Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biochem Pharmacol ; 197: 114900, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995485

RESUMO

Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models. The caffeic acid phenethyl ester (CAPE), inhibited ubiquitin-specific protease 8 (USP8), but not proteasomal DUBs in cell-free assays. When CAPE was combined with cisplatin in nine cell lines representative of various histotypes a synergistic effect was observed in TOV112D cells and in the cisplatin-resistant IGROV-1/Pt1 variant, both of endometrioid type and carrying mutant TP53. In the latter cells, persistent G1 accumulation upon combined treatment associated with p27kip1 protein levels was observed. The synergy was not dependent on apoptosis induction, and appeared to occur in cells with higher USP8 levels. In vivo antitumor activity studies supported the advantage of the combination of CAPE and cisplatin in the subcutaneous model of cisplatin-resistant IGROV-1/Pt1 ovarian carcinoma as well as CAPE activity on intraperitoneal disease. This study reveals the therapeutic potential of CAPE in cisplatin-resistant ovarian tumors as well as in tumors expressing USP8.


Assuntos
Antineoplásicos/administração & dosagem , Ácidos Cafeicos/administração & dosagem , Cisplatino/administração & dosagem , Endopeptidases/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Neoplasias Ovarianas/enzimologia , Álcool Feniletílico/análogos & derivados , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/biossíntese , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Álcool Feniletílico/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Reprod Biol Endocrinol ; 19(1): 112, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271917

RESUMO

BACKGROUND: The tumor susceptibility gene 101 (Tsg101), a component of the endosomal sorting complex required for transport (ESCRT) complex I, is involved in multiple biological processes involving endomembranous structures and the plasma membrane. The role of Tsg101 in the uterine epithelium was investigated in Tsg101 floxed mice crossed with Lactoferrin-iCre mice (Tsg101d/d). METHODS: Tsg101d/d mice were bred with stud male mice and the status of pregnancy was examined on days 4 and 6. Histological analyses were performed to examine the uterine architecture. Immunofluorescence staining of several markers was examined by confocal microscopy. Uterine epithelial cells (UECs) were isolated from Tsg101f/f and Tsg101d/d mice, and the expression of necroptosis effectors was examined by RT-PCR, western blotting, and immunofluorescence staining. UECs were also subjected to RNA expression profiling. RESULTS: Tsg101d/d female mice were subfertile with implantation failure, showing unattached blastocysts on day 6 of pregnancy. Histological and marker analyses revealed that some Tsg101d/d day 4 pregnant uteri showed a disintegrated uterine epithelial structure. Tsg101d/d UECs began to degenerate within 18 h of culture. In UECs, expression of necroptosis effectors, such as RIPK1, RIPK3, and MLKL were first confirmed. UECs responded to a stimulus to activate necroptosis and showed increased cell death. CONCLUSIONS: Tsg101 deficiency in the uterine epithelium causes implantation failure, which may be caused by epithelial defects. This study provides evidence that UECs harbor a necroptotic machinery that responds to death-inducing signals. Thus, Tsg101 expression in the uterine epithelium is required for normal pregnancy in mice.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Implantação do Embrião/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Células Epiteliais/metabolismo , Fatores de Transcrição/biossíntese , Útero/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células Epiteliais/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Fatores de Transcrição/genética , Útero/patologia
3.
Prostate ; 79(9): 1032-1042, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018022

RESUMO

BACKGROUND: Proteomic profiling of extracellular vesicles (EVs) from prostate cancer (PCa) and normal prostate cell lines, led to the identification of new candidate PCa markers. These proteins included the nuclear exportin proteins XPO1 (also known as CRM1), the EV-associated PDCD6IP (also known as ALIX), and the previously published fatty acid synthase FASN. In this study, we investigated differences in expression of XPO1 and PDCD6IP on well-characterized prostate cancer cohorts using mass spectrometry and tissue microarray (TMA) immunohistochemistry to determine their diagnostic and prognostic value. METHODS: Protein fractions from 67 tissue samples (n = 33 normal adjacent prostate [NAP] and n = 34 PCa) were analyzed by mass spectrometry (nano-LC-MS-MS). Label-free quantification of EVs was performed to identify differentially expressed proteins between PCa and NAP. Prognostic evaluation of the candidate markers was performed with a TMA, containing 481 radical prostatectomy samples. Samples were stained for the candidate markers and correlated with patient information and clinicopathological outcome. RESULTS: XPO1 was higher expressed in PCa compared to NAP in the MS data analysis (P > 0.0001). PDCD6IP was not significantly higher expressed (P = 0.0501). High cytoplasmic XPO1 staining in the TMA immunohistochemistry, correlated in a multivariable model with high Gleason scores (P = 0.002) and PCa-related death (P = 0.009). CONCLUSION: High expression of cytoplasmic XPO1 shows correlation with prostate cancer and has added clinical value in tissue samples. Furthermore, as an extracellular vesicles-associated protein, it might be a novel relevant liquid biomarker.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Vesículas Extracelulares/metabolismo , Carioferinas/biossíntese , Neoplasias da Próstata/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Idoso , Vesículas Extracelulares/patologia , Ácido Graxo Sintase Tipo I/biossíntese , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Análise Serial de Tecidos , Proteína Exportina 1
4.
PLoS One ; 14(2): e0211814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726272

RESUMO

CMT is the most common hereditary neuromuscular disorder of the peripheral nervous system with a prevalence of 1/2500 individuals and it is caused by mutations in more than 80 genes. LRSAM1, a RING finger ubiquitin ligase also known as TSG101-associated ligase (TAL), has been associated with Charcot-Marie-Tooth disease type 2P (CMT2P) and to date eight causative mutations have been identified. Little is currently known on the pathogenetic mechanisms that lead to the disease. We investigated the effect of LRSAM1 deregulation on possible LRSAM1 interacting molecules in cell based models. Possible LRSAM1 interacting molecules were identified using protein-protein interaction databases and literature data. Expression analysis of these molecules was performed in both CMT2P patient and control lymphoblastoid cell lines as well as in LRSAM1 and TSG101 downregulated SH-SY5Y cells.TSG101, UBE2N, VPS28, EGFR and MDM2 levels were significantly decreased in the CMT2P patient lymphoblastoid cell line as well as in LRSAM1 downregulated cells. TSG101 downregulation had a significant effect only on the expression of VPS28 and MDM2 and it did not affect the levels of LRSAM1. This study confirms that LRSAM1 is a regulator of TSG101 expression. Furthermore, deregulation of LRSAM1 significantly affects the levels of UBE2N, VPS28, EGFR and MDM2.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Ligação a DNA/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Fatores de Transcrição/biossíntese , Enzimas de Conjugação de Ubiquitina/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
5.
Brain ; 142(1): 163-175, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496349

RESUMO

In addition to being the greatest genetic risk factor for Alzheimer's disease, expression of the ɛ4 allele of apolipoprotein E can lead to cognitive decline during ageing that is independent of Alzheimer's amyloid-ß and tau pathology. In human post-mortem tissue and mouse models humanized for apolipoprotein E, we examined the impact of apolipoprotein E4 expression on brain exosomes, vesicles that are produced within and secreted from late-endocytic multivesicular bodies. Compared to humans or mice homozygous for the risk-neutral ɛ3 allele we show that the ɛ4 allele, whether homozygous or heterozygous with an ɛ3 allele, drives lower exosome levels in the brain extracellular space. In mice, we show that the apolipoprotein E4-driven change in brain exosome levels is age-dependent: while not present at age 6 months, it is detectable at 12 months of age. Expression levels of the exosome pathway regulators tumor susceptibility gene 101 (TSG101) and Ras-related protein Rab35 (RAB35) were found to be reduced in the brain at the protein and mRNA levels, arguing that apolipoprotein E4 genotype leads to a downregulation of exosome biosynthesis and release. Compromised exosome production is likely to have adverse effects, including diminishing a cell's ability to eliminate materials from the endosomal-lysosomal system. This reduction in brain exosome levels in 12-month-old apolipoprotein E4 mice occurs earlier than our previously reported brain endosomal pathway changes, arguing that an apolipoprotein E4-driven failure in exosome production plays a primary role in endosomal and lysosomal deficits that occur in apolipoprotein E4 mouse and human brains. Disruption of these interdependent endosomal-exosomal-lysosomal systems in apolipoprotein E4-expressing individuals may contribute to amyloidogenic amyloid-ß precursor protein processing, compromise trophic signalling and synaptic function, and interfere with a neuron's ability to degrade material, all of which are events that lead to neuronal vulnerability and higher risk of Alzheimer's disease development. Together, these data suggest that exosome pathway dysfunction is a previously unappreciated component of the brain pathologies that occur as a result of apolipoprotein E4 expression.


Assuntos
Apolipoproteína E4/biossíntese , Encéfalo/metabolismo , Exossomos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Alelos , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Proteínas de Ligação a DNA/biossíntese , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Exossomos/ultraestrutura , Espaço Extracelular/metabolismo , Feminino , Genótipo , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Transcrição/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese
6.
Med Sci Monit ; 24: 4934-4943, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30010158

RESUMO

BACKGROUND Cervical cancer is one of the most common female malignancies in the world. The ubiquitin-specific protease 8 (USP8) functions by removing ubiquitin from protein substrates, and its potential role in cancer development was recently uncovered in lung cancer. The aim of this study was to investigate the expression and function of USP8 in cervical squamous cell carcinoma (CSCC). MATERIAL AND METHODS Immunohistochemical staining and quantitative PCR were performed to explore the expression of USP8 in both CSCC tissues and adjacent normal cervical tissues. Univariate and multivariate analyses were conducted to evaluate the clinical significance of USP8 in CSCC. Proliferation, migration, and invasion abilities of 2 CSCC cell lines were assessed after overexpression or silencing USP8, respectively. RESULTS Both the RNA and protein levels of USP8 were upregulated in CSCC tissues compared to normal cervical tissues. High expression of USP8 was correlated with advanced tumor stage and high recurrence risk. Moreover, USP8 was identified as a novel independent prognostic factor for CSCC patients. Cellular studies showed that USP8 can enhance the proliferation, migration, and invasion abilities of CSCC cells, thereby promoting tumor progression. CONCLUSIONS High expression of USP8 is frequent in CSCC tissues, which promotes tumor proliferation and invasion, and is correlated with a poor overall survival. Targeting USP8 may be a novel direction for drug development for CSCC therapy.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Endopeptidases/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Ubiquitina Tiolesterase/biossíntese , Neoplasias do Colo do Útero/enzimologia , Adulto , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Endopeptidases/genética , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/fisiopatologia , Prognóstico , Estudos Retrospectivos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
7.
Virchows Arch ; 471(6): 743-751, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963677

RESUMO

The current study aims to investigate the biological roles and clinical significance of HCRP1 in human gastric cancer. The expression pattern of HCRP1 in gastric cancer tissue and adjacent non-cancerous tissue was detected by immunohistochemistry. HCRP1 downregulation was found in 57 of 137 human gastric cancer samples and correlated with advanced TNM stage, positive nodal status, and relapse. Log-rank test showed that HCRP1 downregulation also correlated with poor overall survival and reduced relapse-free survival. In addition, we found that HCRP1 overexpression inhibited proliferation, colony formation, and invasion in HGC-27 cells. On the other hand, HCRP1 depletion by small interfering RNA promoted proliferation, colony formation, and invasion in SGC-7901 cells. We also treated gastric cancer cells with cisplatin. MTT and Annexin V/PI analysis were carried out to examine change of chemoresistance. We found that HCRP1 overexpression sensitized HGC-27 cells to cisplatin while its depletion reduced sensitivity in SGC-7901 cells. Moreover, we found that HCRP1 overexpression negatively regulated cyclin D1, MMP-2, p-EGFR, p-ERK, and p-AKT. HCRP1 depletion showed the opposite effects. In conclusion, our results suggest that HCRP1 downregulation might serve as an indicator for poor prognosis in gastric cancer patients. HCRP1 reduces drug resistance through regulation of EGFR-AKT signaling.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , Transdução de Sinais , Neoplasias Gástricas/patologia , Adulto , Idoso , Intervalo Livre de Doença , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/mortalidade
8.
Oncotarget ; 8(12): 20288-20296, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28423617

RESUMO

AIM: To determine the regulation and function of the neural precursor cell expressed developmentally down regulated protein 4 (NEDD4) in PDAC and to determine its dependency on phosphatase and tensin homolog (PTEN) and PI3K/AKT signaling. METHODS: We investigated the expression of NEDD4 and the tumor suppressor PTEN in normal immortalized human pancreatic duct epithelial cell line and pancreatic adenocarcinoma (PDAC) cell lines. We further evaluated whether RNAi-mediated depletion of NEDD4 can attenuate PDAC cell proliferation and migration. We subsequently determined the crosstalk between NEDD4 expression and the PTEN/PI3K/AKT signaling pathway. Finally, we determined the mechanism behind differential NEDD4 protein expression in pancreatic cancer. RESULTS: The expression of NEDD4 was heterogeneous in PDAC cells, but was significantly higher compared to normal pancreatic ductal epithelial cells. Analogically, PTEN was decreased in the PDAC cells. A combination of MTT assay, wound healing migration assay, and transwell invasion assays confirmed that depletion of NEDD4 decreased the proliferation and migration ability of PDAC cells. Western blot and immunofluorescence results revealed that NEDD4 could affect PTEN/PI3K/AKT signaling pathway in PDAC cells. Polysomal profiling revealed that higher NEDD4 protein expression in PDAC cells was due to undefined mechanism involving translational activation. CONCLUSIONS: Our results reveal a novel mechanism of upregulation of NEDD4 expression in PDAC. Our findings indicate that NEDD4 potentially plays a critical role in activating the PI3K/AKT signaling pathway by negatively regulating PTEN levels in PDAC cells, which promotes pancreatic cancer cell proliferation and metastasis. Therefore, NEDD4 may be a potential therapeutic target in PDAC.


Assuntos
Adenocarcinoma/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/patologia , Ubiquitina-Proteína Ligases/biossíntese , Adenocarcinoma/metabolismo , Western Blotting , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Ubiquitina-Proteína Ligases Nedd4 , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional/fisiologia , Transcriptoma , Regulação para Cima
9.
Life Sci ; 173: 36-42, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212825

RESUMO

AIMS: Previous study has indicated that inhibition of proteasome function ameliorates the development of pulmonary arterial hypertension (PAH), while its underlying mechanisms are still unclear. This study was performed to address these issues. MATERIAL AND METHODS: Male Sprague-Dawley (SD) rats were divided into five groups: control group, PAH group, vehicle treated PAH group, MG-132 treated PAH group and bortezomib treated PAH group. PAH model was established by a single intraperitoneal injection of monocrotaline (MCT). MG-132 and bortezomib were administered to inhibit proteasome function. The right ventricular systolic pressure (RVSP), the right ventricle hypertrophy index (RVHI) and the percentage of medial wall thickness (%MT) were used to evaluate the development of PAH. Hematoxylin and eosin staining was performed to measure vascular remodeling. Immunoblotting was used to determine Akt phosphorylation, expression of PTEN and NEDD4, and the level of ubiquitinated-PTEN protein. KEY FINDINGS: MCT increased RVSP, RVHI and %MT in rats, while these changes were suppressed by treatment of PAH rats with MG-132 or bortezomib. In PAH model, expression of PTEN was decreased and phosphorylation of Akt was increased, these were accompanied by an elevation of NEDD4 protein level. Treatment of PAH model with MG-132 or bortezomib increased PTEN expression and accumulation of ubiquitinated-PTEN protein and decreased Akt phosphorylation, while didn't change NEDD4 expression. SIGNIFICANCE: Inhibition of proteasome function ameliorates pulmonary arterial remodeling by suppressing UPS-mediated PTEN degradation and subsequent inhibition of PI3K/Akt pathway, indicating that UPS might be a novel target for prevention of PAH.


Assuntos
Bortezomib/farmacologia , Hipertensão Pulmonar , Leupeptinas/farmacologia , Monocrotalina/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Artéria Pulmonar , Remodelação Vascular/efeitos dos fármacos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Ubiquitina-Proteína Ligases Nedd4 , PTEN Fosfo-Hidrolase/biossíntese , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/biossíntese
10.
J Pediatr Surg ; 51(11): 1839-1842, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27430863

RESUMO

PURPOSE: NEDD4-like ubiquitin protein ligase 2 (NEDL2) plays an important role in many physiological and pathological processes. NEDL2 is a positive regulator of GDNF/Ret signaling during enteric neurogenesis. Mice lacking NEDL2 exhibit decreased numbers of enteric neurons, progressive bowel dysmotility and intestinal hypoganglionosis. We designed this study to investigate the expression of NEDL2 in the normal human colon and in HSCR. METHODS: HSCR tissue specimens (n=10) were collected at the time of pull-through surgery and divided into aganglionic and ganglionic segments. Colonic control samples (n=10) were obtained from patients with imperforate anus at the time of colostomy closure. Immunolabeling of NEDL2 was visualized using confocal microscopy to assess protein distribution, while Western blot analysis was undertaken to quantify NEDL2 protein expression. RESULTS: Confocal microscopy revealed that NEDL2-immunoreactivity colocalized with ICCs and neurons within the submucosa, myenteric plexus and smooth muscle in controls and ganglionic specimens, with markedly reduced NEDL2-immunoreactivity in aganglionic specimens. Western blotting revealed high levels of the NEDL2 protein in normal controls and the ganglionic region of HSCR, while there was a marked decrease in NEDL2 protein expression in the aganglionic region of HSCR. CONCLUSION: We report, for the first time, the expression of NEDL2 in the human colon. The decreased expression of NEDL2 in the aganglionic colon suggests that NEDL2 may play a role in the pathophysiology of HSCR.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Doença de Hirschsprung/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Western Blotting , Feminino , Doença de Hirschsprung/patologia , Humanos , Lactente , Masculino , Microscopia Confocal , Plexo Mientérico/metabolismo , Plexo Mientérico/patologia , Ubiquitina-Proteína Ligases Nedd4 , Plexo Submucoso/metabolismo , Plexo Submucoso/patologia
11.
Tumour Biol ; 37(4): 5645-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26581907

RESUMO

The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-ß (TGF-ß)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-ß-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-ß signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-ß treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-ß-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/biossíntese , Ubiquitina-Proteína Ligases Nedd4 , Metástase Neoplásica , Estadiamento de Neoplasias , Proteína Smad2/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
12.
Gynecol Oncol ; 139(1): 127-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26193427

RESUMO

OBJECTIVE: The PI3K/Akt pathway is frequently dysregulated in endometrial cancer, the most common gynecologic malignancy. Emerging evidence identifies the ubiquitin ligase NEDD4 as a key regulator of the PI3K/Akt pathway via activation of insulin-like growth factor-1 receptor (IGF-1R). Our objective was to understand the role of NEDD4 in endometrial cancer. METHODS: NEDD4 expression was assessed by immunohistochemistry in a tissue microarray with 77 endometrial lesions ranging from normal benign endometrium to tumor specimens of varying stage and grade. Studies were extended to a panel of eight endometrial cancer cell lines phenotypically representing the most common endometrial patient tumors. RESULTS: Immunohistochemistry demonstrated robust staining of NEDD4 in endometrial tumor specimens, with greater NEDD4 expression in the most aggressive tumors. Expression of NEDD4 was detected in a majority of endometrial cancer cell lines surveyed. Exogenous overexpression of murine Nedd4 in endometrial cancer cell lines with modest endogenous NEDD4 expression resulted in a significant increase in the rate of proliferation. Nedd4 overexpression also promoted an increase in cell surface localization of IGF-1R and activation of Akt. Inhibition of PI3K/Akt signaling reversed the enhanced cell growth in Nedd4-overexpressing endometrial cancer cells. In addition, the expression of NEDD4 in endometrial tumors positively correlated with the Akt downstream effector FoxM1. CONCLUSIONS: This study identifies NEDD4 as a putative oncogene in endometrial cancer that may augment activation of the IGF-1R/PI3K/Akt signaling pathway.


Assuntos
Neoplasias do Endométrio/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Ubiquitina-Proteína Ligases/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Endometrioide/enzimologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Ativação Enzimática , Feminino , Humanos , Imuno-Histoquímica , Ubiquitina-Proteína Ligases Nedd4 , Oncogenes , Receptor IGF Tipo 1/biossíntese , Análise Serial de Tecidos , Ubiquitina-Proteína Ligases/biossíntese
13.
Tumour Biol ; 36(4): 2569-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25874485

RESUMO

Charged multivesicular body protein 4B (CHMP4B), a subunit of the endosomal sorting complex required for transport (ESCRT)-III complex, plays an important part in cytokinetic membrane abscission and the late stage of mitotic cell division. In this study, we explored the prognostic significance of CHMP4B in human hepatocellular carcinoma (HCC) and its impact on the physiology of HCC cells. Western blot and immunohistochemistrical analyses showed that CHMP4B was significantly upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Meanwhile, clinicopathological analysis revealed that high CHMP4B expression was correlated with multiple clinicopathological variables, including AFP, cirrhosis, AJCC stage, Ki-67 expression, and poor prognosis. More importantly, univariate and multivariate survival analyses demonstrated that CHMP4B served as an independent prognostic factor for survival of HCC patients. Using HCC cell cultures, we found that the expression of CHMP4B was progressively upregulated after the release from serum starvation. To verify whether CHMP4B could regulate the proliferation of HCC cells, CHMP4B was knocked down through the transfection of CHMP4B-siRNA oligos. Flow cytometry and CCK-8 assays indicated that interference of CHMP4B led to cell cycle arrest and proliferative impairment of HCC cells. Additionally, depletion of CHMP4B expression could increase the sensitivity to doxorubicin in HepG2 and Huh7 cells. Taken together, our results implied that CHMP4B could be a promising prognostic biomarker as well as a potential therapeutic target of HCC.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Neoplasias Hepáticas/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno
14.
Cell Res ; 25(5): 531-2, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25828531

RESUMO

The complexity of mechanisms driving protein sorting into exosomes is only beginning to emerge. In a paper recently published in Cell Research, Roucourt et al. report that trimming of heparan sulfate side chains of syndecans by endosomal heparanase facilitates sorting into exosomes by the formation of tight syndecan clusters that are recruited by the multivalent adaptor syntenin to the ALIX-ESCRT sorting machinery at endosomes.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Glucuronidase/genética , Sindecanas/biossíntese , Sinteninas/biossíntese , Humanos
15.
Cell Res ; 25(4): 412-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25732677

RESUMO

Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Glucuronidase/genética , Sindecanas/biossíntese , Sinteninas/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/biossíntese , Transdução de Sinais , Sindecanas/genética , Sinteninas/genética
16.
Oncotarget ; 5(16): 6746-55, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25216516

RESUMO

Sensitive to apoptosis gene (SAG), also known as RBX2, ROC2, or RNF7, is a RING component of SCF E3 ubiquitin ligases, which regulates cellular functions through ubiquitylation and degradation of many protein substrates. Although our previous studies showed that SAG is transcriptionally induced by redox, mitogen and hypoxia via AP-1 and HIF-1, it is completely unknown whether and how SAG is ubiquitylated and degraded. Here we report that NEDD4-1, a HECT domain-containing E3 ubiquitin ligase, binds via its HECT domain directly with SAG's C-terminal RING domain and ubiquitylates SAG for proteasome-mediated degradation. Consistently, SAG protein half-life is shortened or extended by NEDD4-1 overexpression or silencing, respectively. We also found that SAG bridges NEDD4-1 via its C-terminus and CUL-5 via its N-terminus to form a NEDD4-1/SAG/CUL-5 tri-complex. Biologically, NEDD4-1 overexpression sensitizes cancer cells to etoposide-induced apoptosis by reducing SAG levels through targeted degradation. Thus, SAG is added to a growing list of NEDD4-1 substrates and mediates its biological function.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Etoposídeo/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Culina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Estrutura Terciária de Proteína , Transfecção , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
Int J Surg Pathol ; 22(7): 589-99, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24788530

RESUMO

The role and diagnostic efficacy of gene and protein products RB1, CDK4, CHMP2B, HSP90, and cPLA2G4A, all previously shown to be involved in tumor genesis and cell proliferation, were examined by immunohistochemical techniques in 32 cases of myxofibrosarcomas and 29 myxoid liposarcomas (all diagnosis had been confirmed by fluorescence in situ hybridization). HSP90 demonstrated strong nuclear and cytoplasmic positivity in all myxoid liposarcoma cases, while only 4 myxofibrosarcomas showed scattered HSP90 positivity. All but 4 cases of myxofibrosarcoma displayed strong positivity for cPLA2G4A, while only 2 myxoid liposarcoma cases were cPLA2G4A positive and both were CHMP2B negative. Overexpression of both cPLA2G4A and CHMP2B also suggested higher tumor grade. In conclusion, HSP90 and cPLA2G4A immunohistochemical stains are useful markers to distinguish myxofibrosarcoma from myxoid liposarcoma.


Assuntos
Biomarcadores Tumorais/análise , Fibrossarcoma/diagnóstico , Lipossarcoma Mixoide/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quinase 4 Dependente de Ciclina/análise , Quinase 4 Dependente de Ciclina/biossíntese , Diagnóstico Diferencial , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Feminino , Fosfolipases A2 do Grupo IV/análise , Fosfolipases A2 do Grupo IV/biossíntese , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteína do Retinoblastoma/análise , Proteína do Retinoblastoma/biossíntese , Adulto Jovem
18.
J Biomed Sci ; 21: 29, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24712823

RESUMO

BACKGROUND: The epithelial barrier dysfunction plays a critical role in the pathogenesis of a broad array of immune diseases. Alix protein is involved in the endolysosome system. This study aims to elucidate the role of Alix in the maintenance of epithelial barrier function. RESULTS: The results showed that Alix was detected in T84 cells at both mRNA and protein levels. Exposure to Staphylococcal enterotoxin B (SEB) markedly suppressed the expression of Alix in T84 cells, which could be blocked by knocking down the Toll like receptor 2. The exposure to SEB did not affect the TER, but markedly increased the permeability of T84 monolayers to OVA; the OVA passing through T84 monolayers still preserved the antigenicity manifesting inducing antigen specific T cells proliferation. CONCLUSIONS: Alix protein plays a critical role in the maintenance of the barrier function of T84 monolayers.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Enterotoxinas/administração & dosagem , Doenças do Sistema Imunitário/patologia , Receptor 2 Toll-Like/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Mucosa Intestinal , Lisossomos/efeitos dos fármacos
19.
Anticancer Res ; 34(5): 2291-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24778033

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the digestive tract, believed to originate from the interstitial cells of Cajal or their stem cell-like precursors. Recent studies incidentally found the expression in interstitial cells of Cajal of the signal-transducing adaptor molecule-2 (STAM2), which is an endosomal protein acting as a regulator of receptor signaling and trafficking. Here, we investigated the immunohistochemical expression of STAM2 in GIST. MATERIALS AND METHODS: To evaluate the level of STAM2 expression, the percentage of cells staining positively for STAM2 and their staining intensity were graded on a scale of 0-3 and then multiplied to give the staining index as: 0=none; 1-3=low; 4-6=moderate and 9=high. RESULTS: In 51 analyzed GIST samples, expression of STAM2 was observed in 45 cases (88.2%). Based on antibody screening, we observed a positive correlation between the expression of GIST marker stem cell growth factor receptor, also known as tyrosine-protein kinase KIT or CD117, and STAM2 expression (r=0.387, p<0.003). To identify possible STAM2 function in GIST, we performed correlation analysis between STAM2 expression and tumor size, primary tumor site, tumor type, mitotic count, Ki-67 proliferative index, risk stratification and development of recurrent/metastatic disease. Among these parameters, only correlation between the percentage of STAM2-positive cells and mitotic count was statistically significant (r=-0.362, p<0.01). CONCLUSION: Further studies are required to unravel the role of STAM2 in the oncogenic cell phenotype of GIST.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Biomarcadores Tumorais/análise , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Tumores do Estroma Gastrointestinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Tumores do Estroma Gastrointestinal/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Mol Membr Biol ; 31(4): 111-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641493

RESUMO

The endosomal sorting complexes required for transport (ESCRT) are needed for three distinct cellular functions in higher eukaryotes: (i) Multivesicular body formation for the degradation of transmembrane proteins in lysosomes, (ii) midbody abscission during cytokinesis and (iii) retroviral budding. Not surprisingly, loss of ESCRT function has severe consequences, which include the failure to down-regulate growth factor receptors leading to deregulated mitogenic signaling. While it is clear that the function of the ESCRT machinery is important for embryonic development, its role in cancer is more controversial. Various experimental approaches in different model organisms arrive at partially divergent conclusions regarding the contribution of ESCRTs to tumorigenesis. Therefore the aim of this review is to provide an overview on different model systems used to study the role of the ESCRT machinery in cancer development, to highlight common grounds and present certain controversies in the field.


Assuntos
Carcinogênese/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Neoplasias/patologia , Transdução de Sinais/fisiologia , Animais , Apoptose/genética , Proliferação de Células , Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Endossomos , Receptores ErbB/biossíntese , Receptores ErbB/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA