Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.060
Filtrar
1.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619701

RESUMO

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Assuntos
Complexo de Proteína do Fotossistema II , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
2.
Environ Microbiol ; 26(2): e16591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387883

RESUMO

The ecological success of purple sulfur bacteria (PSB) is linked to their ability to collect near-infrared solar energy by membrane-integrated, pigment-protein photocomplexes. These include a Core complex containing both light-harvesting 1 (LH1) and reaction centre (RC) components (called the LH1-RC photocomplex) present in all PSB and a peripheral light-harvesting complex present in most but not all PSB. In research to explain the unusual absorption properties of the thermophilic purple sulfur bacterium Thermochromatium tepidum, Ca2+ was discovered bound to LH1 polypeptides in its LH1-RC; further work showed that calcium controls both the thermostability and unusual spectrum of the Core complex. Since then, Ca2+ has been found in the LH1-RC photocomplexes of several other PSB, including mesophilic species, but not in the LH1-RC of purple non-sulfur bacteria. Here we focus on four species of PSB-two thermophilic and two mesophilic-and describe how Ca2+ is integrated into and affects their photosynthetic machinery and why this previously overlooked divalent metal is a key nutrient for their ecological success.


Assuntos
Cálcio , Chromatiaceae , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Peptídeos/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo
3.
Commun Biol ; 7(1): 176, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347078

RESUMO

The mesophilic purple sulfur phototrophic bacterium Allochromatium (Alc.) vinosum (bacterial family Chromatiaceae) has been a favored model for studies of bacterial photosynthesis and sulfur metabolism, and its core light-harvesting (LH1) complex has been a focus of numerous studies of photosynthetic light reactions. However, despite intense efforts, no high-resolution structure and thorough biochemical analysis of the Alc. vinosum LH1 complex have been reported. Here we present cryo-EM structures of the Alc. vinosum LH1 complex associated with reaction center (RC) at 2.24 Å resolution. The overall structure of the Alc. vinosum LH1 resembles that of its moderately thermophilic relative Alc. tepidum in that it contains multiple pigment-binding α- and ß-polypeptides. Unexpectedly, however, six Ca ions were identified in the Alc. vinosum LH1 bound to certain α1/ß1- or α1/ß3-polypeptides through a different Ca2+-binding motif from that seen in Alc. tepidum and other Chromatiaceae that contain Ca2+-bound LH1 complexes. Two water molecules were identified as additional Ca2+-coordinating ligands. Based on these results, we reexamined biochemical and spectroscopic properties of the Alc. vinosum LH1-RC. While modest but distinct effects of Ca2+ were detected in the absorption spectrum of the Alc. vinosum LH1 complex, a marked decrease in thermostability of its LH1-RC complex was observed upon removal of Ca2+. The presence of Ca2+ in the photocomplex of Alc. vinosum suggests that Ca2+-binding to LH1 complexes may be a common adaptation in species of Chromatiaceae for conferring spectral and thermal flexibility on this key component of their photosynthetic machinery.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Chromatiaceae/química , Chromatiaceae/metabolismo , Fotossíntese , Peptídeos/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894741

RESUMO

PsbS is one of the key photoprotective proteins, ensuring the tolerance of the photosynthetic apparatus (PSA) of a plant to abrupt changes in irradiance. Being a component of photosystem II, it provides the formation of quenching centers for excited states of chlorophyll in the photosynthetic antenna with an excess of light energy. The signal for "turning on" the photoprotective function of the protein is an excessive decrease in pH in the thylakoid lumen occurring when all the absorbed light energy (stored in the form of transmembrane proton potential) cannot be used for carbon assimilation. Hence, lumen-exposed protonatable amino acid residues that could serve as pH sensors are the essential components of PsbS-dependent photoprotection, and their pKa values are necessary to describe it. Previously, calculations of the lumen-exposed protonatable residue pKa values in PsbS from spinach were described in the literature. However, it has recently become clear that PsbS, although typical of higher plants and charophytes, can also provide photoprotection in green algae. Namely, the stress-induced expression of PsbS was recently shown for two green microalgae species: Chlamydomonas reinhardtii and Lobosphaera incisa. Therefore, we determined the amino acid sequence and modeled the three-dimensional structure of the PsbS from L. incisa, as well as calculated the pKa values of its lumen-exposed protonatable residues. Despite significant differences in amino acid sequence, proteins from L. incisa and Spinacia oleracea have similar three-dimensional structures. Along with the other differences, one of the two pH-sensing glutamates in PsbS from S. oleracea (namely, Glu-173) has no analogue in L. incisa protein. Moreover, there are only four glutamate residues in the lumenal region of the L. incisa protein, while there are eight glutamates in S. oleracea. However, our calculations show that, despite the relative deficiency in protonatable residues, at least two residues of L. incisa PsbS can be considered probable pH sensors: Glu-87 and Lys-196.


Assuntos
Clorófitas , Microalgas , Sequência de Aminoácidos , Microalgas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorófitas/metabolismo , Concentração de Íons de Hidrogênio , Glutamatos , Complexos de Proteínas Captadores de Luz/metabolismo
5.
J Phys Chem B ; 127(33): 7283-7290, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556839

RESUMO

Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/metabolismo , Peptídeos , Fotossíntese , Transferência de Energia , Proteínas de Bactérias/química
6.
J Am Chem Soc ; 145(29): 15827-15837, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37438911

RESUMO

Photosynthetic organisms utilize dynamic and complex networks of pigments bound within light-harvesting complexes to transfer solar energy from antenna complexes to reaction centers. Understanding the principles underlying the efficiency of these energy transfer processes, and how they may be incorporated into artificial light-harvesting systems, is facilitated by the construction of easily tunable model systems. We describe a protein-based model to mimic directional energy transfer between light-harvesting complexes using a circular permutant of the tobacco mosaic virus coat protein (cpTMV), which self-assembles into a 34-monomer hollow disk. Two populations of cpTMV assemblies, one labeled with donor chromophores and another labeled with acceptor chromophores, were coupled using a direct protein-protein bioconjugation method. Using potassium ferricyanide as an oxidant, assemblies containing o-aminotyrosine were activated toward the addition of assemblies containing p-aminophenylalanine. Both of these noncanonical amino acids were introduced into the cpTMV monomers through amber codon suppression. This coupling strategy has the advantages of directly, irreversibly, and site-selectively coupling donor with acceptor protein assemblies and avoids cross-reactivity with native amino acids and undesired donor-donor or acceptor-acceptor combinations. The coupled donor-acceptor model was shown to transfer energy from an antenna disk containing donor chromophores to a downstream disk containing acceptor chromophores. This model ultimately provides a controllable and modifiable platform for understanding photosynthetic interassembly energy transfer and may lead to the design of more efficient functional light-harvesting materials.


Assuntos
Modelos Biológicos , Fotossíntese , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Aminoácidos
7.
Phys Chem Chem Phys ; 25(28): 18698-18710, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37404080

RESUMO

Photosynthetic green sulfur bacteria are able to survive under extreme low light conditions. Nevertheless, the light-harvesting efficiencies reported so far, in particular for Fenna-Matthews-Olson (FMO) protein-reaction center complex (RCC) supercomplexes, are much lower than for photosystems of other species. Here, we approach this problem with a structure-based theory. Compelling evidence for a light-harvesting efficiency around 95% is presented for native (anaerobic) conditions that can drop down to 47% when the FMO protein is switched into a photoprotective mode in the presence of molecular oxygen. Light-harvesting bottlenecks are found between the FMO protein and the RCC, and the antenna of the RCC and its reaction center (RC) with forward energy transfer time constants of 39 ps and 23 ps, respectively. The latter time constant removes an ambiguity in the interpretation of time-resolved spectra of RCC probing primary charge transfer and provides strong evidence for a transfer-to-the trap limited kinetics of excited states. Different factors influencing the light-harvesting efficiency are investigated. A fast primary electron transfer in the RC is found to be more important for a high efficiency than the site energy funnel in the FMO protein, quantum effects of nuclear motion, or variations in the mutual orientation between the FMO protein and the RCC.


Assuntos
Carcinoma de Células Renais , Chlorobi , Neoplasias Renais , Humanos , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/metabolismo
8.
J Biol Chem ; 299(8): 105057, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468106

RESUMO

In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.


Assuntos
Proteínas de Bactérias , Chloroflexi , Fotossíntese , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Chloroflexi/metabolismo , Complexos de Proteínas Captadores de Luz/química
9.
Photosynth Res ; 157(1): 13-20, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930432

RESUMO

Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Microscopia de Força Atômica , Complexos de Proteínas Captadores de Luz/metabolismo , Chromatiaceae/metabolismo , Proteobactérias/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo
10.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982707

RESUMO

Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/genética , Ficobilissomas/metabolismo , Filogenia , Cianobactérias/genética , Cianobactérias/metabolismo , Ficobilinas , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo
11.
Structure ; 31(3): 318-328.e3, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738736

RESUMO

In purple photosynthetic bacteria, the photochemical reaction center (RC) and light-harvesting complex 1 (LH1) assemble to form monomeric or dimeric RC-LH1 membrane complexes, essential for bacterial photosynthesis. Here, we report a 2.59-Å resolution cryoelectron microscopy (cryo-EM) structure of the RC-LH1 supercomplex from Rhodobacter capsulatus. We show that Rba. capsulatus RC-LH1 complexes are exclusively monomers in which the RC is surrounded by a 15-subunit LH1 ring. Incorporation of a transmembrane polypeptide PufX leads to a large opening within the LH1 ring. Each LH1 subunit associates two carotenoids and two bacteriochlorophylls, which is similar to Rba. sphaeroides RC-LH1 but more than one carotenoid per LH1 in Rba. veldkampii RC-LH1 monomer. Collectively, the unique Rba. capsulatus RC-LH1-PufX represents an intermediate structure between Rba. sphaeroides and Rba. veldkampii RC-LH1-PufX. Comparison of PufX from the three Rhodobacter species indicates the important residues involved in dimerization of RC-LH1.


Assuntos
Rhodobacter capsulatus , Rhodobacter sphaeroides , Rhodobacter capsulatus/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia Crioeletrônica , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Carotenoides/metabolismo
12.
Nat Commun ; 14(1): 846, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792596

RESUMO

Rhodobacter (Rba.) capsulatus has been a favored model for studies of all aspects of bacterial photosynthesis. This purple phototroph contains PufX, a polypeptide crucial for dimerization of the light-harvesting 1-reaction center (LH1-RC) complex, but lacks protein-U, a U-shaped polypeptide in the LH1-RC of its close relative Rba. sphaeroides. Here we present a cryo-EM structure of the Rba. capsulatus LH1-RC purified by DEAE chromatography. The crescent-shaped LH1-RC exhibits a compact structure containing only 10 LH1 αß-subunits. Four αß-subunits corresponding to those adjacent to protein-U in Rba. sphaeroides were absent. PufX in Rba. capsulatus exhibits a unique conformation in its N-terminus that self-associates with amino acids in its own transmembrane domain and interacts with nearby polypeptides, preventing it from interacting with proteins in other complexes and forming dimeric structures. These features are discussed in relation to the minimal requirements for the formation of LH1-RC monomers and dimers, the spectroscopic behavior of both the LH1 and RC, and the bioenergetics of energy transfer from LH1 to the RC.


Assuntos
Rhodobacter capsulatus , Rhodobacter sphaeroides , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo
13.
Photosynth Res ; 156(3): 315-323, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781711

RESUMO

Light-harvesting complexes (LHCs) have been diversified in oxygenic photosynthetic organisms, and play an essential role in capturing light energy which is transferred to two types of photosystem cores to promote charge-separation reactions. Red algae are one of the groups of photosynthetic eukaryotes, and their chlorophyll (Chl) a-binding LHCs are specifically associated with photosystem I (PSI). In this study, we purified three types of preparations, PSI-LHCI supercomplexes, PSI cores, and isolated LHCIs, from the red alga Cyanidium caldarium, and examined their properties. The polypeptide bands of PSI-LHCI showed characteristic PSI and LHCI components without contamination by other proteins. The carotenoid composition of LHCI displayed zeaxanthins, ß-cryptoxanthins, and ß-carotenes. Among the carotenoids, zeaxanthins were enriched in LHCI. On the contrary, both zeaxanthins and ß-cryptoxanthins could not be detected from PSI, suggesting that zeaxanthins and ß-cryptoxanthins are bound to LHCI but not PSI. A Qy peak of Chl a in the absorption spectrum of LHCI was shifted to a shorter wavelength than those in PSI and PSI-LHCI. This tendency is in line with the result of fluorescence-emission spectra, in which the emission maxima of PSI-LHCI, PSI, and LHCI appeared at 727, 719, and 677 nm, respectively. Time-resolved fluorescence spectra of LHCI represented no 719 and 727-nm fluorescence bands from picoseconds to nanoseconds. These results indicate that energy levels of Chls around/within LHCIs and within PSI are changed by binding LHCIs to PSI. Based on these findings, we discuss the expression, function, and structure of red algal PSI-LHCI supercomplexes.


Assuntos
Complexo de Proteína do Fotossistema I , Rodófitas , Complexo de Proteína do Fotossistema I/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Análise Espectral , Clorofila A , Rodófitas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo
14.
Plant Physiol ; 191(3): 1612-1633, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649171

RESUMO

In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Chlamydomonas , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Clorofila/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo
15.
Biochem J ; 479(24): 2449-2463, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534468

RESUMO

Purple phototrophic bacteria use a 'photosystem' consisting of light harvesting complex 1 (LH1) surrounding the reaction centre (RC) that absorbs far-red-near-infrared light and converts it to chemical energy. Blastochloris species, which harvest light >1000 nm, use bacteriochlorophyll b rather than the more common bacteriochlorophyll a as their major photopigment, and assemble LH1 with an additional polypeptide subunit, LH1γ, encoded by multiple genes. To assign a role to γ, we deleted the four encoding genes in the model Blastochloris viridis. Interestingly, growth under halogen bulbs routinely used for cultivation yielded cells displaying an absorption maximum of 825 nm, similar to that of the RC only, but growth under white light yielded cells with an absorption maximum at 972 nm. HPLC analysis of pigment composition and sucrose gradient fractionation demonstrate that the white light-grown mutant assembles RC-LH1, albeit with an absorption maximum blue-shifted by 46 nm. Wavelengths between 900-1000 nm transmit poorly through the atmosphere due to absorption by water, so our results provide an evolutionary rationale for incorporation of γ; this polypeptide red-shifts absorption of RC-LH1 to a spectral range in which photons are of lower energy but are more abundant. Finally, we transformed the mutant with plasmids encoding natural LH1γ variants and demonstrate that the polypeptide found in the wild type complex red-shifts absorption back to 1018 nm, but incorporation of a distantly related variant results in only a moderate shift. This result suggests that tuning the absorption of RC-LH1 is possible and may permit photosynthesis past its current low-energy limit.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Peptídeos/química , Proteínas de Bactérias/metabolismo
16.
Commun Biol ; 5(1): 1197, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344631

RESUMO

Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1-reaction center (LH1-RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.


Assuntos
Extremófilos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Fotossíntese , Proteobactérias/genética , Peptídeos/metabolismo , Heme/metabolismo
17.
J Phys Chem B ; 126(40): 7981-7991, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36191182

RESUMO

Despite extensive studies, many questions remain about what structural and energetic factors give rise to the remarkable energy transport efficiency of photosynthetic light-harvesting protein complexes, owing largely to the inability to synthetically control such factors in these natural systems. Herein, we demonstrate energy transfer within a biomimetic light-harvesting complex consisting of identical chromophores attached in a circular array to a protein scaffold derived from the tobacco mosaic virus coat protein. We confirm the capability of energy transport by observing ultrafast depolarization in transient absorption anisotropy measurements and a redshift in time-resolved emission spectra in these complexes. Modeling the system with kinetic Monte Carlo simulations recapitulates the observed anisotropy decays, suggesting an inter-site hopping rate as high as 1.6 ps-1. With these simulations, we identify static disorder in orientation, site energy, and degree of coupling as key remaining factors to control to achieve long-range energy transfer in these systems. We thereby establish this system as a highly promising, bottom-up model for studying long-range energy transfer in light-harvesting protein complexes.


Assuntos
Biomimética , Vírus do Mosaico do Tabaco , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Vírus do Mosaico do Tabaco/química
18.
Proc Natl Acad Sci U S A ; 119(43): e2210109119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251992

RESUMO

The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and ß-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αß-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αß-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.


Assuntos
Bacterioclorofilas , Rodopseudomonas , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/metabolismo , Peptídeos/metabolismo , Rodopseudomonas/genética
19.
J Phys Chem B ; 126(31): 5855-5865, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920883

RESUMO

The light-harvesting complex II (LHCII) trimer in plants functions as a major antenna complex and a quencher to protect it from photooxidative damage. Theoretical studies on the structure of an LHCII trimer have demonstrated that excitation energy transfer between chlorophylls (Chls) in LHCII can be modulated by its exquisite conformational fluctuation. However, conformational changes depending on its binding location have not yet been investigated, even though reorganization of protein complexes occurs by physiological regulations. In this study, we investigated conformational differences in LHCII by comparing published structures of an identical LHCII trimer in the three different photosystem supercomplexes from the green alga Chlamydomonas reinhardtii. Our results revealed distinct differences in Chl configurations as well as polypeptide conformations of the LHCII trimers depending on its binding location. We propose that these configurational differences readily modulate the function of LHCII and possibly lead to a change in excitation-energy flow over the photosynthetic supercomplex.


Assuntos
Chlamydomonas reinhardtii , Complexos de Proteínas Captadores de Luz , Sítios de Ligação , Chlamydomonas reinhardtii/metabolismo , Clorofila , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Plantas/metabolismo
20.
J Phys Chem Lett ; 13(29): 6701-6710, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848986

RESUMO

Nature has beautifully assembled its light harvesting pigments within protein scaffolds, which ensures a very high energy transfer. Designing a highly efficient artificial bioinspired light harvesting system (LHS) thus requires the nanoscale spatial orientation and electronic control of the associated chromophores. Although DNA has been used as a scaffold to organize chromophores, proteins or polypeptides, however, are very rarely explored. Here, we have developed a highly efficient, artificial, bioinspired LHS using polypeptide (poly-d-lysine, PDL) nanostructures making use of their ß-sheet structure in an aqueous alkaline medium. The chromophores used herein are compatible for an energy transfer process and are nonfluorescent in an aqueous medium but exhibit high fluorescence intensity when bound to the nanostructure of PDL. The close proximity of the chromophores results in an energy transfer efficiency of ∼92% besides generating white light emission at a particular molar ratio between the chromophores.


Assuntos
Complexos de Proteínas Captadores de Luz , Nanoestruturas , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/química , Lisina , Nanoestruturas/química , Poli A , Conformação Proteica em Folha beta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA