Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 8(4): 1095-1102, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29432129

RESUMO

Chromatin remodeling and histone modifying enzymes play a critical role in shaping the regulatory output of a cell. Although much is known about these classes of proteins, identifying the mechanisms by which they coordinate gene expression programs remains an exciting topic of investigation. One factor that may contribute to the targeting and activity of chromatin regulators is local chromatin landscape. We leveraged genomic approaches and publically-available datasets to characterize the chromatin landscape at targets of the human INO80 chromatin remodeling complex (INO80-C). Our data revealed two classes of INO80-C targets with distinct chromatin signatures. The predominant INO80-C class was enriched for open chromatin, H3K27ac, and representative subunits from each of the three INO80-C modules (RUVBL1, RUVBL2, MCRS1, YY1). We named this class Canonical INO80. Notably, we identified an unexpected class of INO80-C targets that contained only the INO80 ATPase and harbored a repressive chromatin signature characterized by inaccessible chromatin, H3K27me3, and the methyltransferase EZH2. We named this class Non-Canonical INO80 (NC-INO80). Biochemical approaches indicated that INO80-C and the H3K27 acetyltransferase P300 physically interact, suggesting INO80-C and P300 may jointly coordinate chromatin accessibility at Canonical INO80 sites. No interaction was detected between INO80-C and EZH2, indicating INO80-C and EZH2 may engage in a separate form of regulatory crosstalk at NC-INO80 targets. Our data indicate that INO80-C is more compositionally heterogenous at its genomic targets than anticipated. Moreover, our data suggest there is an important link between INO80-C and histone modifying enzymes that may have consequences in developmental and pathological contexts.


Assuntos
DNA Helicases/metabolismo , Genoma Humano , Complexos Multiproteicos/classificação , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Proteína p300 Associada a E1A/metabolismo , Células Hep G2 , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Subunidades Proteicas/metabolismo
2.
Nat Biotechnol ; 36(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176613

RESUMO

Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the ß-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.


Assuntos
Membrana Celular/genética , Escherichia coli/genética , Complexos Multiproteicos/genética , Proteômica , Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação
3.
BMC Bioinformatics ; 5: 156, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15494071

RESUMO

BACKGROUND: Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. RESULTS: We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. CONCLUSIONS: We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system.


Assuntos
Macrófagos/classificação , Modelos Genéticos , Transdução de Sinais , Simulação por Computador , Humanos , Espaço Intracelular/classificação , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Complexos Multiproteicos/classificação , Complexos Multiproteicos/fisiologia , Mycobacterium tuberculosis/imunologia , Peptídeos/classificação , Peptídeos/fisiologia , Estrutura Terciária de Proteína , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Tuberculose/prevenção & controle
4.
Curr Protoc Immunol ; Appendix 1: Appendix 1T, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18432918

RESUMO

Heat-shock proteins (HSPs), or stress proteins, are highly conserved and present in all organisms and in all cells of all organisms. Selected HSPs, also known as chaperones, play crucial roles in folding/unfolding of proteins, assembly of multiprotein complexes, transport/sorting of proteins into correct subcellular compartments, cell-cycle control and signaling, and protection of cells against stress/apoptosis. More recently, HSPs have been implicated in antigen presentation with the role of chaperoning and transferring antigenic peptides to the class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate professional antigen-presenting cells of the immune system, such as macrophages and dendritic cells. HSPs constitute a large family of proteins that are often classified based on their molecular weight: hsp10, hsp40, hsp60, hsp70, hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references.


Assuntos
Chaperoninas/classificação , Animais , Apresentação de Antígeno/fisiologia , Chaperoninas/imunologia , Chaperoninas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Complexos Multiproteicos/classificação , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Transporte Proteico/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA