Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.123
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
mBio ; 15(5): e0285023, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564676

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Plasmodium falciparum , Proteínas de Protozoários , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Humanos
2.
Toxicology ; 504: 153795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574842

RESUMO

The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.


Assuntos
Arsenitos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dano ao DNA , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Estresse Oxidativo , Compostos de Sódio , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Brônquios/patologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Complexos Multiproteicos/metabolismo , Malondialdeído/metabolismo
3.
Nat Commun ; 15(1): 2517, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514639

RESUMO

Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.


Assuntos
Drosophila melanogaster , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Drosophila melanogaster/metabolismo , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , S-Adenosilmetionina , Nutrientes , Mamíferos/metabolismo
4.
Nature ; 628(8007): 442-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538798

RESUMO

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Assuntos
Complexos Multiproteicos , Mutação , Neoplasias , Proteína SMARCB1 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/genética , Neoplasias/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitina/metabolismo
5.
FASEB J ; 38(6): e23539, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498340

RESUMO

The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo
6.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451221

RESUMO

Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.


Assuntos
Reparo do DNA , Proteínas de Homeodomínio , Complexos Multiproteicos , Núcleo Celular/genética , Epigenômica , Histonas/genética , Humanos , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo
7.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242428

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Expressão Gênica
8.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976091

RESUMO

Eukaryotic chromosomes compact during mitosis into elongated cylinders-and not the spherical globules expected of self-attracting long flexible polymers. This process is mainly driven by condensin-like proteins. Here, we present Brownian-dynamic simulations involving two types of such proteins with different activities. One, which we refer to as looping condensins, anchors long-lived chromatin loops to create bottlebrush structures. The second, referred to as bridging condensins, forms multivalent bridges between distant parts of these loops. We show that binding of bridging condensins leads to the formation of shorter and stiffer mitotic-like cylinders without requiring any additional energy input. These cylinders have several features matching experimental observations. For instance, the axial condensin backbone breaks up into clusters as found by microscopy, and cylinder elasticity qualitatively matches that seen in chromosome pulling experiments. Additionally, simulating global condensin depletion or local faulty condensin loading gives phenotypes seen experimentally and points to a mechanistic basis for the structure of common fragile sites in mitotic chromosomes.


Assuntos
Adenosina Trifosfatases , Cromossomos , Proteínas de Ligação a DNA , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
9.
Sci Rep ; 13(1): 20956, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065968

RESUMO

The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.


Assuntos
Proteínas Ativadoras de GTPase , Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Glioma/metabolismo , Glioma/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
10.
Nature ; 623(7986): 347-355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914934

RESUMO

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Assuntos
Adenosina Trifosfatases , Centrômero , Proteínas de Ligação a DNA , Complexos Multiproteicos , Animais , Feminino , Camundongos/classificação , Camundongos/genética , Adenosina Trifosfatases/metabolismo , Aneuploidia , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hibridização Genética , Infertilidade Feminina/genética , Meiose/genética , Complexos Multiproteicos/metabolismo , Oócitos/metabolismo , Prófase/genética , Núcleo Celular/genética
11.
J Am Heart Assoc ; 12(19): e030478, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37750561

RESUMO

Background Sarcoidosis is an inflammatory, granulomatous disease of unknown cause affecting multiple organs, including the heart. Untreated, unresolved granulomatous inflammation can lead to cardiac fibrosis, arrhythmias, and eventually heart failure. Here we characterize the cardiac phenotype of mice with chronic activation of mammalian target of rapamycin (mTOR) complex 1 signaling in myeloid cells known to cause spontaneous pulmonary sarcoid-like granulomas. Methods and Results The cardiac phenotype of mice with conditional deletion of the tuberous sclerosis 2 (TSC2) gene in CD11c+ cells (TSC2fl/flCD11c-Cre; termed TSC2KO) and controls (TSC2fl/fl) was determined by histological and immunological stains. Transthoracic echocardiography and invasive hemodynamic measurements were performed to assess myocardial function. TSC2KO animals were treated with either everolimus, an mTOR inhibitor, or Bay11-7082, a nuclear factor-kB inhibitor. Activation of mTOR signaling was evaluated on myocardial samples from sudden cardiac death victims with a postmortem diagnosis of cardiac sarcoidosis. Chronic activation of mTORC1 signaling in CD11c+ cells was sufficient to initiate progressive accumulation of granulomatous infiltrates in the heart, which was associated with increased fibrosis, impaired cardiac function, decreased plakoglobin expression, and abnormal connexin 43 distribution, a substrate for life-threatening arrhythmias. Mice treated with the mTOR inhibitor everolimus resolved granulomatous infiltrates, prevented fibrosis, and improved cardiac dysfunction. In line, activation of mTOR signaling in CD68+ macrophages was detected in the hearts of sudden cardiac death victims who suffered from cardiac sarcoidosis. Conclusions To our best knowledge this is the first animal model of cardiac sarcoidosis that recapitulates major pathological hallmarks of human disease. mTOR inhibition may be a therapeutic option for patients with cardiac sarcoidosis.


Assuntos
Miocardite , Sarcoidose , Humanos , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Everolimo , Proteínas Supressoras de Tumor/genética , Proteína 2 do Complexo Esclerose Tuberosa , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Sarcoidose/tratamento farmacológico , Modelos Animais de Doenças , Morte Súbita Cardíaca , Fibrose , Mamíferos/metabolismo
12.
Nat Rev Mol Cell Biol ; 24(12): 857-875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612414

RESUMO

The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Complexos Multiproteicos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nutrientes
13.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511253

RESUMO

The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.


Assuntos
Doenças Cardiovasculares , Complexos Multiproteicos , Sirolimo , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Mol Cancer ; 22(1): 112, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454139

RESUMO

The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.


Assuntos
Complexos Multiproteicos , Sirolimo , Humanos , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
15.
Protein Sci ; 32(8): e4731, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462942

RESUMO

The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Neuropeptídeos , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Humanos , Guanosina Trifosfato , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor
16.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298315

RESUMO

The mechanistic target of rapamycin (mTOR) kinase is a component of two signaling complexes that are known as mTOR complex 1 (mTORC1) and mTORC2. We sought to identify mTOR-phosphorylated proteins that are differently expressed in clinically resected clear cell renal cell carcinoma (ccRCC) relative to pair-matched normal renal tissue. Using a proteomic array, we found N-Myc Downstream Regulated 1 (NDRG1) showed the greatest increase (3.3-fold) in phosphorylation (on Thr346) in ccRCC. This was associated with an increase in total NDRG1. RICTOR is a required subunit in mTORC2, and its knockdown decreased total and phospho-NDRG1 (Thr346) but not NDRG1 mRNA. The dual mTORC1/2 inhibitor, Torin 2, significantly reduced (by ~100%) phospho-NDRG1 (Thr346). Rapamycin is a selective mTORC1 inhibitor that had no effect on the levels of total NDRG1 or phospho-NDRG1 (Thr346). The reduction in phospho-NDRG1 (Thr346) due to the inhibition of mTORC2 corresponded with a decrease in the percentage of live cells, which was correlated with an increase in apoptosis. Rapamycin had no effect on ccRCC cell viability. Collectively, these data show that mTORC2 mediates the phosphorylation of NDRG1 (Thr346) in ccRCC. We hypothesize that RICTOR and mTORC2-mediated phosphorylation of NDRG1 (Thr346) promotes the viability of ccRCC cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
17.
Nature ; 618(7966): 862-870, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286607

RESUMO

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Proteoglicanas de Heparan Sulfato , Hormônios , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Fator de Crescimento de Fibroblastos 23/química , Fator de Crescimento de Fibroblastos 23/metabolismo , Fator de Crescimento de Fibroblastos 23/ultraestrutura , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Hormônios/química , Hormônios/metabolismo , Proteínas Klotho/química , Proteínas Klotho/metabolismo , Proteínas Klotho/ultraestrutura , Multimerização Proteica , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura
18.
Oncogene ; 42(28): 2207-2217, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264081

RESUMO

Activation of the PI3K-mTOR pathway is central to breast cancer pathogenesis including resistance to many targeted therapies. The mTOR kinase forms two distinct complexes, mTORC1 and mTORC2, and understanding which is required for the survival of malignant cells has been limited by tools to selectively and completely impair either subcomplex. To address this, we used RMC-6272, a bi-steric molecule with a rapamycin-like moiety linked to an mTOR active-site inhibitor that displays >25-fold selectivity for mTORC1 over mTORC2 substrates. Complete suppression of mTORC1 by RMC-6272 causes apoptosis in ER+/HER2- breast cancer cell lines, particularly in those that harbor mutations in PIK3CA or PTEN, due to inhibition of the rapamycin resistant, mTORC1 substrate 4EBP1 and reduction of the pro-survival protein MCL1. RMC-6272 reduced translation of ribosomal mRNAs, MYC target genes, and components of the CDK4/6 pathway, suggesting enhanced impairment of oncogenic pathways compared to the partial mTORC1 inhibitor everolimus. RMC-6272 maintained efficacy in hormone therapy-resistant acquired cell lines and patient-derived xenografts (PDX), showed increased efficacy in CDK4/6 inhibitor treated acquired resistant cell lines versus their parental counterparts, and was efficacious in a PDX from a patient experiencing resistance to CDK4/6 inhibition. Bi-steric mTORC1-selective inhibition may be effective in overcoming multiple forms of therapy-resistance in ER+ breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias da Mama/patologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Resistência a Medicamentos , Linhagem Celular Tumoral , Proliferação de Células
19.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
20.
Nature ; 619(7970): 650-657, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344587

RESUMO

Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.


Assuntos
Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Complexos Multiproteicos , Rad51 Recombinase , Proteínas Supressoras de Tumor , Humanos , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Recombinação Homóloga , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias/genética , Neoplasias/prevenção & controle , Proteômica , Simulação por Computador , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Quebras de DNA de Cadeia Dupla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA