Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.412
Filtrar
1.
J Mol Model ; 30(6): 177, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775913

RESUMO

CONTEXT: Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS: Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).


Assuntos
Antineoplásicos , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Tiocarbamatos , Antineoplásicos/química , Antineoplásicos/farmacologia , Tiocarbamatos/química , Espectroscopia de Ressonância Magnética/métodos , Bismuto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Modelos Moleculares , Humanos
2.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731488

RESUMO

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Assuntos
Cromo , Hipoglicemiantes , alfa-Glucosidases , beta-Glucanas , Humanos , Cromo/química , Cromo/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , beta-Glucanas/química , beta-Glucanas/farmacologia , Células Hep G2 , alfa-Glucosidases/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Resistência à Insulina , Glucose/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Avena/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química
3.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731639

RESUMO

The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.


Assuntos
Antineoplásicos , Piridinas , Rutênio , Humanos , Catálise , Rutênio/química , Linhagem Celular Tumoral , Piridinas/química , Piridinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Estrutura Molecular , Processos Fotoquímicos
4.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732264

RESUMO

Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.


Assuntos
Ouro , Hidrazonas , Piridoxal , Hidrazonas/química , Ouro/química , Piridoxal/química , Fosfato de Piridoxal/química , Complexos de Coordenação/química , Espectrofotometria Ultravioleta , Estrutura Molecular
5.
Sci Rep ; 14(1): 10032, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693156

RESUMO

The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.


Assuntos
Cobalto , Complexos de Coordenação , Cobre , Isotiocianatos , Simulação de Acoplamento Molecular , Níquel , Níquel/química , Cobre/química , Humanos , Isotiocianatos/química , Isotiocianatos/farmacologia , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobalto/química , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
6.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38695060

RESUMO

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Assuntos
Fosfatase Alcalina , Ânions , Complexos de Coordenação , Irídio , Osteossarcoma , Irídio/química , Humanos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Fosfatase Alcalina/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ânions/química , Linhagem Celular Tumoral
7.
Dalton Trans ; 53(20): 8772-8780, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712840

RESUMO

A series of Ir(III)-naproxen (NPX) conjugates with the molecular formula [Ir(C^N)2bpy(4-CH2ONPX-4'-CH2ONPX)](PF6) (Ir-NPX-1-3) were designed and synthesized, including C^N = 2-phenylpyridine (ppy, Ir-NPX-1), 2-(2-thienyl)pyridine (thpy, Ir-NPX-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-NPX-3). Cytotoxicity tests showed that Ir-NPX-1-3 exhibited excellent antitumor activity, especially in A549R cells. The cellular uptake experiment showed that the complexes were mainly localized in mitochondria, and induced apoptosis in A549R cells by damaging the structure and function of mitochondria. The main manifestations are a decrease in the mitochondrial membrane potential (MMP), an increase in reactive oxygen species (ROS) levels, and cell cycle arrest. Furthermore, Ir-NPX-1-3 could inhibit the migration and colony formation of cancer cells, demonstrating potential anti-metastatic ability. Finally, the anti-inflammatory and immunological applications of Ir-NPX-1-3 were verified. The downregulation of cyclooxygenase-2 (COX-2) and programmed death-ligand 1 (PD-L1) expression levels and the release of immunogenic cell death (ICD) related signaling molecules such as damage-associated molecular patterns (DAMPs) (cell surface calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP)) indicate that these Ir(III) -NPX conjugates are novel ICD inducers with synergistic effects in multiple anti-tumor pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Mitocôndrias , Naproxeno , Irídio/química , Irídio/farmacologia , Naproxeno/farmacologia , Naproxeno/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Animais , Camundongos , Inflamação/tratamento farmacológico , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral
8.
J Inorg Biochem ; 256: 112569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701687

RESUMO

The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.


Assuntos
Rádio (Elemento) , Rádio (Elemento)/química , Rádio (Elemento)/uso terapêutico , Humanos , Radioisótopos/química , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Bário/química , Partículas alfa/uso terapêutico , Quelantes/química , Quelantes/uso terapêutico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Metais Alcalinoterrosos/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico
9.
Chemistry ; 30(28): e202401199, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38695718

RESUMO

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Paládio/química , Metano/análogos & derivados , Metano/química , Metano/farmacologia
10.
Chem Biol Interact ; 395: 111031, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703805

RESUMO

Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.


Assuntos
Cobalto , DNA , DNA/química , DNA/metabolismo , Cobalto/química , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Conformação de Ácido Nucleico , Quadruplex G
11.
Bioorg Chem ; 147: 107422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705106

RESUMO

Two acylhydrazone based zinc(II) complexes [Zn(HL)2Cl2(CH3OH)2] (Zn1) and [ZnL(AC)]2 (Zn2) were synthesized from 3-(1-(salicyloylhydrazono)ethyl) pyridine (HL). Single crystal X-ray structure analyses showed that complexes Zn1 and Zn2 have a zero-dimensional monomer or dimer structure. Antiproliferative activity studies revealed that Zn1 and Zn2 are both more effective against A549 cells than cisplatin. The results of the reactive oxygen species (ROS) generation assay on A549 cells showed that both Zn1 and Zn2 induced apoptosis through ROS accumulation. The apoptosis-inducing and cell cycle arrest effects of Zn1 and Zn2 on A549 cells indicated that the antitumor effect was achieved through apoptosis induction and inhibition of DNA synthesis by blocking the G0/G1 phase of the cell cycle. What's more, the results of wound-healing assay showed that Zn1 and Zn2 could inhibit the migration of A549 cells. Western blot analysis further demonstrated that Zn1 and Zn2 induced cell apoptosis through the mitochondrial pathway, in which process, the expression level of cytochrome C, cleaved-PARP, cleaved-caspase 3 and cleaved-caspase 9 proteins increased while pro-caspase 3 and pro-caspase 9 expression decreased. In vivo anticancer evaluation demonstrated that both Zn1 and Zn2 complexes effectively inhibited tumor growth without causing significant toxicity in systemic organs.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Hidrazonas , Neoplasias Pulmonares , Zinco , Animais , Camundongos , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Relação Dose-Resposta a Droga , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologia
12.
BMC Vet Res ; 20(1): 196, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741109

RESUMO

BACKGROUND: Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS: Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS: [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.


Assuntos
Doenças do Cão , Misonidazol , Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipóxia Tumoral , Animais , Cães , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/veterinária , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/tratamento farmacológico , Feminino , Hipóxia Tumoral/efeitos dos fármacos , Masculino , Neoplasias/veterinária , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Tiossemicarbazonas/uso terapêutico , Tiossemicarbazonas/farmacologia , Complexos de Coordenação
13.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557015

RESUMO

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Platina/química
14.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38578920

RESUMO

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Assuntos
Antineoplásicos , Complexos de Coordenação , Luz , Piridinas , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/química , Piridinas/farmacologia , Catálise , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Processos Fotoquímicos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Luz Verde
15.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590210

RESUMO

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Tioureia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Tioureia/química , Tioureia/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Estrutura Molecular , Furanos/química , Furanos/farmacologia , Furanos/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chlorocebus aethiops , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Relação Estrutura-Atividade
16.
J Colloid Interface Sci ; 666: 259-275, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598998

RESUMO

Multimodal /components tumors synergistic therapy is a crucial approach for enhancing comprehensive efficacy. Our research has identified lots of high efficiency synergies among four suitable components, revealing combinations with remarkably low combination index (CI) values (10-3-10-8). These combinations hold promise for large tumor powerful electrothermal-thermodynamic-multi-chemo trimodal therapy. To implement this approach, we developed four-component of double-layer infinite coordination polymer (ICP) nanocomposites, in which hypoxia-activated AQ4N and thermodynamic agent AIPH coordinated with Cu(Ⅱ) to form initial layer of positively charged ICPs-l NPs, chemotherapeutic agents gossypol-hyaluronic acid (G-HA) and CA4 coordinated with Fe(Ⅲ) to form out layer of negatively charged ICPs-2 NPs, then double-layer infinite coordination polymer nanocomposites (ICPs-1@ICPs-2 CNPs) were fabricated by electrostatic adsorption using ICPs-l NPs and ICPs-2 NPs. Cell experiments have extensively optimized the coordination combinations of the four components and the composition of the two layers. A programmable three-stage therapeutic procedure, assisted by a micro-electrothermal needle (MEN), was developed. Under this procedure the resulting nanocomposites demonstrate the powerful trimodal comprehensive therapeutic outcomes for large tumors using lower components dosage, achieving a tumor inhibition rate nearly reaching 100 % and no recurrence for 60 days. This study offers remarkable potential for tumor multimodal /components synergistic therapy in future.


Assuntos
Antineoplásicos , Nanocompostos , Polímeros , Nanocompostos/química , Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Animais , Camundongos , Ácido Hialurônico/química , Propriedades de Superfície , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Neoplasias/terapia
17.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603561

RESUMO

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Assuntos
Antineoplásicos , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Células HeLa , Fenantrolinas/química , Fenantrolinas/farmacologia , Rênio/química , Rênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Apoptose/efeitos dos fármacos , Luz , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Fotoquimioterapia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
18.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
19.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577779

RESUMO

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Estresse Oxidativo , Humanos , Irídio/química , Irídio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Química Click
20.
Inorg Chem ; 63(17): 7792-7798, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619892

RESUMO

Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Irídio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Irídio/química , Irídio/farmacologia , Estereoisomerismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA