating pentose phosphate pathway (PPP) flux. However, whether PIKE-A regulates energy metabolism through affecting mitochondrial changes are poorly understood. In the present study, we show that PIKE-A promotes mitochondrial membrane potential, leading to increasing proliferation of glioblastoma cell. Mechanistically, PIKE-A affects the expression of respiratory chain complex Ⅱ succinate dehydrogenase A (SDHA), mediated by regulating the axis of STAT3/FTO. Taken together, these results revealed that inhibition of PIKE-A reduced STAT3/FTO/SDHA expression, leading to the suppression of mitochondrial function. Thus, our findings suggest the PIKE-A/STAT3/FTO/SDHA axis as promising anti-cancer treatment targets.


Assuntos
Glioblastoma , Proteínas Proto-Oncogênicas c-akt , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Succinato Desidrogenase/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293021

RESUMO

The transformation of prostatic epithelial cells to prostate cancer (PCa) has been characterized as a transition from citrate secretion to citrate oxidation, from which one would anticipate enhanced mitochondrial complex I (CI) respiratory flux. Molecular mechanisms for this transformation are attributed to declining mitochondrial zinc concentrations. The unique metabolic properties of PCa cells have become a hot research area. Several publications have provided indirect evidence based on investigations using pre-clinical models, established cell lines, and fixed or frozen tissue bank samples. However, confirmatory respiratory analysis on fresh human tissue has been hampered by multiple difficulties. Thus, few mitochondrial respiratory assessments of freshly procured human PCa tissue have been published on this question. Our objective is to document relative mitochondrial CI and complex II (CII) convergent electron flow to the Q-junction and to identify electron transport system (ETS) alterations in fresh PCa tissue. The results document a CII succinate: quinone oxidoreductase (SQR) dominant succinate oxidative flux model in the fresh non-malignant prostate tissue, which is enhanced in malignant tissue. CI NADH: ubiquinone oxidoreductase activity is impaired rather than predominant in high-grade malignant fresh prostate tissue. Given these novel findings, succinate and CII are promising targets for treating and preventing PCa.


Assuntos
Neoplasias da Próstata , Ácido Succínico , Masculino , Humanos , Ácido Succínico/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/metabolismo , NAD/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Citratos , Zinco/metabolismo
12.
Bull Cancer ; 109(10): 1082-1087, 2022 Oct.
Artigo em Francês | MEDLINE | ID: mdl-35934543

RESUMO

Gastrointestinal stromal tumors (GIST) are rare digestive tumors. Activating KIT mutations are the most common molecular alteration in these patients, identified in approximately 70 % of cases, followed by PDGFRA mutations (10-15 %), of which the D842V mutation accounts for most cases. Succinate dehydrogenase (SDH) deficiency and alterations involving NF1, BRAFV600E, RAS or NTRK genes are rare molecular subgroups. In advanced GIST, treatment is based on tyrosine kinase inhibitors, including imatinib, which has been the standard first-line treatment since the early 2000s, with sunitinib and regorafenib as second- and third-line standards, respectively. Two new compounds have recently been evaluated in patients with advanced GIST. Ripretinib has become the validated fourth-line therapy for patients with KIT or PDGFRA non-D842V mutations, and avapritinib has been shown to be effective in patients with D842V mutations who were previously resistant to validated treatments. Avapritinib is now the recommended first-line treatment in this subgroup and may represent an additional option, whose place remains to be clarified, in pre-treated patients without D842V mutations. Specific treatments are available or under evaluation for some rare subgroups, and new therapeutic strategies are likely to further improve the management of advanced GIST in the coming years. This overview summarizes the results of recent trials and the place of these new molecules, as well as the main strategies under development for advanced GIST.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Antineoplásicos/uso terapêutico , Complexo II de Transporte de Elétrons/deficiência , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib/uso terapêutico , Erros Inatos do Metabolismo , Doenças Mitocondriais , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/uso terapêutico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Succinato Desidrogenase/genética , Sunitinibe/uso terapêutico
13.
Biochimie ; 201: 196-203, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35870552

RESUMO

Apart from the oncometabolite succinate, little studies have appeared on extra-mitochondrial pathways in Succinate Dehydrogenase (SDH) genetic deficiency. The role of NADH/NAD+ redox status and dependent pathways was recently emphasized. Therein, fatty acid (FA) metabolism data were collected here in 30 patients with a loss of function (LOF) variant in one SDHx gene (either with a pheochromocytoma/paraganglioma (PPGL) or asymptomatic) and in 22 wild-type SDHx controls (with PPGL or asymptomatic). Blood acylcarnitines in two patients, peroxisomal biomarkers, very long-chain saturated FA (VLCFA), and C20 to C24 n-3 polyunsaturated fatty acids (PUFA), in all patients were measured by mass spectrometry. Preliminary data showed elevated even and odd long- and very long-chain acylcarnitines in two patients with a SDHB variant. In the whole series, no abnormalities were observed in biomarkers of peroxisomal ß-oxidation (C27-bile acids, VLCFAs and phytanic/pristanic acids) in SDHx patients. However, an increased hexaene to pentaene PUFA ratio ([TetraHexaenoic Acid + DocosaHexaenoic Acid]/[n-3 DocosaPentaenoic Acid + EicosaPentaenoic Acid]) was noticed in patients with SDHC/SDHD variants vs patients with SDHA/SDHB variants or controls, suggesting a higher degree of unsaturation of PUFAs. Within the group with a SDHx variant, Eicosapentaenoate/Tetracosahexaenoate ratio, as an empiric index of shortening/elongation balance, discriminated patients with PPGL from asymptomatic ones. Present findings argue for stimulated elongation of saturated FAs, changes in shortening/elongation balance and desaturation rates of C20-C24 PUFAs in SDH-deficient patients with PPGL. Overall, oxidation of NADH sustained by these pathways might reflect or impact glycolytic NAD+ recycling and hence tumor proliferation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Ácidos Graxos/sangue , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/genética , Ácidos e Sais Biliares , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Complexo II de Transporte de Elétrons/deficiência , Humanos , Erros Inatos do Metabolismo , Doenças Mitocondriais , Mutação , NAD/metabolismo , Paraganglioma/genética , Paraganglioma/metabolismo , Paraganglioma/patologia , Feocromocitoma/genética , Succinato Desidrogenase/genética , Ácido Succínico/metabolismo
14.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563430

RESUMO

Mitochondrial Complex II is composed of four core subunits and mutations to any of the subunits result in lowered Complex II activity. Surprisingly, although mutations in any of the subunits can yield similar clinical outcomes, there are distinct differences in the patterns of clinical disease most commonly associated with mutations in different subunits. Thus, mutations to the SdhA subunit most often result in mitochondrial disease phenotypes, whilst mutations to the other subunits SdhB-D more commonly result in tumour formation. The reason the clinical outcomes are so different is unknown. Here, we individually antisense-inhibited three of the Complex II subunits, SdhA, SdhB or SdhC, in the simple model organism Dictyostelium discoideum. Whilst SdhB and SdhC knockdown resulted in growth defects on bacterial lawns, antisense inhibition of SdhA expression resulted in a different pattern of phenotypic defects, including impairments of growth in liquid medium, enhanced intracellular proliferation of the bacterial pathogen Legionella pneumophila and phagocytosis. Knockdown of the individual subunits also produced different abnormalities in mitochondrial function with only SdhA knockdown resulting in broad mitochondrial dysfunction. Furthermore, these defects were shown to be mediated by the chronic activation of the cellular energy sensor AMP-activated protein kinase. Our results are in agreement with a role for loss of function of SdhA but not the other Complex II subunits in impairing mitochondrial oxidative phosphorylation and they suggest a role for AMP-activated protein kinase in mediating the cytopathological outcomes.


Assuntos
Dictyostelium , Complexo II de Transporte de Elétrons , Proteínas Quinases Ativadas por AMP/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
Biomed Res Int ; 2022: 5504475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463978

RESUMO

Targeting death receptor-mediated apoptosis in T-cell acute lymphoblastic leukemia (T-ALL), an aggressive disease with poor prognosis, is hindered by the inherent resistance of primary leukemia cells. Knowledge on therapeutic vulnerabilities in these malignant cells will provide opportunities for developing novel combinatory treatments for patients. Using label-free quantitative mass spectrometry and subcellular fractionation techniques, we systematically compared organelle-specific proteomes between Jurkat cells, an in vitro model for T-ALL, and a Jurkat mutant with increased resistance to death receptor-mediated apoptosis. By identifying several differentially regulated protein clusters, our data argued that extensive metabolic reprograming in the mitochondria, characterized by enhanced respiration and energy production, might allow cells to evade DR5-mediated cytotoxicity. Further analysis using clinical datasets demonstrated that the elevated expression of a three-gene signature, consisting of SDHA, IDH3A, and ANXA11, was significantly associated with poor survival of acute leukemia patients. Our analysis therefore provided a unique dataset for a mechanistic understanding of T-ALL and for the design of novel ALL treatments.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anexinas/genética , Apoptose , Complexo II de Transporte de Elétrons/genética , Humanos , Isocitrato Desidrogenase/genética , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteoma , Receptores de Morte Celular
16.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486677

RESUMO

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Assuntos
Epigênese Genética , Succinato Desidrogenase , Proliferação de Células , Cromatina , Complexo II de Transporte de Elétrons/deficiência , Humanos , Inflamação/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Erros Inatos do Metabolismo , Doenças Mitocondriais , Nucleosídeos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos
17.
Endocr Relat Cancer ; 29(6): 345-358, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35315791

RESUMO

A fascinating class of familial paraganglioma (PGL) neuroendocrine tumors is driven by the loss of the tricarboxylic acid (TCA) cycle enzyme succinate dehydrogenase (SDH) resulting in succinate accumulation as an oncometabolite and other metabolic derangements. Here, we exploit a Saccharomyces cerevisiae yeast model of SDH loss where accumulating succinate, and possibly reactive oxygen species, poison a dioxygenase enzyme required for sulfur scavenging. Using this model, we performed a chemical suppression screen for compounds that relieve dioxygenase inhibition. After testing 1280 pharmaceutically active compounds, we identified meclofenoxate HCl and its hydrolysis product, dimethylaminoethanol (DMAE), as suppressors of dioxygenase intoxication in SDH-loss yeast cells. We show that DMAE acts to alter metabolism so as to normalize the succinate:2-ketoglutarate ratio, improving dioxygenase function. This study raises the possibility that oncometabolite effects might be therapeutically suppressed by drugs that rewire metabolism to reduce the flux of carbon into pathological metabolic pathways.


Assuntos
Dioxigenases , Paraganglioma , Dioxigenases/metabolismo , Complexo II de Transporte de Elétrons/deficiência , Humanos , Erros Inatos do Metabolismo , Doenças Mitocondriais , Paraganglioma/patologia , Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo , Succinatos
18.
J Recept Signal Transduct Res ; 42(2): 180-188, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33602019

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common genitourinary malignancy with high mortality. Recent findings suggest that the succinate dehydrogenase complex subunit A (SDHA) is lowly expressed in many types of cancers and involved in tumorigenesis. However, the potential regulatory roles and molecular mechanisms by which SDHA affects the development and progression of ccRCC remain largely unknown. In this study, our results showed that there was significant downregulation of SDHA in ccRCC tissue relative to corresponding non-cancerous tissue, and low expression of SDHA was associated with Fuhrman pathological grade, tumor size, TNM stage, metastasis, and poor prognosis in ccRCC patients. Moreover, overexpression of SDHA inhibited the proliferation, invasion, and migration capacities of ccRCC cells. Mechanistically, SDHA impeded the proliferation and metastasis of ccRCC cells by inactivation of the Wnt/ß-catenin pathway. In vivo experiments, SDHA suppressed ccRCC growth in a nude mouse model. In conclusion, our study results indicated that SDHA may act as a new molecular marker for judging the occurrence and development of ccRCC and serve as a therapeutic target for the treatment of human ccRCC.


Assuntos
Carcinoma de Células Renais , Complexo II de Transporte de Elétrons , Neoplasias Renais , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Complexo II de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Camundongos , Regulação para Cima/genética , Via de Sinalização Wnt , beta Catenina/genética
19.
Clin Neurol Neurosurg ; 212: 107039, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839152

RESUMO

Isolated deficiency of complex II is a rare inborn error of metabolism, accounting for approximately 2% of mitochondrial diseases. Mitochondrial complex II deficiency is predominantly seen in cases with bi-allelic SDHA mutations. To our knowledge, only 11 patients and five pathogenic variants have been reported for the SDHB gene. Our patient had a severe clinical presentation with seizures and sepsis, and died at the age of 2 months. Muscle biopsy analysis was compatible with mitochondrial myopathy with complex II deficiency. The family was given a molecular diagnosis for their child 2 years after his death via a clinical exome test of a frozen muscle biopsy specimen and a novel homozygous missense variant c.592 A>G (p.Ser198Gly) in SDHB gene was detected by next-generation sequencing. Here, we present another patient with a novel homozygous SDHB variant causing severe complex II deficiency and early death.


Assuntos
Complexo II de Transporte de Elétrons/deficiência , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Succinato Desidrogenase/genética , Consanguinidade , Complexo II de Transporte de Elétrons/genética , Evolução Fatal , Humanos , Recém-Nascido , Masculino
20.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686860

RESUMO

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Assuntos
Colite/enzimologia , Colo/enzimologia , Citotoxicidade Imunológica , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/enzimologia , Doença Enxerto-Hospedeiro/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Linfócitos T/imunologia , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/ultraestrutura , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Ácido Succínico/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA