Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Cancer Res ; 23(21): 6733-6743, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724664

RESUMO

Purpose: Patients who inherit a pathogenic loss-of-function genetic variant involving one of the four succinate dehydrogenase (SDH) subunit genes have up to an 86% chance of developing one or more cancers by the age of 50. If tumors are identified and removed early in these high-risk patients, they have a higher potential for cure. Unfortunately, many alterations identified in these genes are variants of unknown significance (VUS), confounding the identification of high-risk patients. If we could identify misclassified SDH VUS as benign or pathogenic SDH mutations, we could better select patients for cancer screening procedures and remove tumors at earlier stages.Experimental Design: In this study, we combine data from clinical observations, a functional yeast model, and a computational model to determine the pathogenicity of 22 SDHA VUS. We gathered SDHA VUS from two primary sources: The OHSU Knight Diagnostics Laboratory and the literature. We used a yeast model to identify the functional effect of a VUS on mitochondrial function with a variety of biochemical assays. The computational model was used to visualize variants' effect on protein structure.Results: We were able to draw conclusions on functional effects of variants using our three-prong approach to understanding VUS. We determined that 16 (73%) of the alterations are actually pathogenic, causing loss of SDH function, and six (27%) have no effect upon SDH function.Conclusions: We thus report the reclassification of the majority of the VUS tested as pathogenic, and highlight the need for more thorough functional assessment of inherited SDH variants. Clin Cancer Res; 23(21); 6733-43. ©2017 AACR.


Assuntos
Complexo II de Transporte de Elétrons/genética , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética , Detecção Precoce de Câncer , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/enzimologia , Neoplasias/patologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
2.
Anal Chem ; 89(12): 6840-6845, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28504877

RESUMO

Mitochondrial morphology regulated by fusion and fission processes determines mitochondrial function and cell fate. Some studies showed hyperfused mitochondria could induce apoptosis in cancer cells, but the relevant molecular mechanisms remain elusive. Superoxide (O2•-) and pH play vital roles in mitochondrial dysfunction and apoptosis. Therefore, it is worthwhile to explore if there is an intimate relationship between mitochondrial hyperfusion and simultaneous changes in O2•- and pH levels, which will be helpful to uncover relevant detailed mechanism. For this purpose, we have developed a new reversible two-photon fluorescent probe (CFT) to simultaneously monitor O2•- and pH in 4T1 cells and mice using dual-color imaging. With the assistance of probe, we found that inhibition of Dynamin-related protein 1 (Drp1) could transduce a signal through mitochondrial complexes I and II to enhance the O2•- and pH levels and eventually induced mitohyperfusion and apoptosis in breast cancer cells. Together, these data indicate that CFT provides a robust tool for unveiling the roles of O2•- and pH in signals associated with mitochondrial dysfunction in cells and in vivo.


Assuntos
Apoptose , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Glutationa/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial , Superóxidos/química , Imagem com Lapso de Tempo , Transplante Heterólogo
3.
Cell Death Dis ; 6: e1749, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950479

RESUMO

Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.


Assuntos
Complexo II de Transporte de Elétrons/fisiologia , Ubiquinona/genética , Ubiquinona/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Morte Celular/fisiologia , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Ubiquinona/química
4.
Appl Microbiol Biotechnol ; 99(5): 2155-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25193421

RESUMO

In previous studies, 30Kc19, a lipoprotein in silkworm hemolymph, enhanced productivity and glycosylation by expression of a 30Kc19 gene or supplementation with a recombinant 30Kc19 protein. Additionally, 30Kc19 exhibited enzyme-stabilizing and cell-penetrating abilities in vitro. In this study, we hypothesized that supplemented 30Kc19 penetrated into the cell and enhanced the stability of the cellular enzyme. We investigated this using in vitro and cellular assessments. The activity of sialyltransferase (ST) and isolated mitochondrial complex I/III was enhanced with 30Kc19 in dose-dependent manner while initial reaction rate was unchanged, suggesting that 30Kc19 enhanced enzyme stability rather than specific activity. For intracellular enzyme activity assessment, ST activity inside erythropoietin (EPO)-producing Chinese hamster ovary (CHO) cells increased more than 25 % and mitochondrial complex II activity in HeLa cells increased more than 50 % with 30Kc19. The increase in intracellular ST activity resulted in an increase in sialic acid content of glycoproteins produced in CHO cells supplemented with 30Kc19. Similarly, enhanced mitochondrial complex activity increased mitochondrial membrane potential and ATP production in HeLa cells with 30Kc19 by over 50 %. Because 30Kc19 stabilized intracellular enzymes for glycosylation and enhanced protein productivity with supplementation in the culture medium, we expect that 30Kc19 can be a valuable tool for effective industrial recombinant protein production.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Lipoproteínas/metabolismo , Mitocôndrias/enzimologia , Sialiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bombyx , Células CHO , Cricetulus , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo II de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Estabilidade Enzimática , Células HeLa , Humanos
5.
FASEB J ; 29(1): 346-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351989

RESUMO

Melanogenesis is a highly conserved process of cytophotoprotection from UV radiation present in many species. Although both mitochondrial function and UV radiation insults are well-documented promoters of increased cellular stress, their individual molecular relationships with skin pigmentation have not been clearly resolved. This study provides evidence for a direct relationship between cellular melanin content, superoxide flux, and mitochondrial function at complex II. Direct and significant correlation between increased pigmentation and complex II turnover was observed in genetically different melanoma cell lines of varied basal pigmentation states (P < 0.01). The same trend was also observed when comparing genetically identical cell cultures with increasing levels of induced pigmentation (P < 0.005). The observation of increased steady-state levels of the catalytic complex II succinate dehydrogenase subunit A alongside hyperpigmentation suggested coregulation of activity and pigment production (P < 0.01). The study also presents novel evidence for a relationship between hyperpigmentation and increased superoxide-generating capacity at complex II. By amperometrically monitoring superoxide flux from differently pigmented FM55 melanocytes and their isolated mitochondria, a dynamic and responsive relationship between pigmentation, complex II function, and intracellular superoxide generation was observed (P < 0.005). The data support hyperpigmentation as a protective antioxidant mechanism in response to complex II-mediated reactive oxygen species generation.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Hiperpigmentação/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/química , Humanos , Melaninas/metabolismo , Melanócitos/metabolismo , Mitocôndrias/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Subunidades Proteicas , Pigmentação da Pele/fisiologia , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Superóxidos/metabolismo , Tenoiltrifluoracetona/farmacologia
6.
Eur J Hum Genet ; 23(2): 202-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24781757

RESUMO

Defects in complex II of the mitochondrial respiratory chain are a rare cause of mitochondrial disorders. Underlying autosomal-recessive genetic defects are found in most of the 'SDHx' genes encoding complex II (SDHA, SDHB, SDHC, and SDHD) and its assembly factors. Interestingly, SDHx genes also function as tumor suppressor genes in hereditary paragangliomas, pheochromocytomas, and gastrointestinal stromal tumors. In these cases, the affected patients are carrier of a heterozygeous SDHx germline mutation. Until now, mutations in SDHx associated with mitochondrial disease have not been reported in association with hereditary tumors and vice versa. Here, we characterize four patients with isolated complex II deficiency caused by mutations in SDHA presenting with multisystem mitochondrial disease including Leigh syndrome (LS) and/or leukodystrophy. Molecular genetic analysis revealed three novel mutations in SDHA. Two mutations (c.64-2A>G and c.1065-3C>A) affect mRNA splicing and result in loss of protein expression. These are the first mutations described affecting SDHA splicing. For the third new mutation, c.565T>G, we show that it severely affects enzyme activity. Its pathogenicity was confirmed by lentiviral complementation experiments on the fibroblasts of patients carrying this mutation. It is of special interest that one of our LS patients harbored the c.91C>T (p.Arg31*) mutation that was previously only reported in association with paragangliomas and pheochromocytomas, tightening the gap between these two rare disorders. As tumor screening is recommended for SDHx mutation carriers, this should also be considered for patients with mitochondrial disorders and their family members.


Assuntos
Complexo II de Transporte de Elétrons/genética , Doença de Leigh/genética , Leucoencefalopatias/genética , Neoplasias/genética , Sequência de Aminoácidos , Células Cultivadas , Criança , Pré-Escolar , Complexo II de Transporte de Elétrons/química , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/diagnóstico , Leucoencefalopatias/diagnóstico , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Splicing de RNA
7.
Nat Commun ; 5: 4303, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24985889

RESUMO

Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.


Assuntos
Vesículas Citoplasmáticas/química , Proteínas SNARE/química , Citocromos c/química , Transporte de Elétrons , Complexo II de Transporte de Elétrons/química , Escherichia coli , Lipossomos , Membranas Artificiais , ATPases Translocadoras de Prótons/química , Rhodobacter sphaeroides
8.
Methods Mol Biol ; 1005: 143-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23606255

RESUMO

Increased superoxide (O2 (·-)) and nitric oxide (NO) production is a key mechanism of mitochondrial dysfunction in myocardial ischemia/reperfusion injury. In the complex II, oxidative impairment, decreased protein S-glutathionylation, and increased protein tyrosine nitration at the 70 kDa subunit occur in the post-ischemic myocardium (Zhang et al., Biochemistry 49:2529-2539, 2010; Chen et al., J Biol Chem 283:27991-28003, 2008; Chen et al., J Biol Chem 282: 32640-32654, 2007). To gain the deeper insights into ROS-mediated oxidative modifications relevant in myocardial infarction, isolated complex II is subjected to in vitro oxidative modifications with GSSG (to induce cysteine S-glutathionylation) or OONO(-) (to induce tyrosine nitration). Here, we describe the protocol to characterize the specific oxidative modifications at the 70 kDa subunit by nano-LC/MS/MS analysis. We further demonstrate the cellular oxidative modification with protein nitration/S-glutathionylation with immunofluorescence microscopy using the antibodies against 3-nitrotyrosine/glutathione and complex II 70 kDa polypeptide (AbGSC90) in myocytes under conditions of oxidative stress.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cromatografia Líquida , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Complexo II de Transporte de Elétrons/isolamento & purificação , Dissulfeto de Glutationa/farmacologia , Microscopia de Fluorescência , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Óxido Nítrico/biossíntese , Oxirredução , Estresse Oxidativo , Ácido Peroxinitroso/farmacologia , Ratos , Espectrometria de Massas em Tandem
9.
J Med Genet ; 49(9): 569-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22972948

RESUMO

BACKGROUND: Isolated complex II deficiency is a rare form of mitochondrial disease, accounting for approximately 2% of all respiratory chain deficiency diagnoses. The succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD) are autosomally-encoded and transcribe the conjugated heterotetramers of complex II via the action of two known assembly factors (SDHAF1 and SDHAF2). Only a handful of reports describe inherited SDH gene defects as a cause of paediatric mitochondrial disease, involving either SDHA (Leigh syndrome, cardiomyopathy) or SDHAF1 (infantile leukoencephalopathy). However, all four SDH genes, together with SDHAF2, have known tumour suppressor functions, with numerous germline and somatic mutations reported in association with hereditary cancer syndromes, including paraganglioma and pheochromocytoma. METHODS AND RESULTS: Here, we report the clinical and molecular investigations of two patients with histochemical and biochemical evidence of a severe, isolated complex II deficiency due to novel SDH gene mutations; the first patient presented with cardiomyopathy and leukodystrophy due to compound heterozygous p.Thr508Ile and p.Ser509Leu SDHA mutations, while the second patient presented with hypotonia and leukodystrophy with elevated brain succinate demonstrated by MR spectroscopy due to a novel, homozygous p.Asp48Val SDHB mutation. Western blotting and BN-PAGE studies confirmed decreased steady-state levels of the relevant SDH subunits and impairment of complex II assembly. Evidence from yeast complementation studies provided additional support for pathogenicity of the SDHB mutation. CONCLUSIONS: Our report represents the first example of SDHB mutation as a cause of inherited mitochondrial respiratory chain disease and extends the SDHA mutation spectrum in patients with isolated complex II deficiency.


Assuntos
Complexo II de Transporte de Elétrons/deficiência , Genes Recessivos/genética , Mutação em Linhagem Germinativa/genética , Leucoencefalopatias/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Succinato Desidrogenase/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Encéfalo/patologia , Pré-Escolar , Transporte de Elétrons , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Feminino , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética , Masculino , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/enzimologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/enzimologia , Dados de Sequência Molecular , Músculo Esquelético/patologia , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química
10.
Biochim Biophys Acta ; 1817(9): 1588-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22575443

RESUMO

Respiratory Complex II of the mitochondrial inner membrane serves as a link between the tricarboxylic acid cycle and the electron transport chain. Complex II dysfunction has been implicated in a wide range of heritable mitochondrial diseases, including cancer, by a mechanism that likely involves the production of reactive oxygen species (ROS). Using Complex II enzymes reconstituted into nanoscale lipid bilayers (nanodiscs) with varying lipid composition, we demonstrate for the first time that the phospholipid environment, specifically the presence of cardiolipin, is critical for the assembly and enzymatic activity of the complex, as well as in the curtailment of ROS production.


Assuntos
Cardiolipinas/fisiologia , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Estabilidade Enzimática , Mitocôndrias/metabolismo , Fosfatidilgliceróis/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Oncogene ; 30(38): 3985-4003, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21625217

RESUMO

Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.


Assuntos
Apoptose , DNA Mitocondrial/genética , Complexo II de Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Mutação , Neoplasias/genética , Animais , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
12.
J Biol Chem ; 286(14): 12756-65, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21310949

RESUMO

Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.


Assuntos
Benzoquinonas/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ferro/química , Ferro/metabolismo , Enxofre/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Transporte de Elétrons , Complexo II de Transporte de Elétrons/genética , Proteínas de Escherichia coli/genética , Mutagênese Sítio-Dirigida , Enxofre/química
13.
Biopolymers ; 96(2): 207-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20564035

RESUMO

Mitochondria are the major source of reactive oxygen species. Both complex I and complex II mediate O2*- production in mitochondria and host reactive protein thiols. To explore the functions of the specific domains involved in the redox modifications of complexes I and II, various peptide-based antibodies were generated against these complexes, and their inhibitory effects were subsequently measured. The redox domains involved in S-glutathionylation and nitration, as well as the binding 2011. motif of the iron-sulfur cluster (N1a) of the complexes I and II were utilized to design B-cell epitopes for generating antibodies. The effect of antibody binding on enzyme-mediated O2*- generation was measured by EPR spin trapping. Binding of either antibody AbGSCA206 or AbGSCB367 against glutathione (GS)-binding domain to complex I inhibit its O2*- generation, but does not affect electron transfer efficiency. Binding of antibody (Ab24N1a) against the binding motif of N1a to complex I modestly suppresses both O2*- generation and electron transfer efficiency. Binding of either antibody Ab75 or Ab24 against nonredox domain decreases electron leakage production. In complex II, binding of antibody AbGSC90 against GS-binding domain to complex II marginally decreases both O2*- generation and electron transfer activity. Binding of antibody AbY142 to complex II against the nitrated domain modestly inhibits electron leakage, but does not affect the electron transfer activity of complex II. In conclusion, mediation of O2*- generation by complexes I and II can be regulated by specific redox and nonredox domains.


Assuntos
Complexo II de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias Cardíacas , Proteínas Mitocondriais , Peptídeos , Motivos de Aminoácidos , Animais , Bovinos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/imunologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/imunologia , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/imunologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/química , Proteínas Mitocondriais/imunologia , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Coelhos
14.
Hum Mol Genet ; 19(15): 3011-20, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20484225

RESUMO

Mitochondrial succinate-coenzyme Q reductase (complex II) consists of four subunits, SDHA, SDHB, SDHC and SDHD. Heterozygous germline mutations in SDHB, SDHC, SDHD and SDHAF2 [encoding for succinate dehydrogenase (SDH) complex assembly factor 2] cause hereditary paragangliomas and pheochromocytomas. Surprisingly, no genetic link between SDHA and paraganglioma/pheochromocytoma syndrome has ever been established. We identified a heterozygous germline SDHA mutation, p.Arg589Trp, in a woman suffering from catecholamine-secreting abdominal paraganglioma. The functionality of the SDHA mutant was assessed by studying SDHA, SDHB, HIF-1alpha and CD34 protein expression using immunohistochemistry and by examining the effect of the mutation in a yeast model. Microarray analyses were performed to study gene expression involved in energy metabolism and hypoxic pathways. We also investigated 202 paragangliomas or pheochromocytomas for loss of heterozygosity (LOH) at the SDHA, SDHB, SDHC and SDHD loci by BAC array comparative genomic hybridization. In vivo and in vitro functional studies demonstrated that the SDHA mutation causes a loss of SDH enzymatic activity in tumor tissue and in the yeast model. Immunohistochemistry and transcriptome analyses established that the SDHA mutation causes pseudo-hypoxia, which leads to a subsequent increase in angiogenesis, as other SDHx gene mutations. LOH was detected at the SDHA locus in the patient's tumor but was present in only 4.5% of a large series of paragangliomas and pheochromocytomas. The SDHA gene should be added to the list of genes encoding tricarboxylic acid cycle proteins that act as tumor suppressor genes and can now be considered as a new paraganglioma/pheochromocytoma susceptibility gene.


Assuntos
Complexo II de Transporte de Elétrons/genética , Genes Supressores de Tumor , Paraganglioma/enzimologia , Paraganglioma/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Complexo II de Transporte de Elétrons/química , Feminino , Frequência do Gene/genética , Loci Gênicos/genética , Genótipo , Glicólise/genética , Humanos , Hipóxia/complicações , Hipóxia/genética , Perda de Heterozigosidade/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Neovascularização Patológica/complicações , Neovascularização Patológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Paraganglioma/patologia , Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética
15.
Biochemistry ; 49(11): 2529-39, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20143804

RESUMO

Increased O(2)(*-) and NO production is a key mechanism of mitochondrial dysfunction in myocardial ischemia/reperfusion injury. In complex II, oxidative impairment and enhanced tyrosine nitration of the 70 kDa FAD-binding protein occur in the post-ischemic myocardium and are thought to be mediated by peroxynitrite (OONO(-)) in vivo [Chen, Y.-R., et al. (2008) J. Biol. Chem. 283, 27991-28003]. To gain deeper insights into the redox protein thiols involved in OONO(-)-mediated oxidative post-translational modifications relevant in myocardial infarction, we subjected isolated myocardial complex II to in vitro protein nitration with OONO(-). This resulted in site-specific nitration at the 70 kDa polypeptide and impairment of complex II-derived electron transfer activity. Under reducing conditions, the gel band of the 70 kDa polypeptide was subjected to in-gel trypsin/chymotrypsin digestion and then LC-MS/MS analysis. Nitration of Y(56) and Y(142) was previously reported. Further analysis revealed that C(267), C(476), and C(537) are involved in OONO(-)-mediated S-sulfonation. To identify the disulfide formation mediated by OONO(-), nitrated complex II was alkylated with iodoacetamide. In-gel proteolytic digestion and LC-MS/MS analysis were conducted under nonreducing conditions. The MS/MS data were examined with MassMatrix, indicating that three cysteine pairs, C(306)-C(312), C(439)-C(444), and C(288)-C(575), were involved in OONO(-)-mediated disulfide formation. Immuno-spin trapping with an anti-DMPO antibody and subsequent MS was used to define oxidative modification with protein radical formation. An OONO(-)-dependent DMPO adduct was detected, and further LC-MS/MS analysis indicated C(288) and C(655) were involved in DMPO binding. These results offered a complete profile of OONO(-)-mediated oxidative modifications that may be relevant in the disease model of myocardial infarction.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Infarto do Miocárdio/metabolismo , Ácido Peroxinitroso/metabolismo , Sequência de Aminoácidos , Animais , Hipóxia Celular , Óxidos N-Cíclicos/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Complexo II de Transporte de Elétrons/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Dados de Sequência Molecular , Peso Molecular , Células Musculares/metabolismo , Células Musculares/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Oxirredução , Ácido Peroxinitroso/biossíntese , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina/metabolismo
16.
Plant Mol Biol ; 72(3): 331-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19924544

RESUMO

Complex II plays a central role in mitochondrial metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. However, the composition and function of the plant enzyme has been elusive and differs from the well-characterised enzymes in mammals and bacteria. Herewith, we demonstrate that mitochondrial Complex II from Arabidopsis and rice differ significantly in several aspects: (1) Stability-Rice complex II in contrast to Arabidopsis is not stable when resolved by native electrophoresis and activity staining. (2) Composition-Arabidopsis complex II contains 8 subunits, only 7 of which have homologs in the rice genome. SDH 1 and 2 subunits display high levels of amino acid identity between two species, while the remainder of the subunits are not well conserved at a sequence level, indicating significant divergence. (3) Gene expression-the pairs of orthologous SDH1 and SDH2 subunits were universally expressed in both Arabidopsis and rice. The very divergent genes for SDH3 and SDH4 were co-expressed in both species, consistent with their functional co-ordination to form the membrane anchor. The plant-specific SDH5, 6 and 7 subunits with unknown functions appeared to be differentially expressed in both species. (4) Biochemical regulation -succinate-dependent O(2) consumption and SDH activity of isolated Arabidopsis mitochondria were substantially stimulated by ATP, but a much more minor effect of ATP was observed for the rice enzyme. The ATP activation of succinate-dependent reduction of DCPIP in frozen-thawed and digitonin-solubilised mitochondrial samples, and with or without the uncoupler CCCP, indicate that the differential ATP effect on SDH is not via the protonmotive force but likely due to an allosteric effect on the plant SDH enzyme itself, in contrast to the enzyme in other organisms.


Assuntos
Arabidopsis/enzimologia , Complexo II de Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Análise por Conglomerados , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Estabilidade Enzimática , Expressão Gênica , Oryza/genética , Oxigênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Análise de Sequência de Proteína , Especificidade da Espécie , Ácido Succínico/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-19644226

RESUMO

Complex II (succinate-ubiquinone reductase; SQR) is a mitochondrial respiratory chain enzyme that is directly involved in the TCA cycle. Complex II exerts a reverse reaction, fumarate reductase (FRD) activity, in various species such as bacteria, parasitic helminths and shellfish, but the existence of FRD activity in humans has not been previously reported. Here, we describe the detection of FRD activity in human cancer cells. The activity level was low, but distinct, and it increased significantly when the cells were cultured under hypoxic and glucose-deprived conditions. Treatment with phosphatase caused the dephosphorylation of flavoprotein subunit (Fp) with a concomitant increase in SQR activity, whereas FRD activity decreased. On the other hand, treatment with protein kinase caused an increase in FRD activity and a decrease in SQR activity. These data suggest that modification of the Fp subunit regulates both the SQR and FRD activities of complex II and that the phosphorylation of Fp might be important for maintaining mitochondrial energy metabolism within the tumor microenvironment.


Assuntos
Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Subunidades Proteicas/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Animais , Técnicas de Cultura de Células , Hipóxia Celular , Linhagem Celular Tumoral , Glucose/deficiência , Humanos , Mitocôndrias/enzimologia , Monoéster Fosfórico Hidrolases/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/farmacologia
18.
J Biol Inorg Chem ; 14(3): 457-70, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19085017

RESUMO

In type E succinate:quinone reductase (SQR), subunit SdhE (formerly SdhC) is thought to function as monotopic membrane anchor of the enzyme. SdhE contains two copies of a cysteine-rich sequence motif (CX(n)CCGX(m)CXXC), designated as the CCG domain in the Pfam database and conserved in many proteins. On the basis of the spectroscopic characterization of heterologously produced SdhE from Sulfolobus tokodaii, the protein was proposed in a previous study to contain a labile [2Fe-2S] cluster ligated by cysteine residues of the CCG domains. Using UV/vis, electron paramagnetic resonance (EPR), (57)Fe electron-nuclear double resonance (ENDOR) and Mössbauer spectroscopies, we show that after an in vitro cluster reconstitution, SdhE from S. solfataricus P2 contains a [4Fe-4S] cluster in reduced (2+) and oxidized (3+) states. The reduced form of the [4Fe-4S](2+) cluster is diamagnetic. The individual iron sites of the reduced cluster are noticeably heterogeneous and show partial valence localization, which is particularly strong for one unique ferrous site. In contrast, the paramagnetic form of the cluster exhibits a characteristic rhombic EPR signal with g (zyx) = 2.015, 2.008, and 1.947. This EPR signal is reminiscent of a signal observed previously in intact SQR from S. tokodaii with g (zyx) = 2.016, 2.00, and 1.957. In addition, zinc K-edge X-ray absorption spectroscopy indicated the presence of an isolated zinc site with an S(3)(O/N)(1) coordination in reconstituted SdhE. Since cysteine residues in SdhE are restricted to the two CCG domains, we conclude that these domains provide the ligands to both the iron-sulfur cluster and the zinc site.


Assuntos
Complexo II de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Subunidades Proteicas/química , Sulfolobus solfataricus/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Subunidades Proteicas/genética , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer , Zinco/química
19.
J Biol Chem ; 282(37): 27518-27526, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17636259

RESUMO

The mitochondrial succinate dehydrogenase (SDH) is an essential component of the electron transport chain and of the tricarboxylic acid cycle. Also known as complex II, this tetrameric enzyme catalyzes the oxidation of succinate to fumarate and reduces ubiquinone. Mutations in the human SDHB, SDHC, and SDHD genes are tumorigenic, leading to the development of several types of tumors, including paraganglioma and pheochromocytoma. The mechanisms linking SDH mutations to oncogenesis are still unclear. In this work, we used the yeast SDH to investigate the molecular and catalytic effects of tumorigenic or related mutations. We mutated Arg(47) of the Sdh3p subunit to Cys, Glu, and Lys and Asp(88) of the Sdh4p subunit to Asn, Glu, and Lys. Both Arg(47) and Asp(88) are conserved residues, and Arg(47) is a known site of cancer causing mutations in humans. All of the mutants examined have reduced ubiquinone reductase activities. The SDH3 R47K, SDH4 D88E, and SDH4 D88N mutants are sensitive to hyperoxia and paraquat and have elevated rates of superoxide production in vitro and in vivo. We also observed the accumulation and secretion of succinate. Succinate can inhibit prolyl hydroxylase enzymes, which initiate a proliferative response through the activation of hypoxia-inducible factor 1alpha. We suggest that SDH mutations can promote tumor formation by contributing to both reactive oxygen species production and to a proliferative response normally induced by hypoxia via the accumulation of succinate.


Assuntos
Complexo II de Transporte de Elétrons/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Ácido Succínico/metabolismo , Superóxidos/metabolismo , Ubiquinona/metabolismo , Sítios de Ligação , Complexo II de Transporte de Elétrons/química , Estresse Oxidativo , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Biochim Biophys Acta ; 1767(2): 143-50, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17208193

RESUMO

Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (Q(P)) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the Q(P) site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/enzimologia , Tirosina/fisiologia , Ubiquinona/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Paraganglioma/genética , Feocromocitoma/genética , Espécies Reativas de Oxigênio/metabolismo , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA